Quiz

Red light coming from O produces an image at I. Where will blue light coming from O form an image?
a. same place
b. closer to the lens
c. farther from lens

Chromatic Aberration

- Red light coming from O produces an image at I. Where will blue light coming from O form an image?
a. same place
b. closer to the lens
c. farther from lens

Lens-makers' eqn:

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

Achromats

This lens mainly
This lens mainly corrects determines f

Spherical Aberration

Rays on the outside of the
lens focus closer than rays on the inside of the lens

Spherical Aberration

Credit: the next several slides were produced by Dr. Durfee

Reducing Spherical Aberration with Aperture

Spherical Aberration

Reducing Spherical Aberration by
 Reversing Lens

Curved side facing parallel rays

Spherical Aberration Rules: "Flat to curved, curved to flat"

Parallel rays: curved side first

Diverging rays: flat side first

Shape of lens

optimum

$$
\mathrm{R}_{2}=-\mathrm{R}_{1} \quad \mathrm{R}_{2}=3 \mathrm{R}_{1}
$$

Acknowledgement: I got this from Dr. Hess, but I don't know where he got it from.
shape factor $=\left(R_{2}+R_{1}\right) /\left(R_{2}-R_{1}\right)$

Ray Tracing To Correct For Aberration

The 1993 Hubble Telescope Repair

Pictures and story from Hecht

Figure 6.19 (a) Because the primary mirror is too flat, rays from the outer edges met at a
point 38 mm beyond the point where inner rays converge.

The 2.4-m-diameter hyperboloidal primary mirror of the Hubble Space Telescope. (Photo courtesy of NASA.)

Betelgeuse

angular size: similar to resolving a car's headlights from 6,000 miles away

size of Jupiter's orbit

Astigmatism

- Lens shape = spherical + cylindrical: rays in different planes have different focal lengths

Viestenz et al. Zeitschrift der Deutschen
Ophthalmologischen Gesellschaft, 104, 620-7 (2007).

Blur from astigmatic lens at different distances

Wikipedia: "Astigmatism"
Correction: add an opposite cylindrical component in corrective lens

Astigmatism, part 2

- Rays in different planes have different focal lengths

Wikipedia: "Astigmatism (optical systems)"

Coma

Fig. 6.18 Positive coma. [Photo by E.H.]
(b)
from Hecht
from P\&W

0 Degree Tilt

(next few slides from Dr. Durfee)

10 Degree Tilt

20 Degree Tilt

30 Degree Tilt

	vatillin	- mum	(hit	4tit	誉	蒼	!	\%
-5	-3.75	-2.5	-1.25	0	1.25	2.5	3.75	5
FOCUS SHIFT								

40 Degree Tilt

40 Degree Tilt＋Aperture

Un	？nla	？	\％＂！			里	鹤	爰
－5	－3．75	－2．5	－1．25	0	1.25	2.5	3.75	5
				S				

Petzval field curvature

Field curvature: the image "plane" (the arc) deviates from a flat surface (the vertical line).

Usual solution: use multiple lenses to form one overall "lens" whose focal length increases with ray angle

Solution 2: Curve your detector. This is detector on Keppler space telescope (searching for extra-solar planets)

Wikipedia: Petzval field curvature

Distortion

Far from center: magnification = less

Far from center: magnification = more

Apertures

- f-number = "f/\#" = f/D

"Numerical aperture": NA $=\sin \theta$
= D/2f for small angles (= 1/(2f-number))

