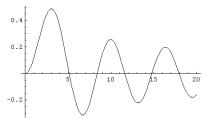
Bessel Functions, by Dr Colton Physics 442, Summer 2016

The Bessel functions, $J_{\alpha}(x)$ are a series of functions, that:

- (a) come up often, especially in partial differential equations
- (b) have interesting properties
- (c) are well understood and have been studied for centuries

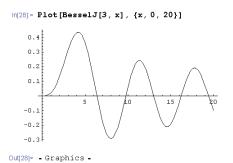
They are typically only used for positive values of x. Here are the first four plotted.

Plots BesselJ[α ,x] is a built-in *Mathematica* function just like Sin[x], and gives J $_{\alpha}(x)$ ln[25]:= Plot[BesselJ[0, x], {x, 0, 20}] 0.8 $J_0(x)$ Π.6 crosses zero at 2.405, 5.520, 8.654, ... 0.4 ← The only one that is not zero at the origin -0.2 -0.4 Out[25]= - Graphics $ln[26]:= Plot[BesselJ[1, x], {x, 0, 20}]$ $J_1(x)$ 0.4 crosses zero at 3.832, 7.016, 10.173, ... Out[26]= - Graphics in[27]:= Plot[BesselJ[2, x], {x, 0, 20}] $J_2(x)$ 0.4



Out[27]= - Graphics -

 $J_2(x)$ crosses zero at 5.136, 8.417, 11.620, ...



J₃(x) crosses zero at 6.380, 9.761, 13.015, ...

Very important facts

- Can be computed via a series formula: $J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+\alpha}}{k!(k+\alpha)! 2^{2k+\alpha}}$
- Derivatives:

o
$$\frac{d}{dx}(J_0(x)) = -J_1(x)$$

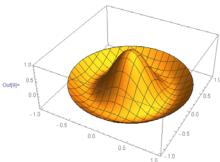
o $\frac{d}{dx}(J_n(x)) = \frac{J_{n-1}(x) - J_{n+1}(x)}{2}$
Zeroes: $u_{\alpha m}$ represents the mth zero of $J_{\alpha}(x)$. From the previous page:

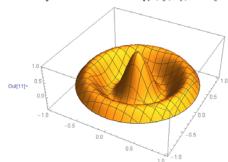
- - o $u_{01} = 2.405$, $u_{02} = 5.520$, $u_{03} = 8.654$, ...
 - o $u_{11} = 3.832$, $u_{12} = 7.016$, $u_{13} = 10.173$, ...

These numbers are available in Mathematica via the BesselJZero function:

BesselJZero[0,1] yields a result of 2.4048255576957727686..., etc.

- Differential equations ("Bessel's equation"):
 - $x^2 \frac{d^2 f}{dx^2} + x \frac{df}{dx} + (x^2 \alpha^2)f = 0$ has solution $J_{\alpha}(x)$, or linear combinations
 - $x^2 \frac{d^2 f}{dx^2} + x \frac{df}{dx} + (u_{0m}^2 x^2 \alpha^2) f = 0 \text{ has solution } J_{\alpha}(u_{\alpha m} x), \text{ or linear combinations}$
- There are a second set of solutions to Bessel's differential equation, called $Y_a(x)$ (sometimes written $N_a(x)$) or the "Bessel functions of the second kind"; these diverge at x = 0 and are therefore often not used.
 - Various other linear combinations of $J_{\alpha}(x)$ and $Y_{\alpha}(x)$ are sometimes used; two examples are the "modified Bessel functions" and the "Hankel functions". These are beyond the scope of this course.
 - The so-called "spherical Bessel functions" (and "spherical Hankel functions") are solutions to a different, albeit closely related, differential equation. These are also beyond the scope of this course.
- When $u_{\alpha m}$ is added to the argument in the form $u_{\alpha m}r$, the functions go to zero at r=1. Then e.g. $J_0(u_{0m}r)$ represents a series of functions between the origin and a circular boundary of r=1, having m antinodes. For example $I_0(u_{02}x)$ has two antinodes, $I_0(u_{03}x)$ has three antinodes, etc.





