E_z component of TM Modes of a Cylindrical Waveguide, by Dr. Colton Physics 442, Summer 2016

 $ln[1]:= u\alpha m [\alpha_{n}, m] = BesselJZero[\alpha, m];$

 $ln[2]:= f01[x_, y_] = BesselJ[0, Sqrt[x^2+y^2] uom[0, 1]] // N$ $Plot3D[f01[x, y], \{x, -1, 1\}, \{y, -1, 1\},$

RegionFunction \rightarrow Function[{x, y, z}, x^2+y^2<1]]

This is $Ez = J_0\left(\frac{u_{01}s}{R}\right)$, with R = 1 and $s = \sqrt{x^2 + y^2}$.

Out[2]= BesselJ $\left[$ 0., 2.40483 $\sqrt{x^2 + y^2}$ $\right]$

 TM_{01}

 $\begin{array}{ll} \ln[4] = & \mbox{f02}[x_{-}, y_{-}] = \mbox{BesselJ}[0, \mbox{Sqrt}[x^2 + y^2] \ ucm[0, 2]] \ // \ N \\ & \mbox{Plot3D}[\mbox{f02}[x, y], \{x, -1, 1\}, \{y, -1, 1\}, \\ & \mbox{RegionFunction} \rightarrow \mbox{Function}[\{x, y, z\}, x^2 + y^2 < 1]] \end{array}$

.

Out[4]= BesselJ[0., 5.52008 $\sqrt{\mathbf{x}^2 + \mathbf{y}^2}$]

 TM_{02}

```
\begin{array}{ll} & \text{In}[8] := \ f03[x\_,\ y\_] \ = \ BesselJ[0,\ Sqrt[x^2+y^2]\ uom[0,\ 3]]\ //\ N\\ & \text{Plot3D}[f03[x,\ y],\ \{x,\ -1,\ 1\},\ \{y,\ -1,\ 1\},\\ & \text{RegionFunction} \rightarrow \text{Function}[\{x,\ y,\ z\},\ x^2+y^2<1]] \end{array}
```

Out[8]= BesselJ $\left[$ 0., 8.65373 $\sqrt{\mathbf{x}^2 + \mathbf{y}^2} \ \right]$

 TM_{03}

 $ln[8]:= f09[x_{,y_{,}}] = BesselJ[0, Sqrt[x^2 + y^2] uam[0, 9]] // N$ $Plot3D[f09[x, y], \{x, -1, 1\}, \{y, -1, 1\}, PlotRange \rightarrow \{-1, 1\},$ $PlotPoints \rightarrow 30,$ $RegionFunction \rightarrow Function[\{x, y, z\}, x^2 + y^2 < 1]]$

(Skipping a few, over to mode 09.)

Out[8]= BesselJ $\left[$ 0., 27.4935 $\sqrt{x^2 + y^2}$ $\right]$

 TM_{09}

$$\begin{split} & \ln[10] = \text{ } \text{fil} \, [\, x_- , \, y_- \,] = \\ & \quad \text{BesselJ} \, [\, 1, \, \text{Sqrt} \, [\, x_-^2 + y_-^2 \,] \, \, \text{uam} \, [\, 1, \, 1\,] \,] \, \, \text{Cos} \, [\, \text{Arg} \, [\, x_- + \, I_- y_] \,] \, \, //\,\, \text{N} \\ & \quad \text{Plot3D} \, [\, \text{fil} \, [\, x_- , \, y_- \,] \,, \, \, \{\, x_- - 1, \, 1\,\} \,, \,\, \\ & \quad \text{RegionFunction} \, \rightarrow \, \text{Function} \, [\, \{\, x_- , \, y_- \, z_-^2 \} \,, \, \, x_-^2 + y_-^2 \, < \, 1\,] \,] \end{split}$$

Out[10]= BesselJ $\left[1., 3.83171 \sqrt{x^2 + y^2} \right] \cos[Arg[x + (0. + 1. i) y]]$

This is $Ez = J_1\left(\frac{u_{11}s}{R}\right)\cos\phi$. It's the first mode with ϕ dependence. I used the "Arg" function as a trick to get ϕ . Often we say $\phi = \tan^{-1}\left(\frac{y}{x}\right)$, but the \tan^{-1} function has problems in the $2^{\rm nd}$ and $3^{\rm rd}$ quadrants. Arg (the polar angle of a complex number) doesn't suffer from those issues.

 TM_{11}

Out[12]= BesselJ $\left[1., 7.01559 \sqrt{x^2 + y^2} \right]$ Cos[Arg[x + (0. + 1. i) y]]

 TM_{12}

```
\begin{split} & \ln[14] = \text{f13}[x_-, y_-] = \\ & \text{BesselJ}[1, \text{Sqrt}[x^2 + y^2] \text{ ucm}[1, 3]] \text{ Cos}[\text{Arg}[x + I y]] // \text{N} \\ & \text{Plot3D}[\text{f13}[x, y], \{x, -1, 1\}, \{y, -1, 1\}, \\ & \text{RegionFunction} \rightarrow \text{Function}[\{x, y, z\}, x^2 + y^2 < 1]] \end{split}
```

Out[14]= BesselJ [1., 10.1735 $\sqrt{x^2 + y^2}$] Cos[Arg[x + (0. + 1. i) y]]

 TM_{13}

$$\begin{split} & \text{In[16]:= } f21[x_{-}, y_{-}] = \\ & \text{BesselJ[2, } Sqrt[x^2 + y^2] \ u\alpha m[2, 1]] \ Cos[2 \ Arg[x + I \ y]] \ // \ N \\ & \text{Plot3D[} f21[x, y], \{x, -1, 1\}, \{y, -1, 1\}, \\ & \text{RegionFunction} \rightarrow \text{Function}[\{x, y, z\}, x^2 + y^2 < 1]] \end{split}$$

This is $E_z = J_2\left(\frac{u_{21}s}{R}\right)\cos 2\phi$.

Out[16]= BesselJ $\left[$ 2., 5.13562 $\sqrt{\mathbf{x}^2 + \mathbf{y}^2} \ \right]$ Cos[2.Arg[\mathbf{x} + (0.+1.i) \mathbf{y}]]

 TM_{21}

```
\begin{split} & \ln[18] = \ f22[x_{,} \ y_{,}] = \\ & \quad \text{BesselJ[2, Sqrt[x^2 + y^2] uam[2, 2]] Cos[2 \ Arg[x + I \ y]] // N} \\ & \quad \text{Plot3D[f22[x, y], } \{x, -1, 1\}, \{y, -1, 1\}, \\ & \quad \text{RegionFunction} \rightarrow \text{Function[} \{x, y, z\}, \ x^2 + y^2 < 1]] \end{split}
```


 TM_{22}