$\mathrm{E}_{\mathbf{z}}$ component of TM Modes of a Cylindrical Waveguide, by Dr. Colton Physics 442, Summer 2016

```
ln[1]:= uam [ }\mp@subsup{\alpha}{_}{\prime},\mp@subsup{m}{-}{}]=\operatorname{BesselJZero[ }\alpha,\textrm{m}]
ln[2]:= f01[ X_, Y_] = BesselJ[0, Sqrt[x^^2+ y^ 2] uam[0, 1]]//N
    Plot3D[f01[x, y], {x, -1, 1}, {y, -1, 1},
        RegionFunction }->\mathrm{ Function[{x, Y, z}, 怔^2+ Y^^2< 1]]
```

$\operatorname{Out}[2]=\operatorname{BesselJ}\left[0 ., 2.40483 \sqrt{x^{2}+y^{2}}\right]$

$\ln [4]:=\mathrm{f0} 2\left[\mathrm{X}_{-}, Y_{-}\right]=\operatorname{Bessel} \mathrm{J}\left[0, \operatorname{Sqrt}\left[\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right] \operatorname{uam}[0,2]\right] / / \mathrm{N}$ Plot3D[f02[x, y], $\{x,-1,1\},\{y,-1,1\}$, RegionFunction \rightarrow Function $\left.\left[\{x, Y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]$

Out[4] $=$ BesselJ $\left[0 ., 5.52008 \sqrt{x^{2}+y^{2}}\right]$

This is $E z=J_{0}\left(\frac{u_{01} s}{R}\right)$, with $R=1$ and $s=\sqrt{x^{2}+y^{2}}$.
$\mathbf{T M}_{02}$
$\mathbf{T M}_{01}$
$\ln [6]:=\mathrm{f03}\left[\mathrm{x}_{-}, Y_{-}\right]=\operatorname{Bessel} \mathrm{J}\left[0, \operatorname{Sqrt}\left[\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right] \mathrm{u} \alpha \mathrm{m}[0,3]\right] / / \mathrm{N}$
Plot3D[f03[x, y], $\{x,-1,1\},\{y,-1,1\}$,
RegionFunction \rightarrow Function $\left.\left[\{x, y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]$
Out[$[6]=$ Bessel $J\left[0 ., 8.65373 \sqrt{x^{2}+y^{2}}\right]$

$\mathbf{T M}_{03}$

$\ln [8]:=\mathrm{f09}\left[\mathrm{X}_{-}, Y_{-}\right]=\operatorname{Bessel}\left[\left[0, \operatorname{Sqrt}\left[\mathrm{x}^{\wedge} 2+\mathrm{Y}^{\wedge} 2\right] \mathrm{u} \alpha \mathrm{m}[0,9]\right] / / \mathrm{N}\right.$
Plot3D[f09[x, y], $\{x,-1,1\},\{y,-1,1\}, P l o t R a n g e \rightarrow\{-1,1\}$,
PlotPoints $\rightarrow 30$,
RegionFunction \rightarrow Function $\left.\left[\{x, y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]$
Out $[8]=$ Bessel $J\left[0 ., 27.4935 \sqrt{x^{2}+y^{2}}\right]$

$\mathbf{T M}_{09}$
$\ln [10]:=\mathrm{f} 11[\mathrm{x}, \mathrm{Y}]=$
BesselJ [1, Sqrt[$\left.\left.x^{\wedge} 2+y^{\wedge} 2\right] \operatorname{uam}[1,1]\right] \operatorname{Cos}[\operatorname{Arg}[x+I y]] / / N$
Plot3D[f11[x, y], \{x, -1, 1\}, \{y, -1, 1\},
RegionFunction \rightarrow Function $\left[\{x, Y, z\}, x^{\wedge} 2+Y^{\wedge} 2<1\right]$]
Out[10] $=$ Bessel $J\left[1 ., 3.83171 \sqrt{x^{2}+y^{2}}\right] \operatorname{Cos}[\operatorname{Arg}[x+(0 .+1$. i) $y]]$