Orthogonality: $J_0(u_{0m}x)$ and $J_0(u_{0n}x)$ are orthogonal over the interval (0, 1) with respect to a weighting function of x:

$$\int_{0}^{1} x J_{0}(u_{0m}x) J_{0}(u_{0n}x) dx = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2} (J_{1}(u_{0m}x))^{2} & \text{if } n = m \end{cases}$$
more generally for $J(x)$:

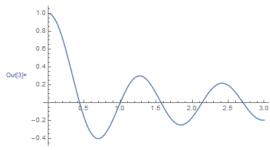
Or, more generally for $J_{\alpha}(x)$:

o
$$\int_0^1 x J_{\alpha}(u_{\alpha m} x) J_{\alpha}(u_{\alpha n} x) dx = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2} \left(J_{\alpha+1}(u_{\alpha m} x) \right)^2 & \text{if } n = m \end{cases}$$

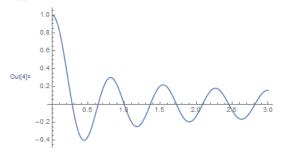
Orthogonality, depicted

```
In[1]:= u02 = BesselJZero[0, 2];
u03 = BesselJZero[0, 3];
```

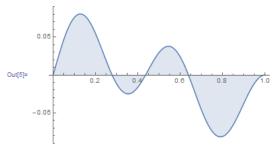
 $ln[3] = Plot[BesselJ[0, u02 x], \{x, 0, 3\}]$



ln[4]:= Plot[BesselJ[0, u03 x], {x, 0, 3}, PlotRange \rightarrow All]



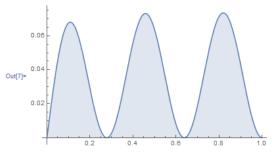
$$\label{eq:loss_loss} \begin{split} & \ln[5] = \text{Plot}[x \, \text{BesselJ}[0, \, \text{u02} \, x] \, \, \text{BesselJ}[0, \, \text{u03} \, x] \,, \, \{x, \, 0, \, 1\} \,, \, \text{Filling} \rightarrow \text{Axis}] \end{split}$$



 $_{\text{ln}[8]:=}\text{ Integrate}[x \, \texttt{BesselJ}[0, \, \texttt{u02} \, \texttt{x}] \, \, \texttt{BesselJ}[0, \, \texttt{u03} \, \texttt{x}] \, , \, \{\texttt{x}, \, 0, \, 1\}]$

Out[6]= 0

 $_{\text{ln[7]:=}}\ \texttt{Plot[x\,BesselJ[0,\,u03\,x]\,BesselJ[0,\,u03\,x],\,\{x,\,0,\,1\},\,\texttt{Filling} \rightarrow \texttt{Axis]}$



 $_{\text{ln}[8]:=}\text{ Integrate}[x \, BesselJ[0, \, u03 \, x] \, BesselJ[0, \, u03 \, x] \, , \, \{x, \, 0, \, 1\}] \, // \, N$

Out[8]= 0.0368432

 $\mbox{ln[9]:=}$.5 (BesselJ[1, u03]) ^2 // N

Out[9]= 0.0368432

These are two functions which are orthogonal. They are both J_0 functions, but one has been scaled so that its *second* "zero crossing" occurs at x = 1, and the other has been scalled so that its *third* zero crossing occurs at x = 1.

The two functions are only orthogonal over the range from 0 to 1, and only with a weighting function of x. But within those constraints, you can see that the positive areas cancel out the negative areas.

The integral is zero.

$$\int_0^1 x J_0(u_{0m}x) J_0(u_{0n}x) dx$$

equals 0 if $n \neq m$!

