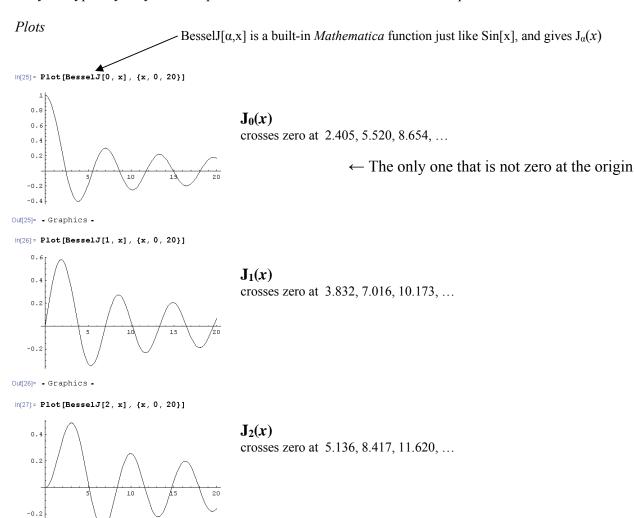
Bessel Functions, by Dr Colton Physics 471, Winter 2017

The Bessel functions, $J_{\alpha}(x)$ are a series of functions, that:

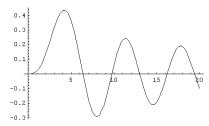
- (a) come up often, especially in partial differential equations
- (b) have interesting properties
- (c) are well understood and have been studied for centuries

They are typically only used for positive values of x. Here are the first four plotted.



Out[27]= - Graphics -

In[28]:= Plot[BesselJ[3, x], {x, 0, 20}]



J₃(x) crosses zero at 6.380, 9.761, 13.015, ...

Out[28]= • Graphics •

Sines/Cosines

- Two oscillatory functions: sin(x) and cos(x). Sometimes one of them is not used, due to the symmetry of the problem.
- You determine the value of sin(x) or cos(x) for arbitrary x by using a calculator or computer program.

3.
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

 $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$

Consider just sin(x):

- 4. The zeroes of sin(x) are at $x = \pi, 2\pi, 3\pi$, etc. $x = "m\pi"$ is the m^{th} zero
- 5. Using the zeroes in the argument, $sin(m\pi x)$ has *m* antinodes in the interval from 0 to 1. And at x = 1 (the boundary), $sin(m\pi x) = 0$ for all *m*.
- 6. The differential equation satisfied by $f = \sin(x)$ is f'' + f = 0.

The differential equation satisfied by $f = \sin(m\pi x)$ is $f'' + (m\pi)^2 f = 0$.

7. $\sin(n\pi x)$ is orthogonal to $\sin(m\pi x)$ on the interval (0,1):

Two oscillatory functions for each α : $J_{\alpha}(x)$ and $Y_{\alpha}(x)$. Typically Y_{α} (also sometimes labeled N_{α}) is not used because it's infinite at the origin. You determine the value of $J_{\alpha}(x)$ for arbitrary x by using a calculator or computer program.

$$J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+\alpha}}{k!(k+\alpha)! 2^{2k+\alpha}}$$

<u>Consider just $J_{\alpha}(x)$ for one α , say $\alpha = 0$: (similar things hold true for all α 's) The zeroes of $J_0(x)$ are at $x \approx 2.405, 5.520, 8.654$, etc. $x = "u_{0m}"$ is the m^{th} zero Using the zeroes in the argument, $J_0(u_{0m}r)$ has m</u>

antinodes in the circular region $r \le 1$. And at r = 1 (the boundary), $J_0(u_{0m}r) = 0$ for all *m*.

The differential equation satisfied by $f = J_0(x)$ is $x^2 f'' + x f' + (x^2 - 0^2)f = 0$.

The differential equation satisfied by $f = J_0(u_{0m}x)$ is $x^2 f'' + x f' + (u_{0m}^2 x^2 - 0^2) f = 0.$

 $0^2 \rightarrow \alpha^2$ for other α 's

 $J_0(u_{0n}x)$ is orthogonal to $J_0(u_{0m}x)$ on the interval (0,1), with respect to a weighting function of *x*:

$$\int_{0}^{1} \sin(n\pi x) \sin(m\pi x) dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2}, & \text{if } n = m \end{cases}$$

$$\int_{0}^{1} x J_{0}(u_{0n}x) J_{0}(u_{0m}x) dx = \begin{cases} 0, \text{if } n \neq m \\ \frac{1}{2} (J_{1}(u_{0m}))^{2}, \text{if } n = m \end{cases}$$

1

Similar orthogonality holds for other values of α .

Additionally, the Bessel functions are related to sines/cosines through this integral formula:

$$J_{\alpha}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(\alpha \theta - x \sin \theta) d\theta$$

Quote from Mary Boas, in *Mathematical Methods in the Physical Sciences*: "In fact, if you had first learned about sin(nx) and cos(nx) as power series solutions of $y'' = -n^2y$, instead of in elementary trigonometry, you would not feel that Bessel functions were appreciably more difficult or strange than trigonometric functions. Like sines and cosines, Bessel functions are solutions of a differential equation; they are tabulated and their graphs can be drawn; they can be represented as a series; and a large number of formulas about them are known."