$\ln [12]:=\mathrm{f} 12\left[\mathrm{X}_{-}, Y_{-}\right]=$
BesselJ[1, Sqrt[$\left.\left.x^{\wedge} 2+y^{\wedge} 2\right] \operatorname{uam}[1,2]\right] \operatorname{Cos}[\operatorname{Arg}[x+I y]] / / N$ Plot3D[f12[x, y$]$, $\{\mathrm{x},-1,1\},\{\mathrm{y},-1,1\}$,
RegionFunction \rightarrow Function $\left.\left[\{x, y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]$
Out[12] $=\operatorname{Bessel} J\left[1 ., 7.01559 \sqrt{x^{2}+y^{2}}\right] \operatorname{Cos}[\operatorname{Arg}[x+(0 .+1$. i) y]]

This is $E z=J_{1}\left(\frac{u_{11} s}{R}\right) \cos \phi$. It's the first mode with ϕ dependence. I used the "Arg" function as a trick to get ϕ.
Often we say $\phi=\tan ^{-1}\left(\frac{y}{x}\right)$, but the $\tan ^{-1}$ function has problems in the $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants. Arg (the polar angle of a complex number) doesn't suffer from those issues.
$\mathbf{T M}_{11}$
$\mathbf{T M}_{12}$

```
ln[14]:= f13[ }\mp@subsup{x}{-}{\prime},\mp@subsup{Y}{-}{}]
```

 BesselJ [1, Sqrt[x^2+ \(\left.\left.\mathrm{y}^{\wedge} 2\right] \operatorname{uam}[1,3]\right] \operatorname{Cos}[\operatorname{Arg}[x+\operatorname{y}]] / / N\)
 Plot3D[f13[x, y], \{x, -1, 1\}, \{y, -1, 1\},
 RegionFunction \(\rightarrow\) Function \(\left.\left[\{x, y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]\)
 Out[14] $=$ Bessel $J\left[1 ., 10.1735 \sqrt{x^{2}+y^{2}}\right] \operatorname{Cos}[\operatorname{Arg}[x+(0 .+1$. i) y]]

$\mathbf{T M}_{13}$

$\ln [16]:=\mathrm{f} 21\left[\mathrm{x}_{-}, Y_{-}\right]=$
Besseld [2, Sqrt[$\left.\left.x^{\wedge} 2+y^{\wedge} 2\right] \operatorname{uam}[2,1]\right] \operatorname{Cos}[2 \operatorname{Arg}[x+I y]] / / N$ Plot3D[f21[x, y], \{x, -1, 1\}, \{y, -1, 1\},
RegionFunction \rightarrow Function [\{x, $\left.\left.y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]$
$\operatorname{Out}[16]=\operatorname{Bessel} J\left[2 ., 5.13562 \sqrt{x^{2}+y^{2}}\right] \operatorname{Cos}[2 \cdot \operatorname{Arg}[x+(0 .+1$. i) y] $]$

$\mathbf{T M}_{21}$

```
ln[18]:= f22[x_, Y_] ] =
```

 BesselJ [2, Sqrt[\(\left.\left.x^{\wedge} 2+y^{\wedge} 2\right] \operatorname{uam}[2,2]\right] \operatorname{Cos}[2 \operatorname{Arg}[x+I y]] / / N\)
 Plot3D[f22[x, y], \(\{x,-1,1\},\{y,-1,1\}\),
 RegionFunction \(\rightarrow\) Function \(\left.\left[\{x, y, z\}, x^{\wedge} 2+y^{\wedge} 2<1\right]\right]\)
 Out[18]= BesselJ $\left[2 ., 8.41724 \sqrt{x^{2}+y^{2}}\right] \operatorname{Cos}[2 . \operatorname{Arg}[x+(0 .+1$. i) yl]

$\mathbf{T M}_{22}$

