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Background  
 
To consider the case of cylindrical waveguides, i.e. formed by a hollow cylinder of radius , we again 
assume that the z- and t-dependence will be given by . This leads to the same result from the 
wave equation as with a rectangular waveguide, only expressed in cylindrical coordinates. The equations 
for  and  are therefore as follows:  
 

1 1
0	 

 
1 1

0	 

 
TM modes, Separation of Variables 
 
For the TM modes, we have 0 and 0.  We therefore focus on . Using the separation of 
variables technique, we assume that the solution has the form . This turns the equation for 

 into: 
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Dividing both sides by Φ and multiplying by , we have:  
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Now bring the  term over to the right hand side, and we have successfully separated the variables.  
 

	 	
Φ′′
Φ

 

 
The left hand side is just a function of , the right hand side is just a function of , so they can only be 
equal if they both equal a constant. It could be a positive or a negative constant, but because I know the 
answer I will guess correctly and make it a positive constant. To enforce that, we set it equal to . 
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This is actually two equations, one for  and one for .  
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Solving the  equation 
 
Let’s solve the  equation first. It’s easy! Φ 	 Φ means that  
 

Φ
sin
cos  

 
or linear combinations. 
 
Because Φ  and Φ 2  need to give the same value, this gives an added constraint that: 
 
 
 
 
If that’s not obvious to you, try for example setting 30° and comparing sin 30°  to 
sin 30° 360°  when  is not an integer. 
 
We can rotate the x- and y-axes such that we only get the cosine function. End result for , not including 
an arbitrary amplitude: 
 
 
 
 
 
Solving the  equation 
 
Now back to the  equation… 
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Consider the term . It has units of (1/length)2. By multiplying it by , we can turn it into a 

dimensionless number. For reasons that will soon become clear, I’ll call that number  , so  
 	

	 	 

 
That also means that: 
 

.  

integer 

Φ cos  
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Plugging that substitution for  back into the S equation, it turns the equation into this: 
 

	 0 

 
This is Bessel’s equation! Written for  . (Here  is a dimensionless variable, not the x-

coordinate.) 
 
Its solutions are the Bessel functions: 
 

S  

 
or linear combinations. 
 
The  functions are the regular Bessel functions. The  functions are the “Bessel functions of the 
second kind”, which go infinite at the origin ( 0 . Since we don’t want solutions which are infinte at 
the origin, we through them out, leaving us the end result for , not including an arbitrary amplitude: 
 
 
 
 
 
Putting together  and  solutions 
 
Putting the solutions together, , and still not worrying about an arbitrary amplitude, the 
answer is therefore: 
 
 
 
 
There could also be a summation over ; however usually people just consider each  separately, as done 
below. 
  
Boundary conditions 
 
The governing boundary conditions are these two, evaluated at . 
 

// 0 
 

0 
 
For the TM modes, we must focus on the // boundary condition.  is actually the parallel component, 
so it means 0.  
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We see now that the  values defined earlier must be the zereos of the Bessel functions. 
 
 
Some sample modes 
 

0  

 

 
 has no  dependence.  can be any integer, and  is the mth zero of the  Bessel function. The 

possible modes are TM01, TM02, TM03, etc. 
 

1  
 

cos  

 
 does have  dependence now.  can be any integer, and  is the mth zero of the  Bessel function. 

The possible modes are TM11, TM12, TM13, etc. 
 
 
Hopefully extrapolations to higher  values are clear. 
 
 
Conclusion 
 
The allowed TM modes ( 0  are chacterized by integer values for  and . For a given mode, 

cos . From , one can deduce all of the other components of the electric and magnetic 

fields using the “longitudinal to transverse” equations, if one desires. And the dispersion equation of a 
given mode is given by: 
 

	 

 
where (for the TM modes),  is the mth zero of the  Bessel function. 
 
 
 


