Physics 471 - Study guide for exam 2

Dr Colton, Winter 2025

- Chapter 5 Crystals
 - Biaxial Given n_x , n_y , and n_z , and a direction of travel, how to determine the index of refraction for the two main polarizations...
 - If traveling in x, y, or z, how to get the answers trivially
 - If traveling in a different direction, how to solve the Fresnel crystal equation to determine this (although if one polarization is in x, y, or z, it's still trivial for that polarization)
 - What are the "optic axes"—how to determine and what they mean
 - Uniaxial Given n_o and n_e , and especially for the particular orientation where the optic axis points along the plane of the interface, and for both s and p polarizations...
 - What is the "fast axis"
 - Given a direction of travel, how to determine the index of refraction
 - How to determine the direction of the k-vector
 - How to determine the direction of the Poynting vector
- Chapter 6 Jones & Stokes/Mueller
 - What Jones vectors mean, how to determine them for a given situation
 - What Jones matrices mean, how to use them to determine the effect of various optical elements on the Jones vector
 - What Stokes vectors mean, how to determine them for a given situation
 - What Mueller matrices mean, how to use them to determine the effect of various optical elements on the Stokes vector
 - How to connect the vectors to quantities such as overall intensity
 - Behavior of some common configurations such as quarter wave plate at $\pm 45^{\circ}$, half waveplate at angle θ
- Chapter 7 Fourier and Dispersion
 - How to determine phase and group velocities for a material given its dispersion relation and a given set (or range) of frequencies
 - What are Fourier transforms—how to calculate them for basic cases, and what they mean
 - What are delta functions—basic properties, how to use them, and what they mean
 - What are convolutions—how to calculate them and what they mean
 - What are the convolution theorems and how to use them
 - Linear dispersion what impact it has on a pulse traversing a medium, how to calculate effects such as:
 - speed of travel
 - time delay
 - reduction of amplitude from absorption
 - Quadratic dispersion what impact it has on a pulse traversing a medium, how to calculate effects such as:
 - speed of travel
 - spreading out of pulse in time
 - reduction of amplitude (from absorption but also from spreading out)
 - pulse chirping (qualitative only)