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What is Entropy?   A handout by Dr Colton for Physics 123 Section 2 
a.k.a. “Derivation of the Boltzmann factor and the Maxwell-Boltzmann speed distribution” 
 
The “Boltzmann factor” is a vitally important expression which tells you how likely states are to be occupied due to 
thermal energy. It results from the Second Law of Thermodynamics. One formulation of the Second Law states:  
 

Isolated physical systems will tend to be in the macrostate that has the most number of microstates.  
 
For example, if you roll two six-sided dice, you will most likely get a 7 as the sum of the two, because there are 
more ways of getting a 7 than any other number (1+6, 2+5, 3+4, 4+3, 5+2, and 6+1). So, if you jumble two dice in a 
box and want to know (without peeking) what state they are in, you can say “They probably add up to a 7”. In 
thermodynamics terms, picture 1023 molecules instead of two dice; the microstates are the positions/velocities of the 
molecules, the macrostates are the macroscopic variables (P, V, T) that a given microscopic configuration produces. 
 
When you combine two systems, the number of microstates of the combined system is the product of the individual 
microstates. For example, when you roll one die, there are 6 microstates. When you roll two dice, there are 36 
microstates (six of which result in a sum of 7, as enumerated above). When you roll three dice, there are 666 
microstates. And so forth. 
 
For large systems, the phrase “will tend to be in” becomes “will be extremely close to”. For example, if you roll 1023 
dice their total will be VERY close to 3.51023. There are a HUGE number of ways (# microstates) that that total 
could be achieved, though. So, when we have large systems, let’s deal with the logarithm of the number of 
microstates instead of the number of microstates itself. Log functions are very efficient at reducing huge numbers to 
much more manageable ones. (Log10(1023) = 23, for example.) By convention we will use log base e. Also, for 
reasons you will see shortly, let’s multiply the log by a constant which has units of Joules/Kelvin. I will call the 
multiplicative constant simply “constant” for now. We’ll define this new quantity as S, called “entropy”: 
 

S = constant  ln(#microstates)    [units of J/K] 
  
Since S increases and decreases as the # microstates increases and decreases, we can rephrase Second Law as such: 
 

Large isolated physical systems will be extremely close to the state which has the largest S.* 
 
Using the logarithm instead of the # of microstates has this added benefit: when you combine two systems, the 
entropies of each system ADD. This is because the # microstates multiply, so  
 

Stot  = constant  ln(#microstates1  #microstates2)  
 = constant  ln(#microstates1) + constant  ln(#microstates2)  
 = S1 + S2 
 
Now, let’s think about two systems which can exchange thermal energy. We’ll suppose that we have a small system 
which is really our system of interest, which comes to thermal equilibrium with a much larger system (a “thermal 
reservoir”). For example, the small system could be a bit of material that I’m studying, with the reservoir being the 
flask of liquid nitrogen I put it in to cool it down. Or the small system could be the gas molecules in my room, with 
the reservoir being the walls and rest of the building. Let’s also suppose that the systems and the reservoir are 
isolated from the rest of the world, so that their total energy E is fixed.** Let’s call the small system we’re really 
interested in “system 1” (with energy E1), and the reservoir “system 2” (with energy E2 = E – E1). Since system 1 is 
much smaller than system 2, E1 is much less than both E2 and E.  
 
We want to know the properties of system 1 in equilibrium. Remember that it will be in (or extremely close to) the 
state that has the largest entropy. For S to be a maximum, dS/dE1 must be zero.† Let’s write dS/dE1 a different way: 
 
                                                 
*  When the system reaches equilibrium, that is. One could deliberately set up a system in a state with a smaller entropy, but it 
would approach the state with the largest entropy as it comes to equilibrium. 
** We’ll also assume that no work is done on/by either system, so we don’t need to account for integral of PdV-type factors. 
† Just about all of the derivatives in this paper should really be “partial derivatives” which use the symbol  . But since those are 
likely unfamiliar to most Physics 123 students, I’ll use the regular derivative symbol instead. 
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The last step happens because dE2 = -dE1 (which is obvious; just take the differential of the equation E2 = E – E1, 
with E = constant). 
 
