Diffraction from Circle and Circle-Square Combo

by Dr. Colton, Physics 471 (last updated: Winter 2024)

```
ln[1]:= jinc[x] := 2 BesselJ[1, x] / x
      (* Diffraction through a circular aperture, radius a *)
      (* This is the "Airy pattern",
      which is the central "Airy disk" plus the "Airy rings" *)
      (* With a, k, and z all set equal to 1 for simplicity *)
      (* Plot of (FT of "top hat")^2 *)
      Plot[jinc[kr]^2, {kr, 0, 20}, PlotRange \rightarrow All]
      Plot3D[jinc[Sqrt[x^2 + y^2]]^2, {x, -20, 20},
       \{y, -20, 20\}, PlotRange \rightarrow \{0, 1\}, PlotPoints \rightarrow 100]
      DensityPlot[jinc[Sqrt[x^2 + y^2]] ^2, {x, -20, 20},
       \{y, -20, 20\}, PlotRange \rightarrow \{0, 1\}, PlotPoints \rightarrow 100]
      (* now zooming in a bit *)
      Plot3D[jinc[Sqrt[x^2 + y^2]]^2, {x, -20, 20},
       \{y, -20, 20\}, PlotRange \rightarrow \{0, 0.02\}, PlotPoints \rightarrow 100]
      DensityPlot[jinc[Sqrt[x^2 + y^2]] ^2, {x, -20, 20},
        \{y, -20, 20\}, PlotRange \rightarrow \{0, 0.02\}, PlotPoints \rightarrow 100]
      1.0
      0.8
      0.6
Out[2]=
      0.4
      0.2
                                                  15
```



```
In[7]:= (* A square side length a centered at (2a,0)
      combined with a circle radius a centered at at (-2a,0) *)
     (* With a, k, and z all set equal to 1 for simplicity *)
     (* Notice how the result incorporates features of a square,
     a circle, and a double slit. *)
     sum[x_, y_] :=
      Exp[I2x](1/(2Pi)) Sinc[x/2] Sinc[y/2] + Exp[-I2x](1/2) jinc[Sqrt[x^2+y^2]]
     Plot3D[Abs[sum[x, y]]^2, {x, -20, 20},
      \{y, -20, 20\}, PlotRange \rightarrow \{0, 0.4345\}, PlotPoints \rightarrow 200]
     DensityPlot[Abs[sum[x, y]]^2, {x, -20, 20},
      \{y, -20, 20\}, PlotRange \rightarrow \{0, 0.4345\}, PlotPoints \rightarrow 200]
     (* now zooming in a bit *)
     Plot3D[Abs[sum[x, y]]^2, {x, -20, 20},
      \{y, -20, 20\}, PlotRange \rightarrow \{0, 0.01\}, PlotPoints \rightarrow 200]
     DensityPlot[Abs[sum[x, y]]^2, {x, -20, 20},
      \{y, -20, 20\}, PlotRange \rightarrow \{0, 0.01\}, PlotPoints \rightarrow 200]
```


20

