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The Power of the Lorentz Model, by Dr. Colton, Winter 2018 
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UV resonances: oscillation of electrons 
 
 

 
 
 

 
  

Kittel, Introduction to Solid State 
Physics, Fig. 16-8. Schematic of 
the frequency dependence of the 
several contributions to the 
polarizability. 

Stokes, Solid State Physics for Advanced 
Undergraduate Students, Fig. 16-5. The 
dielectric constant near the resonant frequency 
of the orbital electrons in a solid, using the 
Lorentz model but with no damping. He’s 
using the letter n to refer to the low frequency 
value of the square root of ϵr. The frequency 
scale is logarithmic. 

Peatross and Ware, Physics of Light and Optics, 
Fig. 2.5. Real and imaginary parts of the index of 
refraction for a single Lorentz oscillator dielectric with p 
= 10. [Note: this makes it look like n goes to 1 on the far 
left of the graph. That is not correct; n goes to a constant 
which is greater than 1.] 
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Infrared resonances: oscillation of ions (in ionic or partially ionic materials) 
 
 

 
  

Wikipedia, Dispersion (optics) 
 
From the section of n vs  plot on 
previous page that is just to the left of 0 
(plotted vs  instead of ) 

Stokes, Fig. 16-6. The reflectivity near the 
resonant frequency of the orbital electrons 
in a solid. (No damping.) From these 

equations: ෤݊ ൌ ඥ߳௥෥  and ܴ ൌ ቚ
ଵି௡෤

ଵା௡෤
ቚ
ଶ
  (i.e., 

normal incidence, going from air to 
material). 

Kittel, Fig. 14.13a. The dielectric constant near 
the resonant frequency of the oscillating ions in 
a solid, using the Lorentz model with no 
damping. Note that the right hand side doesn’t 
go to 1 because this feature is to the left (lower 
energy) of the “oscillating electrons” UV 
feature. Plotted here with () = 2 and (0) = 3. 
T is defined to be the frequency where ω 
crosses from positive infinity to negative 
infinity. ωL is defined to be the frequency where 
ϵr goes positive again. Electromagnetic waves 
with frequencies in the shaded region, between 
T and L, will not propagate in the medium but 
instead will be reflected at the boundary just like 
the Stokes figure for electron resonances 
directly above. 
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Note on units: As you can see, the x-axis is labeled “Wave number [cm-1]". CAUTION: that is not what we’ve been 
calling the wavenumber! The wavenumber k, as we’ve been using it, would be labeled as rad/cm. By contrast, when 
you see experimental data that is labeled “cm-1”, particularly with optical data like this, they nearly always mean 1/λ 
instead of 2π/λ. (In the “olden days” k was defined as 1/λ, and this has persisted in some settings even today.) So, if 
you see a feature on a graph like this at, say, 185 cm-1, you can convert it to regular wavelength like this: 
 

185 cm-1 = 18500 m-1    take inverse,  = 5.405e-5 meters  54 μm  
 
From there you can convert to frequency if you want, using ݂ߣ ൌ ܿ, or angular frequency using ߱ ൌ  .݂ߨ2
 
 
The Lorentz Model Applied to Metals 
 
Throw out our previous complicated dispersion relationship for conductors, and just use the Lorentz model! No 
restoring force because electrons are free to move means  
 

߳௥ ൌ 1 ൅
݂݂ݑݐݏ

െ߱ଶ െ ߱ߛ݅
 

 
The “stuff” in the numerator has units of ω2, and its square root is called the plasma frequency, symbol ωp.  

Yu & Cardona, 
Fundamentals of 
Semiconductors, Fig. 
6.31(b). The infrared 
reflectivity from ionic 
oscillations, calculated 
from the Lorentz model 
with dispersion for 
different values of ߛ/்߱; 
compare to the Stokes 
Fig. 16-6 above.

Yu & Cardona, Fig. 
6.32. Actual experimental 
reflectivity data (solid 
curves), and theoretical 
fits from the Lorentz 
model (dashed curves) 
using ωT, ωL, and γ as 
fitting parameters.

ωT              ωL  
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Peatross and Ware, Fig. 2.6. Real and 
imaginary parts of the index for a conductor 
with p = 50.  

Stokes, Fig. 16-10. The reflectivity of metal near 
its  plasma frequency. The frequency scale is 
logarithmic. [No damping.] 

Kittel, Fig. 14.3. Experimental reflectance of 
indium antimonide (empty points), fitted with 
the Lorentz model with no damping (solid line). 
My plot directly above with damping makes it 
look like they should have used damping for 
their fit to smooth out the sharp features in the 
solid line.

Colton Plot. Reflectivity of a metal,  
using the above equation for ϵr, with 
damping and with one additional 
modification. To account for large ω 
values of ϵr not going to one, we change 
the 1 in our equation to a different 
constant:  
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Here I’ve used C = 12, p = 0.25, and 
 = p/100. 
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