Therefore, since dS/dE1 = 0 when S is a maximum,    
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This is interesting! Remember the Joules/Kelvin units we chose for S? That means that each side of this equation has 
units of 1/Kelvin. So here we have a quantity which is the same for two systems in thermal contact, which behaves 
very similarly to the inverse of the temperature! Well, the inverse of the temperature IS the same for two systems in 
thermal contact (as is the temperature itself, or the temperature squared, etc.), so let’s just posit that this quantity is 
in fact the inverse of the temperature:* 
 

TdE

dS 1
  Relationship between temperature and entropy**    (1) 

 
If we pick our “S-constant” appropriately, this turns out to be exactly true. The proper constant to make this 
definition of temperature correspond to our usual temperature in Kelvin is called “Boltzmann’s constant” and is 
given the symbol kB: 
 

 smicrostatekS B #ln  Definition of entropy      (2) 

 
Boltzmann’s constant has the experimentally measured value of 1.38  10-23 J/K. 
 
Back to the derivation. E1 could be any small amount of energy that corresponds to an allowed state of system 1. But 
what if system 1 has multiple energy states it could be in? Let’s call them E1A, E1B, etc. How likely is it that the 
system is in E1A compared to E1B? If E1A is lower than E1B, it seems logical that system 1 will more likely be in state 
E1A… but how much more likely? Can we quantify that? Yes, we can. Let’s continue. 
 
In order for system 1 to be in state E1A, it must be using energy E1A that would otherwise be in system 2. This 
decreases the number of states available to system 2; that is, system 2, the thermal reservoir, would have more 
allowed microstates if it had energy E than it does with energy E2A = E – E1A. Since the #microstates of individual 
systems multiply when you put them together, the probability of being in state E1A is proportional to the number of 
microstates of system 1 having energy E1A times the number of microstates of system 2 having energy E2A. To 
simplify things for now, let’s assume that E1A has just one microstate; each if not, when calculating probabilities in a 
problem we’ll have to multiply by the number of microstates it does have. (Repeat paragraph for state 1B.) The 
probability ratio we want is then just the ratio of available microstates of system 2 for the two cases, like this: 
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* Disclaimer: That step may seem like it involves a little “hand-waving”. For example, if we had defined the constant in front of S 
in terms of different units, then we wouldn’t have been able to make the supposition that dS/dE is exactly equal to 1/T. However, 
in more advanced thermodynamics, instead of this being a supposition, this is actually the DEFINITION of temperature, 
T = (dS/dE)-1. If you define temperature that way, all of the properties do indeed fit perfectly with “everyday temperature”.  
** This is only true if the volume is constant; see the footnote about PdV factors on the previous page. And if there’s no volume 
change there’s no work, so dQ = dE by the First Law. Thus Eqn 1 fits exactly with the definition of S in the book: dS = dQ/T. 
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We’re nearly there. We just have to figure out how S2 changes when E1A and E1B are extracted, S2A and S2B 
respectively. Since E1A is much smaller than E, we can use the definition of a derivative to do an expansion: 
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  by Eqn 1 above  ( TT 11 1  , since both systems are at the same temperature T), so  
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Similarly, for state E1B,   
 

2 1 2 1( ) ( )B BS E E S E E T    

 
Plugging those two expressions in and doing a little bit of algebra, 
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Thus the probability of system 1 being in any state is proportional to / BE k Te  where E is the energy of that state. 
That deserves boxing: 
 

TkE BeP /~   The Boltzmann factor       (3) 
 
(This E is not the same as the total energy E above. Rather, it is a general representation of the energy of system 1: 
E1A, E1B, etc.) 
 
