n $n[1]=$ (* Example 3-- $\mathrm{nx}=1.2$, $\mathrm{ny}=1.3$, $\mathrm{nz}=1.4$,
what is n in the ($1,1,0$) direction? *)
(* After identifying $n=1.4$ as a solution, Fresnel's Eq becomes this *) Solve[1/n^2 $\left.=(1 / 2) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+(1 / 2) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right), n\right]$
Solve:.ratnz : Solve was unable to solve the system with inexact coefficients.
The answer was obtained by solving a corresponding exact system and numericizing the result. >>
Out[1] $=\{\{n \rightarrow-1.247\},\{n \rightarrow 1.247\}\}$
$\ln [2]:=$

Out[2]=

(* Using the limit method to get both roots at once. Assume the direction is close to $(1,1,0)$ but not quite exactly.
For example, let $u=1 / \operatorname{sqrt}(20001) *(100,100,1)$. *)

Solve $\left[1 / n^{\wedge} 2=(10000 / 20001) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+\right.$
$\left.(10000 / 20001) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)+(1 / 20001) /\left(n^{\wedge} 2-1.4^{\wedge} 2\right), n\right]$

Solve:.ratnz : Solve was unable to solve the system with inexact coefficients.
The answer was obtained by solving a corresponding exact system and numericizing the result. >>
Out $[4]=\{\{n \rightarrow-1.39999\},\{n \rightarrow-1.247\},\{n \rightarrow 1.247\},\{n \rightarrow 1.39999\}\}$

