Bessel Functions by Dr. Colton, Physics 442/471 (last updated: Winter 2024)

General Information

The Bessel functions, $J_{\alpha}(x)$ are a set of functions for (typically) integer values of α , which:

- (a) come up often, especially in the context of differential equations in cylindrical coordinates
 - (b) have interesting properties
 - (c) are well understood and have been studied for centuries

They are typically only used for positive values of x. Here are plots of the first four Bessel functions.

In[28]:= Plot [BesselJ[3, x], {x, 0, 20}]

 $J_3(x)$ crosses zero at 6.380, 9.761, 13.015, ...

Out[28]= - Graphics -

Bessel functions - pg 1

Important facts

- Bessel's equation is $x^2 \frac{d^2 f}{dx^2} + x \frac{df}{dx} + (x^2 \alpha^2)f = 0$, has solution $J_{\alpha}(x)$.
- Bessel functions can be computed via a series formula: $J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+\alpha}}{k!(k+\alpha)! 2^{2k+\alpha}}$
- A second set of solutions to Bessel's equation exist, called the "Bessel functions of the second kind". They are written as $Y_{\alpha}(x)$ or sometimes as $N_{\alpha}(x)$. They diverge at x = 0 and therefore can typically be discounted as viable physical solutions.
 - Various other linear combinations of $J_{\alpha}(x)$ and $Y_{\alpha}(x)$ are also solutions to Bessel's equation and are sometimes used; two examples are the "modified Bessel functions" and the "Hankel functions", but they are beyond the scope of this course.
 - The so-called "spherical Bessel functions" and "spherical Hankel functions" are solutions to a different, albeit closely related, differential equation. They are also beyond the scope of this course.
- Derivatives:
 - For $\alpha = 0$: $\frac{d}{dx}(J_0(x)) = -J_1(x)$ (which means the max/min of J_0 are the zeroes of J_1) For $\alpha > 1$: $\frac{d}{dx}(J_0(x)) = \frac{1}{2}(J_0(x)) - J_0(x)$

For
$$\alpha \ge 1$$
: $\frac{\alpha}{dx}(J_{\alpha}(x)) = \frac{1}{2}(J_{\alpha-1}(x) - J_{\alpha+1}(x))$

- Zeroes: $u_{\alpha m}$ represents the mth zero of $J_{\alpha}(x)$. From the previous page we have:
 - $\circ \quad u_{01} = 2.405, \, u_{02} = 5.520, \, u_{03} = 8.654, \, \ldots$
 - \circ $u_{11} = 3.832, u_{12} = 7.016, u_{13} = 10.173, \dots$
 - o etc.

These numbers are available in Mathematica via the BesselJZero function; for example, BesselJZero[0,1] yields a result of 2.4048255576957727686...

With the substitution: $x = u_{\alpha m} r$

The Bessel functions are often used with the substitution $x = u_{\alpha m}r$, with the domain then restricted to $0 \le r \le 1$. The variable *r* here represents the radial cylindrical coordinate. This then gives rise to a set of functions for each α , labeled by *m*. Note that whereas the integers α go from 0, 1, 2, 3, etc., the integers *m* go from 1, 2, 3, 4, etc. Here are the first four functions of the $\alpha = 0$ series, plotted both as 1D functions of *r*, and as 2D functions with *r* as the cylindrical coordinate. These are all the $J_0(x)$ Bessel function, just scaled so that more and more of the function gets displayed between 0 and 1.

A similar series of plots could be made for $\alpha = 1$, $\alpha = 2$, etc.

Important facts about the $J_{\alpha}(u_{\alpha m}r)$ series of functions for a given α

- Bessel's equation becomes $r^2 \frac{d^2 f}{dr^2} + r \frac{df}{dr} + (u_{\alpha m}^2 r^2 \alpha^2)f = 0$, has solution $J_{\alpha}(u_{\alpha m} r)$.
- Orthogonality for $\alpha = 0$: $J_0(u_{0m}r)$ and $J_0(u_{0n}r)$ are orthogonal over the interval (0,1) with respect to a weighting function of r:

$$\circ \quad \int_0^1 J_0(u_{0m}r) J_0(u_{0n}r) r dr = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2} (J_1(u_{0m}))^2 & \text{if } n = m \end{cases}$$

• Orthogonality for general α : $J_{\alpha}(u_{\alpha m}r)$ and $J_{\alpha}(u_{\alpha n}r)$) are orthogonal over the same interval with the same weighting function:

$$\circ \quad \int_0^1 J_\alpha(u_{\alpha m} r) J_\alpha(u_{\alpha n} r) r dr = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2} (J_{\alpha+1}(u_{\alpha m}))^2 & \text{if } n = m \end{cases}$$