By contrast, $J_0(u_{0m}x)$ is not orthogonal to itself.

$$\int_{0}^{1} x J_{0}(u_{0m}x) J_{0}(u_{0n}x) dx$$
equals $\frac{1}{2} (J_{1}(u_{0m}x))^{2}$ if $n = m!$

Comparison with sines & cosines:

Sines/Cosines

- 1. Two oscillatory functions: sin(x) and cos(x). Sometimes one of them is not used, due to the symmetry of the problem.
- You determine the value of sin(x) or cos(x)for arbitrary x by using a calculator or computer program.

3.
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

Consider just sin(x):

- 4. The zeroes of sin(x) are at $x = \pi, 2\pi, 3\pi, \text{ etc.}$ $x = m\pi$ is the m^{th} zero
- Using the zeroes in the argument, $\sin(m\pi x)$ has m antinodes in the interval from 0 to 1. And at x = 1 (the boundary), $\sin(m\pi x) = 0$ for all m.
- 6. The differential equation satisfied by $f = \sin(x)$ is f'' + f = 0.

The differential equation satisfied by $f = \sin(m\pi x)$ is $f'' + (m\pi)^2 f = 0$.

7. $\sin(n\pi x)$ is orthogonal to $\sin(m\pi x)$ on the interval (0,1):

$$\int_{0}^{1} \sin(n\pi x) \sin(m\pi x) dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2}, & \text{if } n = m \end{cases}$$

Bessel functions

Two oscillatory functions for each α : $J_{\alpha}(x)$ and $Y_{\alpha}(x)$. Typically Y_{α} is not used because it's infinite at the origin.

You determine the value of $J_{\alpha}(x)$ for arbitrary x by using a calculator or computer program.

$$J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+\alpha}}{k!(k+\alpha)! 2^{2k+\alpha}}$$

Consider just $J_{\alpha}(x)$ for one α , say $\alpha = 0$:

(similar things hold true for all α 's)

The zeroes of $J_{\theta}(x)$ are at $x \approx 2.405, 5.520, 8.654, \text{ etc.}$ $x = "u_{0m}"$ is the m^{th} zero

Using the zeroes in the argument, $J_0(u_{0m}r)$ has m antinodes in the circular region $r \le 1$. And at r = 1(the boundary), $J_0(u_{0m}x) = 0$ for all m.

The differential equation satisfied by $f = J_0(x)$ is $x^2f'' + xf' + (x^2 - 0^2)f = 0.$

The differential equation satisfied by $f = J_0(u_{0m}x)$ is $x^2f'' + xf' + (u_{0m}^2x^2 - 0^2)f = 0.$

$$0^2 \rightarrow \alpha^2$$
 for other α 's

 $J_0(u_{0n}x)$ is orthogonal to $J_0(u_{0m}x)$ on the interval (0,1), with respect to a weighting function of x:

$$\int_{0}^{1} \sin(n\pi x) \sin(m\pi x) dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2}, & \text{if } n = m \end{cases} \int_{0}^{1} x J_{0}(u_{0n}x) J_{0}(u_{0m}x) dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2} (J_{1}(u_{0m}))^{2}, & \text{if } n = m \end{cases}$$

Similar orthogonality holds for other values of α .

Additionally, the Bessel functions are related to sines/cosines through this integral formula:

$$J_{\alpha}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(\alpha \theta - x \sin \theta) d\theta$$

Quote from Mary Boas, in Mathematica Methods in the Physical Sciences: "In fact, if you had first learned about $\sin(nx)$ and $\cos(nx)$ as power series solutions of $y'' = -n^2y$, instead of in elementary trigonometry, you would not feel that Bessel functions were appreciably more difficult or strange than trigonometric functions. Like sines and cosines, Bessel functions are solutions of a differential equation; they are tabulated and their graphs can be drawn; they can be represented as a series; and a large number of formulas about them are known."