This is an amazingly helpful expression, and to my mind is the single most important thing you will learn if/when 
you take Physics 360. The factor e-E/kT is called the “Boltzmann factor” of the state, and as I stated at the outset, it 
tells you how likely states are to be occupied due to thermal energy. The “states” could be discrete states, like 
electrons being in quantum-mechanical atomic energy levels, or continuous states, like molecules having different 
kinetic energies. 
 
Warning: Although equation (3) gives the relative probabilities that two (or more) states are occupied, to find the 
absolute probability, you have to normalize things—make it so that the total probability adds up to one. Typically 
you do that by dividing the Boltzmann factor for each state by the sum of all the Boltzmann factors. 
 
 
Example 1: A made-up two level system. Suppose an atom has only two available energy levels, which are 
separated by 2e-23 J. If the temperature is 1.5 K, what is the probability the atom is in the lower state?  
 
Solution: Taking E = 0 to be the lower state, the two Boltzmann factors are:  

(The parentheses indicate “function of”, not “times”.) 
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 Upper state: BF = )5.11038.1/(102 2323  

e = 0.38 

 Lower state: BF = )5.11038.1/(0 23  

e = 1 
 
Dividing each one by the sum, 1.38, in order to normalize the probabilities, we get: 
 Upper state: 27.6% probable 
 Lower state: 72.4% probable 
 
 
Example 2: The Maxwell-Boltzmann velocity distribution for molecules. This is an example of a continuously 
varying set of energy levels, because the energy of the molecules just depends on their velocities as KE = ½ mv2. 
Since they can have any velocity, they can have any kinetic energy. That makes the BF more tricky to write out 
compared to the last example, because we can’t just list all the states in a table. Instead, we have to write: 
 

 State with v:  BF = 
Tkmv B

e
/

2

1 2
      incorrect expression 

 
That’s not quite right, though. Recall a couple of pages back I said:  
 

To simplify things for now, let’s assume that E1A has just one microstate; if not, when calculating probabilities in a 
problem we’ll have to multiply by the number of microstates it does have. 

 
In this situation, the state corresponding to speed v has more than one microstate, so as promised we’re going to 
have to multiply by the number of microstates it does have. Actually, there are a ton of possible microstates, so we’ll 
have to be clever.  
 
For example, suppose the state corresponds to speed v1 = 5 m/s. In terms of the x, y, and z velocities in m/s, some 
possible microstates could be (5,0,0), (3,4,0), (0,5,0), (-3,0,4), and so forth. If you picture all of the vectors starting 
at the origin and having length 5, the microstates can be represented as the surface of the sphere made up of all of 
the tips of those vectors (a sphere with radius = 5). 
 
Although that’s an infinite number of states, it’s clearly “less”, in some sense, than the number of microstates for the 
state corresponding to speed v2 = 6 m/s—because the microstates of that state would be represented by the surface of 
a sphere having radius = 6. Thus the state corresponding to v2 has more microstates than the v1 state. Or, to use the 
usual term, we say it has a higher “multiplicity”.  
 
To account for the difference in multiplicity, we have to multiply each of the probabilities by the surface areas of the 
relevant spheres; that is, we must multiply by v2.* In short: 

 

State with v:  multiplicity  BF = 
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In order to normalize the probabilities, we must divide each BF by the sum of all the BFs; in other words, we must 
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. When we do that and evaluate the integral, we get: 
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  The Maxwell-Boltzmann distribution function (4) 

 
Acknowledgement: The Boltzmann factor derivation presented here was modeled after the derivations given on these two websites: 
http://world.std.com/~mmcirvin/boltzmann.html   and   http://mysite.du.edu/~jcalvert/phys/boltz.htm 

                                                 
* More properly, we should multiply by 4v2, the surface area of a sphere with radius v, but since we have to normalize things 
later anyway, let’s not worry about the 4. 