Bessel functions - pg 3

Orthogonality, depicted

I have randomly chosen two functions in the $\alpha = 0$ series (plots given above), namely m = 2 and m = 3.

ln[40]:= Plot[Bessel][0, u02 r] Bessel][0, u03 r] r, {r, 0, 1}, Filling \rightarrow Axis]

In[41]= Integrate[Bessel][0, u02 r] Bessel][0, u03 r] r, {r, 0, 1}]
Out[41]= 0

 $\label{eq:information} \inf_{[42]:=} \mbox{Plot}[\mbox{BesselJ}[0,\mbox{u03}\,r]\mbox{ BesselJ}[0,\mbox{u03}\,r]\mbox{ r},\mbox{ {r}, 0, 1},\mbox{ Filling} \rightarrow \mbox{Axis}]$

The two functions are orthogonal over the domain of $0 \le r \le 1$, when multiplied by a weighting function of r. You can see that the positive areas cancel out the negative areas.

The integral is exactly zero.

$$\int_0^1 J_0(u_{0m}r) J_0(u_{0n}r) r dr$$

equals 0 if $n \neq m$

By contrast, $J_0(u_{03}r)$ is not orthogonal to itself.

 $\int_{0}^{1} J_{0}(u_{0m}r) J_{0}(u_{0n}r) r dr$ equals $\frac{1}{2} (J_{1}(u_{0m}))^{2}$ if n = m

Comparison between Bessel functions and sine/cosine functions

Sines/Cosines

- Two oscillatory functions: sin(x) and cos(x). Often one of them is not used, due to the symmetry of the problem.
- You can determine the value of sin(x) and cos(x) for arbitrary x by using a calculator or computer program.
- 3. Series solutions:

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

Consider just sin(x):

- 4. The zeroes of sin(x) are at $x = \pi, 2\pi, 3\pi$, etc. $x = ``m\pi''$ is the m^{th} zero
- 5. $\sin(m\pi x)$ has m 1 nodes in the interval from 0 to 1. At x = 1, $\sin(m\pi x) = 0$ for all m.
- 6. The differential equation satisfied by $f = \sin(x)$ is f'' + f = 0.

The differential equation satisfied by $f = \sin(m\pi x)$ is $f'' + (m\pi)^2 f = 0$.

7. $\sin(m\pi x)$ is orthogonal to $\sin(n\pi x)$ on the interval (0,1):

$$\int_0^1 \sin(m\pi x) \sin(n\pi x) \, dx = \begin{cases} 0, \, if \, n \neq m \\ \frac{1}{2}, \, if \, n = m \end{cases}$$

Bessel functions

Two oscillatory functions for each α : $J_{\alpha}(x)$ and $Y_{\alpha}(x)$. Typically Y_{α} is not used because it's infinite at the origin.

You can determine the value of $J_{\alpha}(x)$ for arbitrary x by using a calculator or computer program.

Series solution:

$$J_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+\alpha}}{k! (k+\alpha)! 2^{2k+\alpha}}$$

Consider just $J_{\alpha}(x)$ for one α , say $\alpha = 0$: (similar things hold true for all α 's) The zeroes of $J_0(x)$ are at $x \approx 2.405, 5.520, 8.654$, etc. $x = "u_{0m}"$ is the m^{th} zero $J_0(u_{0m}r)$ has m - 1 nodes in the interval from 0 to 1. At r = 1, $J_0(u_{0m}r) = 0$ for all m.

The differential equation satisfied by $f = J_0(x)$ is $x^2 f'' + x f' + (x^2 - 0^2)f = 0$.

The differential equation satisfied by $f = J_0(u_{0m}r)$ is $r^2f'' + rf' + (u_{0m}^2r^2 - 0^2)f = 0$. $0^2 \rightarrow \alpha^2$ for other α 's

 $J_0(u_{0m}r)$ is orthogonal to $J_0(u_{0n}r)$ on the interval (0,1), with respect to a weighting function of r:

$$\int_{0}^{1} J_{0}(u_{0m}r) J_{0}(u_{0n}r) r dr = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2} (J_{1}(u_{0m}))^{2}, & \text{if } n = m \end{cases}$$

Additionally, the Bessel functions are related to sines/cosines through this integral formula:

$$J_{\alpha}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(\alpha \theta - x \sin \theta) \, d\theta$$

Quote from Mary Boas, in *Mathematical Methods in the Physical Sciences*: "In fact, if you had first learned about sin(nx) and cos(nx) as power series solutions of $y'' = -n^2y$, instead of in elementary trigonometry, you would not feel that Bessel functions were appreciably more difficult or strange than trigonometric functions. Like sines and cosines, Bessel functions are solutions of a differential equation; they are tabulated and their graphs can be drawn; they can be represented as a series; and a large number of formulas about them are known."