Bessel Functions by Dr. Colton, Physics 442 (last updated: Winter 2020)

General Information

The Bessel functions, $J_\alpha(x)$ are a set of functions for (typically) integer values of α , which:

- (a) come up often, especially in the context of differential equations in cylindrical coordinates
	- (b) have interesting properties
	- (c) are well understood and have been studied for centuries

They are typically only used for positive values of x . Here are plots of the first four Bessel functions.

crosses zero at 6.380, 9.761, 13.015, …

 $Out[28] =$ Graphics -

Bessel functions - pg 1

Important facts

- Bessel's equation is $x^2 \frac{d^2 f}{dx^2} + x \frac{df}{dx} + (x^2 \alpha^2)f = 0$, has solution $J_\alpha(x)$.
- Bessel functions can be computed via a series formula: $J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+\alpha}}{k!(k+\alpha)!2^{2k+\alpha}}$ $k=0 \frac{(-1)^k \chi^{2k+u}}{k! (k+u)^{1/2} k+u}$.
- A second set of solutions to Bessel's equation exist, called the "Bessel functions of the second kind". They are written as $Y_\alpha(x)$ or sometimes as $N_\alpha(x)$. They diverge at $x = 0$ and therefore can typically be discounted as viable physical solutions.
	- \circ Various other linear combinations of $J_\alpha(x)$ and $Y_\alpha(x)$ are also solutions to Bessel's equation and are sometimes used; two examples are the "modified Bessel functions" and the "Hankel functions", but they are beyond the scope of this course.
	- o The so-called "spherical Bessel functions" and "spherical Hankel functions" are solutions to a different, albeit closely related, differential equation. They are also beyond the scope of this course.
- Derivatives:
	- o For $\alpha = 0$: $\frac{d}{dx}(f_0(x)) = -f_1(x)$ (which means the max/min of f_0 are the zeroes of f_1)

$$
\text{or} \ \ \text{for} \ \alpha \ge 1: \frac{d}{dx} (J_{\alpha}(x)) = \frac{1}{2} (J_{\alpha-1}(x) - J_{\alpha+1}(x))
$$

- Zeroes: u_{αm} represents the mth zero of $J_\alpha(x)$. From the previous page we have:
	- o $u_{01} = 2.405$, $u_{02} = 5.520$, $u_{03} = 8.654$, ...
	- o $u_{11} = 3.832, u_{12} = 7.016, u_{13} = 10.173, ...$
	- o etc.

These numbers are available in Mathematica via the BesselJZero function; for example, BesselJZero[0,1] yields a result of 2.4048255576957727686…

With the substitution: $x = u_{\alpha m} r$

The Bessel functions are often used with the substitution $x = u_{\alpha m}r$, with the domain then restricted to $0 \le r \le 1$. The variable r represents the radial cylindrical coordinate, called s in Griffiths. This then gives rise to a set of functions for each α , labeled by m. Note that whereas the integers α go from 0, 1, 2, 3, etc., the integers m go from 1, 2, 3, 4, etc. Here are the first four functions of the $\alpha = 0$ series, plotted both as 1D functions of r, and as 2D functions with r as the cylindrical coordinate. These are all the $J_0(x)$ Bessel function, just scaled so that more and more of the function gets displayed between 0 and 1.

A similar series of plots could be made for $\alpha = 1$, $\alpha = 2$, etc.

Important facts about the $J_{\alpha}(u_{\alpha m}r)$ series of functions for a given α

- Bessel's equation becomes $r^2 \frac{d^2f}{dr^2} + r \frac{df}{dr} + (u_{\alpha m}^2 r^2 \alpha^2)f = 0$, has solution $J_\alpha (u_{\alpha m} r)$.
- Orthogonality for $\alpha = 0$: $J_0(u_{0m}r)$ and $J_0(u_{0n}r)$ are orthogonal over the interval (0,1) with respect \bullet to a weighting function of r :

$$
\int_0^1 J_0(u_{0m}r) J_0(u_{0n}r) r dr = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2} (J_1(u_{0m}))^2 & \text{if } n = m \end{cases}
$$

Orthogonality for general α : $J_{\alpha}(u_{\alpha m}r)$ and $J_{\alpha}(u_{\alpha n}r)$ are orthogonal over the same interval with the same weighting function:

$$
\int_0^1 J_\alpha(u_{\alpha m}r) J_\alpha(u_{\alpha n}r) r dr = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2} (J_{\alpha+1}(u_{\alpha m}))^2 & \text{if } n = m \end{cases}
$$

Bessel functions - pg 3

Orthogonality, depicted

I have randomly chosen two functions in the $\alpha = 0$ series (plots given above), namely $m = 2$ and $m = 3$.

