Cylindrical Waveguides

by Dr. Colton, Physics 442 (last updated: Winter 2020)

Background

To consider the case of cylindrical waveguides, i.e. formed by a hollow cylinder of radius R, we again assume that the z - and t -dependence will be given by $e^{i(k z-\omega t)}$. This leads to the same result from the wave equation as with a rectangular waveguide, only expressed in cylindrical coordinates. The equations for E_{z} and B_{z} are therefore as follows:

$$
\begin{aligned}
& \frac{\partial^{2} E_{z}}{\partial s^{2}}+\frac{1}{s} \frac{\partial E_{z}}{\partial s}+\frac{1}{s^{2}} \frac{\partial^{2} E_{z}}{\partial \varphi^{2}}+\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right) E_{z}=0 \\
& \frac{\partial^{2} B_{z}}{\partial s^{2}}+\frac{1}{s} \frac{\partial B_{z}}{\partial s}+\frac{1}{s^{2}} \frac{\partial^{2} B_{z}}{\partial \varphi^{2}}+\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right) B_{z}=0
\end{aligned}
$$

TM modes, Separation of Variables

For the TM modes, we have $B_{z}=0$ and $E_{z} \neq 0$. We therefore focus on E_{z}. Using the separation of variables technique, we assume that the solution has the form $E_{z}=S(s) \Phi(\phi)$. This turns the equation for E_{z} into:

$$
S^{\prime \prime} \Phi+\frac{1}{S} S^{\prime} \Phi+\frac{1}{s^{2}} S \Phi^{\prime \prime}+\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right) S \Phi=0
$$

Dividing both sides by $S \Phi$ and multiplying by s^{2}, we have:

$$
s^{2} \frac{S^{\prime \prime}}{S}+s \frac{S^{\prime}}{S}++\frac{\Phi^{\prime \prime}}{\Phi}+s^{2}\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)=0
$$

Now bring the ϕ term over to the right hand side, and we have successfully separated the variables.

$$
s^{2} \frac{S^{\prime \prime}}{S}+s \frac{S^{\prime}}{S}+s^{2}\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)=-\frac{\Phi^{\prime \prime}}{\Phi}
$$

The left hand side is just a function of s, the right hand side is just a function of ϕ, so they can only be equal if they both equal a constant. It could be a positive or a negative constant, but because I know the answer I will guess correctly and make it a positive constant. To enforce that, we set it equal to α^{2}.

$$
s^{2} \frac{S^{\prime \prime}}{S}+s \frac{S^{\prime}}{S}+s^{2}\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)=-\frac{\Phi^{\prime \prime}}{\Phi}=\alpha^{2}
$$

This is actually two equations, one for s and one for ϕ.

$$
s^{2} \frac{S^{\prime \prime}}{S}+s \frac{S^{\prime}}{S}+s^{2}\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)=\alpha^{2}
$$

$$
\frac{\Phi^{\prime \prime}}{\Phi}=-\alpha^{2}
$$

Solving the Φ equation

Let's solve the ϕ equation first. It's easy! $\Phi^{\prime \prime}=-\alpha^{2} \Phi$ means that

$$
\Phi=\left\{\begin{array}{l}
\sin \alpha \phi \\
\cos \alpha \phi
\end{array}\right.
$$

or linear combinations.
Because $\Phi(\phi)$ and $\Phi(\phi+2 \pi)$ need to give the same value, this gives an added constraint that:

$$
\alpha=\text { integer }
$$

If that's not obvious to you, try for example setting $\phi=30^{\circ}$ and comparing $\sin \left(\alpha\left(30^{\circ}\right)\right)$ to $\sin \left(\alpha\left(30^{\circ}+360^{\circ}\right)\right)$ when α is not an integer.

