Cylindrical Waveguides
by Dr. Colton, Physics 442 (last updated: Winter 2020)

Background

To consider the case of cylindrical waveguides, i.e. formed by a hollow cylinder of radius R, we again
assume that the z- and t-dependence will be given by e!*#=®D_This leads to the same result from the
wave equation as with a rectangular waveguide, only expressed in cylindrical coordinates. The equations
for E, and B, are therefore as follows:
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TM modes, Separation of Variables

For the TM modes, we have B, = 0 and E, # 0. We therefore focus on E,. Using the separation of
variables technique, we assume that the solution has the form E, = S(s)®(¢). This turns the equation for
E, into:
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Dividing both sides by S® and multiplying by s2, we have:
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Now bring the ¢ term over to the right hand side, and we have successfully separated the variables.
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The left hand side is just a function of s, the right hand side is just a function of ¢, so they can only be

equal if they both equal a constant. It could be a positive or a negative constant, but because I know the
answer I will guess correctly and make it a positive constant. To enforce that, we set it equal to a?.
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This is actually two equations, one for s and one for ¢.
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Solving the ® equation
Let’s solve the ¢ equation first. It’s easy! @' = —a?® means that
_ (sinag¢
®= {cos agp

or linear combinations.

Because @(¢) and ®(¢ + 2m) need to give the same value, this gives an added constraint that:

a = integer

If that’s not obvious to you, try for example setting ¢ = 30° and comparing sin(a(30°)) to
sin(a(30° + 360°)) when a is not an integer.

We can rotate the x- and y-axes such that we only get the cosine function. End result for ¢, not including
an arbitrary amplitude:

@ = cosagp

Solving the S equation

Now back to the S equation...

S S

.
s28" +sS'+ S (sz (C—Z - k2> - a2>

2
Consider the term (:—2 — k2. It has units of (1/length)*. By multiplying it by R?, we can turn it into a
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dimensionless number. For reasons that will soon become clear, I’ll call that number u2,,, so

That also means that:
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Plugging that substitution for u,,, back into the S equation, it turns the equation into this:

UgmS\2
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This is Bessel’s equation! Written for x = %, (Here x is a dimensionless variable, not the x-
coordinate.)

Its solutions are the Bessel functions:

 (Ja®
&{nu)

or linear combinations.
The J, (x) functions are the regular Bessel functions. The Y, (x) functions are the “Bessel functions of the

second kind”, which go infinite at the origin (s = 0). Since we don’t want solutions which are infinte at
the origin, we through them out, leaving us the end result for s, not including an arbitrary amplitude:
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Putting together ¢ and s solutions

Putting the solutions together, E, = S(s)®(¢), and still not worrying about an arbitrary amplitude, the
answer is therefore:

E,=], (uc;;ns) cos a¢

There could also be a summation over a; however usually people just consider each a separately, as done
below.

Boundary conditions

The governing boundary conditions are these two, evaluated at s = R.
E;=0
BJ_ =0

For the TM modes, we must focus on the E/, boundary condition. E, is actually the parallel component,
so it means E, = 0.
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Ja (ua;nR> cosagp =0
Ja(Ugm) cosagp = 0

We see now that the u,,, values defined earlier must be the zereos of the Bessel functions.

Some sample modes

a=0
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E, has no ¢ dependence. m can be any integer, and ug,, is the m™ zero of the J, Bessel function. The
possible modes are TMg1, TMg2, TM3, etc.

a=1

UimS
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E, does have ¢ dependence now. m can be any integer, and u;,,, is the m™ zero of the J; Bessel function.
The possible modes are TM;;, TM 2, TM3, etc.

Hopefully extrapolations to higher a values are clear.

Conclusion

The allowed TM modes (B, = 0) are chacterized by integer values for ¢ and m. For a given mode, E, =

Ja (u“;ns) cos a¢. From E,, one can deduce all of the other components of the electric and magnetic

fields using the “longitudinal to transverse” equations, if one desires. And the dispersion equation of a
given mode is given by:

. w?  uZ,
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where (for the TM modes), Uy, is the m™ zero of the ], Bessel function.
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