 $\ln[40]$ = Plot [Bessel] [0, u02 r] Bessel] [0, u03 r] r, {r, 0, 1}, Filling \rightarrow Axis]

In[41]= Integrate [Bessel] [0, u02 r] Bessel] [0, u03 r] r, {r, 0, 1}] Out[41]= θ

 $\ln[42]$ = Plot [Bessel] [0, u03 r] Bessel] [0, u03 r] r, {r, 0, 1}, Filling \rightarrow Axis]

The two functions are orthogonal over the domain of $0 \le r \le 1$, when multiplied by a weighting function of r . You can see that the positive areas cancel out the negative areas.

The integral is exactly zero.

$$
\int_0^1 J_0(u_{0m}r)J_0(u_{0n}r)rdr
$$

equals 0 if $n \neq m$

By contrast, $J_0(u_{03}r)$ is not orthogonal to itself.

 $\int_0^1 J_0(u_{0m}r)J_0(u_{0n}r)rdr$ equals $\frac{1}{2}(J_1(u_{0m}))^2$ if $n = m$

Comparison between Bessel functions and sine/cosine functions

- 1. Two oscillatory functions: $sin(x)$ and $cos(x)$. Often one of them is not used, due to the symmetry of the problem.
- 2. You can determine the value of $sin(x)$ and $cos(x)$ for arbitrary x by using a calculator or computer program.
- 3. Series solutions:

$$
\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}
$$

$$
\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}
$$

- 4. The zeroes of $sin(x)$ are at $x = \pi$, 2π , 3π , etc. $x = \alpha m \pi$ " is the *m*th zero
- 5. $sin(m\pi x)$ has $m 1$ nodes in the interval from 0 to 1. At $x = 1$, $sin(m\pi x) = 0$ for all ݉*.*
- 6. The differential equation satisfied by $f = \sin(x)$ is $f'' + f = 0$.

The differential equation satisfied by $f = \sin(m\pi x)$ is $f'' + (m\pi)^2 f = 0$.

7. sin($m\pi x$) is orthogonal to sin($n\pi x$) on the interval $(0,1)$:

$$
\int_0^1 \sin(m\pi x)\sin(n\pi x)\,dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2}, & \text{if } n = m \end{cases}
$$

Sines/Cosines Bessel functions

Two oscillatory functions for each α : $J_{\alpha}(x)$ and $Y_{\alpha}(x)$. Typically Y_{α} is not used because it's infinite at the origin.

You can determine the value of $J_{\alpha}(x)$ for arbitrary x by using a calculator or computer program.

Series solution:

$$
J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+\alpha}}{k! (k+\alpha)! 2^{2k+\alpha}}
$$

Consider just $\sin(x)$: Consider just $I_{\alpha}(x)$ for one α , say $\alpha = 0$: (similar things hold true for all α 's) The zeroes of $J_0(x)$ are at $x \approx 2.405, 5.520, 8.654,$ etc. $x = \alpha_{0m}$ " is the *m*th zero $J_0(u_{0m}r)$ has $m-1$ nodes in the interval from 0 to 1. At $r = 1$, $J_0(u_{0m}r) = 0$ for all *m*.

> The differential equation satisfied by $f = J_0(x)$ is $x^{2}f'' + xf' + (x^{2} - 0^{2})f = 0.$

> The differential equation satisfied by $f =$ $J_0(u_{0m}r)$ is $r^2f'' + rf' + (u_{0m}^2r^2 - 0^2)f = 0$. $0^2 \rightarrow \alpha^2$ for other α 's

 $J_0(u_{0m}r)$ is orthogonal to $J_0(u_{0n}r)$ on the interval (0,1), with respect to a weighting function of r :

$$
\int_0^1 J_0(u_{0m}r)J_0(u_{0n}r) r dr = \begin{cases} 0, if \ n \neq m \\ \frac{1}{2} (J_1(u_{0m}))^2, if \ n = m \end{cases}
$$

Additionally, the Bessel functions are related to sines/cosines through this integral formula:

$$
J_{\alpha}(x) = \frac{1}{\pi} \int_0^{\pi} \cos(\alpha \theta - x \sin \theta) d\theta
$$

Quote from Mary Boas, in *Mathematical Methods in the Physical Sciences*: "In fact, if you had first learned about $sin(nx)$ and $cos(nx)$ as power series solutions of $y'' = -n^2y$, instead of in elementary trigonometry, you would not feel that Bessel functions were appreciably more difficult or strange than trigonometric functions. Like sines and cosines, Bessel functions are solutions of a differential equation; they are tabulated and their graphs can be drawn; they can be represented as a series; and a large number of formulas about them are known."