We can rotate the x - and y -axes such that we only get the cosine function. End result for ϕ, not including an arbitrary amplitude:

$$
\Phi=\cos \alpha \phi
$$

Solving the S equation

Now back to the S equation...

$$
\begin{gathered}
s^{2} \frac{S^{\prime \prime}}{S}+s \frac{S^{\prime}}{S}+s^{2}\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)=\alpha^{2} \\
s^{2} S^{\prime \prime}+s S^{\prime}+S\left(s^{2}\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)-\alpha^{2}\right)
\end{gathered}
$$

Consider the term $\frac{\omega^{2}}{c^{2}}-k^{2}$. It has units of (1/length) ${ }^{2}$. By multiplying it by R^{2}, we can turn it into a dimensionless number. For reasons that will soon become clear, I'll call that number $u_{\alpha m}^{2}$, so

$$
u_{\alpha m}=R \sqrt{\frac{\omega^{2}}{c^{2}}-k^{2}}
$$

That also means that:

$$
k=\sqrt{\frac{\omega^{2}}{c^{2}}-\frac{u_{\alpha m}^{2}}{R^{2}}}
$$

Plugging that substitution for $u_{\alpha m}$ back into the S equation, it turns the equation into this:

$$
s^{2} S^{\prime \prime}+s S^{\prime}+S\left(\left(\frac{u_{\alpha m} S}{R}\right)^{2}-\alpha^{2}\right)=0
$$

This is Bessel's equation! Written for $x=\frac{u_{\alpha m} s}{R}$. (Here x is a dimensionless variable, not the x coordinate.)

Its solutions are the Bessel functions:

$$
\mathrm{S}=\left\{\begin{array}{l}
J_{\alpha}(x) \\
Y_{\alpha}(x)
\end{array}\right.
$$

or linear combinations.
The $J_{\alpha}(x)$ functions are the regular Bessel functions. The $Y_{\alpha}(x)$ functions are the "Bessel functions of the second kind", which go infinite at the origin ($s=0$). Since we don't want solutions which are infinte at the origin, we through them out, leaving us the end result for s, not including an arbitrary amplitude:

$$
S=J_{\alpha}\left(\frac{u_{\alpha m} S}{R}\right)
$$

Putting together ϕ and \boldsymbol{s} solutions

Putting the solutions together, $E_{z}=S(s) \Phi(\phi)$, and still not worrying about an arbitrary amplitude, the answer is therefore:

$$
E_{z}=J_{\alpha}\left(\frac{u_{\alpha m} S}{R}\right) \cos \alpha \phi
$$

There could also be a summation over α; however usually people just consider each α separately, as done below.

Boundary conditions

The governing boundary conditions are these two, evaluated at $s=R$.

$$
\begin{aligned}
& E_{/ /}=0 \\
& B_{\perp}=0
\end{aligned}
$$

For the TM modes, we must focus on the $E_{/ /}$boundary condition. E_{z} is actually the parallel component, so it means $E_{Z}=0$.

$$
\begin{gathered}
J_{\alpha}\left(\frac{u_{\alpha m} R}{R}\right) \cos \alpha \phi=0 \\
J_{\alpha}\left(u_{\alpha m}\right) \cos \alpha \phi=0
\end{gathered}
$$

We see now that the $u_{\alpha m}$ values defined earlier must be the zereos of the Bessel functions.

Some sample modes

$\alpha=0$

$$
E_{z}=J_{0}\left(\frac{u_{0 m} S}{R}\right)
$$

E_{z} has no ϕ dependence. m can be any integer, and $u_{0 m}$ is the $\mathrm{m}^{\text {th }}$ zero of the J_{0} Bessel function. The possible modes are $\mathrm{TM}_{01}, \mathrm{TM}_{02}, \mathrm{TM}_{03}$, etc.
$\alpha=1$

$$
E_{z}=J_{1}\left(\frac{u_{1 m} S}{R}\right) \cos \phi
$$

E_{z} does have ϕ dependence now. m can be any integer, and $u_{1 m}$ is the $\mathrm{m}^{\text {th }}$ zero of the J_{1} Bessel function. The possible modes are $\mathrm{TM}_{11}, \mathrm{TM}_{12}, \mathrm{TM}_{13}$, etc.

Hopefully extrapolations to higher α values are clear.

Conclusion

The allowed TM modes $\left(B_{z}=0\right)$ are chacterized by integer values for α and m. For a given mode, $E_{z}=$ $J_{\alpha}\left(\frac{u_{\alpha m} s}{R}\right) \cos \alpha \phi$. From E_{z}, one can deduce all of the other components of the electric and magnetic fields using the "longitudinal to transverse" equations, if one desires. And the dispersion equation of a given mode is given by:

$$
k=\sqrt{\frac{\omega^{2}}{c^{2}}-\frac{u_{\alpha m}^{2}}{R^{2}}}
$$

where (for the TM modes), $u_{\alpha m}$ is the $\mathrm{m}^{\text {th }}$ zero of the J_{α} Bessel function.

