Lorentz Model: Driven Damped Harmonic Oscillator, by Dr. Colton Physics 471 – Optics

"Lorentz model": charge on a spring moving back & forth, a "driven damped harmonic oscillator" ...driven by oscillating electric field $E = E_0 \cos(-\omega t)$

 \rightarrow I'm using $\cos(-\omega t)$ instead of $\cos(+\omega t)$ so it matches time dependence of standard traveling EM wave, $\cos(kx-\omega t)$

...with velocity-dependent damping described by γ (units of γ chosen such that force = $\gamma m v$)

$$\sum F = m\dot{x}$$

$$F_{driving} + F_{spring} + F_{damping} = m\ddot{x}$$

$$qE_0 \cos(-\omega t) - kx - \gamma m\dot{x} - m\ddot{x}$$

$$\ddot{x} + \gamma \dot{x} + \frac{k}{m}x = \frac{qE_0}{m}\cos(-\omega t) \rightarrow \text{Let } \omega_0 = \sqrt{\frac{k}{m}}$$

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \frac{qE_0}{m}\cos(-\omega t)$$
This is the equation of motion we need to solve

Guess $x = x_0 \cos(-\omega t + \phi)$ as solution $\rightarrow \tilde{x} = x_0 e^{i\phi} e^{-i\omega t}$

 $\tilde{x} = \tilde{x}_0 e^{-i\omega t}$ (ϕ is lumped in with complex \tilde{x}_0)

Derivatives:
$$\tilde{x} = (-i\omega)\tilde{x}_0 e^{-i\omega t}$$

 $\tilde{x} = (-i\omega)^2 \tilde{x}_0 e^{-i\omega t}$

Plug into boxed equation, also convert cosine into complex exponential: $(-i\omega)^2 \tilde{x}_0 e^{-i\omega t} + \gamma(-i\omega) \tilde{x}_0 e^{-i\omega t} + \omega_0^2 \tilde{x}_0 e^{-i\omega t} = \frac{qE_0}{m} e^{-i\omega t}$

Cancel the $e^{-i\omega t}$ factors: $\tilde{x}_0(-\omega^2 - i\omega\gamma + \omega_0^2) = \frac{qE_0}{m}$

$$\tilde{x}_0 = \frac{qE_0}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega\gamma}$$
 The answer in compact form!!

Or with explicit time dependence: $\tilde{x} = \frac{qE_0}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega \gamma} e^{-i\omega t}$

What does it mean? To understand better, we could convert to polar form. Need to first get real & imaginary parts.

Work with this term:

$$\frac{1}{\omega_0^2 - \omega^2 - i\omega\gamma} \times \frac{\omega_0^2 - \omega^2 + i\omega\gamma}{\omega_0^2 - \omega^2 + i\omega\gamma} = \frac{\omega_0^2 - \omega^2 + i\omega\gamma}{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2}$$
$$= \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2} + i\frac{\omega\gamma}{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2} \quad \text{(now in real + imaginary form)}$$

Real part of $\tilde{x}_0 = \frac{qE_0}{m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2}$

Imaginary part of $\tilde{x}_0 = \frac{qE_0}{m} \frac{\omega\gamma}{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2}$

Could convert to polar form: $\sqrt{\text{Re}^2 + \text{Im}^2} \angle \phi$

Then what this all means, since \tilde{x}_0 represents the amplitude and phase of the oscillation, is that: $x(t) = \sqrt{\text{Re}^2 + \text{Im}^2} \cos(-\omega t + \phi)$

Much of this was really just algebra... the physics was finished after the boxed equation for \tilde{x}_0 labeled "the answer in compact form" on the previous page.