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Background  
 
To consider the case of cylindrical waveguides, i.e. formed by a hollow cylinder of radius ܴ, we again 
assume that the z- and t-dependence will be given by ݁௜ሺ௞௭ିఠ௧ሻ. This leads to the same result from the 
wave equation as with a rectangular waveguide, only expressed in cylindrical coordinates. The equations 
for ܧ௭ and ܤ௭ are therefore as follows:  
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TM modes, Separation of Variables 
 
For the TM modes, we have ܤ௭ ൌ 0 and ܧ௭ ് 0.  We therefore focus on ܧ௭. Using the separation of 
variables technique, we assume that the solution has the form ܧ௭ ൌ ܵሺݏሻߔሺ߶ሻ. This turns the equation for 
 :௭ intoܧ
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Dividing both sides by ܵΦ and multiplying by ݏଶ, we have:  
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Now bring the ߶ term over to the right hand side, and we have successfully separated the variables.  
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The left hand side is just a function of ݏ, the right hand side is just a function of ߶, so they can only be 
equal if they both equal a constant. It could be a positive or a negative constant, but because I know the 
answer I will guess correctly and make it a positive constant. To enforce that, we set it equal to ߙଶ. 
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This is actually two equations, one for ݏ and one for ߶.  
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Solving the ઴ equation 
 
Let’s solve the ߶ equation first. It’s easy! Φᇱᇱ ൌ 	െߙଶΦ means that  
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or linear combinations. 
 
Because Φሺ߶ሻ and Φሺ߶ ൅  :ሻ need to give the same value, this gives an added constraint thatߨ2
 
 
 
 
If that’s not obvious to you, try for example setting ߶ ൌ 30° and comparing sinሺߙሺ30°ሻሻ to 
sinሺߙሺ30° ൅ 360°ሻሻ when ߙ is not an integer. 
 
We can rotate the x- and y-axes such that we only get the cosine function. End result for ߶, not including 
an arbitrary amplitude: 
 
 
 
 
 
Solving the ࡿ equation 
 
Now back to the ܵ equation… 
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Consider the term 
ఠమ

௖మ
െ ݇ଶ. It has units of (1/length)2. By multiplying it by ܴଶ, we can turn it into a 

dimensionless number. For reasons that will soon become clear, I’ll call that number  ݑఈ௠ଶ , so  
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That also means that: 
 

.  

ߙ ൌ integer 

Φ ൌ cosߙ߶ 
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Plugging that substitution for ݑఈ௠ back into the S equation, it turns the equation into this: 
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This is Bessel’s equation! Written for ݔ ൌ

௨ഀ೘௦

ோ  . (Here ݔ is a dimensionless variable, not the x-

coordinate.) 
 
Its solutions are the Bessel functions: 
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or linear combinations. 
 
The ܬఈሺݔሻ functions are the regular Bessel functions. The ఈܻሺݔሻ functions are the “Bessel functions of the 
second kind”, which go infinite at the origin (ݏ ൌ 0ሻ. Since we don’t want solutions which are infinte at 
the origin, we through them out, leaving us the end result for ݏ, not including an arbitrary amplitude: 
 
 
 
 
 
Putting together ࣘ and ࢙ solutions 
 
Putting the solutions together, ܧ௭ ൌ ܵሺݏሻߔሺ߶ሻ, and still not worrying about an arbitrary amplitude, the 
answer is therefore: 
 
 
 
 
There could also be a summation over ߙ; however usually people just consider each ߙ separately, as done 
below. 
  
Boundary conditions 
 
The governing boundary conditions are these two, evaluated at ݏ ൌ ܴ. 
 

//ܧ ൌ 0 
 

ୄܤ ൌ 0 
 
For the TM modes, we must focus on the ܧ// boundary condition. ܧ௭ is actually the parallel component, 
so it means ܧ௭ ൌ 0.  
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We see now that the ݑఈ௠ values defined earlier must be the zereos of the Bessel functions. 
 
 
Some sample modes 
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 ଴ Bessel function. Theܬ ଴௠ is the mth zero of theݑ ௭ has no ߶ dependence. ݉ can be any integer, andܧ
possible modes are TM01, TM02, TM03, etc. 
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 .ଵ Bessel functionܬ ଵ௠ is the mth zero of theݑ ௭ does have ߶ dependence now. ݉ can be any integer, andܧ
The possible modes are TM11, TM12, TM13, etc. 
 
 
Hopefully extrapolations to higher ߙ values are clear. 
 
 
Conclusion 
 
The allowed TM modes (ܤ௭ ൌ 0ሻ are chacterized by integer values for ߙ and ݉. For a given mode, ܧ௭ ൌ

ఈܬ ቀ
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ቁ cosߙ߶. From ܧ௭, one can deduce all of the other components of the electric and magnetic 

fields using the “longitudinal to transverse” equations, if one desires. And the dispersion equation of a 
given mode is given by: 
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where (for the TM modes), ݑఈ௠ is the mth zero of the ܬఈ Bessel function. 
 
 
 


