Converting $\boldsymbol{T}^{\text {tot }}$ into More Useful Form
 By Dr. Colton, Physics 471 (last updated 30 Jan 2024)

Start with this:

$$
\begin{aligned}
& T^{t o t}=\frac{n_{2}}{n_{0}} \frac{\cos \theta_{2}}{\cos \theta_{0}} \frac{\left|t^{01}\right|^{2}\left|t^{12}\right|^{2}}{\left|e^{-i k_{1} d \cos \theta_{1}-r^{10} r^{12}} e^{i k_{1} d \cos \theta_{1}}\right|^{2}} \\
& \text { denom }=\left(e^{-i k_{1} d \cos \theta_{1}}-r^{10} r^{12} e^{i k_{1} d \cos \theta_{1}}\right) \times \text { complex conjugate } \\
& =\left(e^{-i k_{1} d \cos \theta_{1}}-r^{10} r^{12} e^{i k_{1} d \cos \theta_{1}}\right)\left(e^{+i k_{1} d \cos \theta_{1}}-r^{10^{*}} r^{12^{*}} e^{-i k_{1} d \cos \theta_{1}}\right) \\
& \text { (FOIL) }=1 \underbrace{-r^{10} r^{12} e^{2 i k_{1} d \cos \theta_{1}}-r^{10^{*}} r^{12^{*}} e^{-2 i k_{1} d \cos \theta_{1}}}+\left|r^{10}\right|^{2}\left|r^{12}\right|^{2} \\
& =-\left(r^{10} r^{12} e^{2 i k_{1} d \cos \theta_{1}}+\text { complex conjugate }\right) \\
& =-2 \times \operatorname{Real}\left[r^{10} r^{12} e^{2 i k_{1} d \cos \theta_{1}}\right] \\
& \text { Write } \quad r^{10}=\left|r^{10}\right| e^{i \phi^{10}}, \\
& r^{12}=\left|r^{12}\right| e^{i \phi^{12}}, \\
& \delta=2 k_{1} d \cos \theta_{1} \\
& \text { denom }=1+\left|r^{10}\right|^{2}\left|r^{12}\right|^{2}-2 \operatorname{Real}[\underbrace{12}_{\left.=\left|r^{10}\right|\left|r^{12}\right| e^{i\left(\phi^{10}\right.}\left|e^{i \phi^{10}}\right| r^{12} \mid \phi^{i 2}+\delta\right)} \\
& =1+\left|r^{10}\right|^{2}\left|r^{12}\right|^{2}-2\left|r^{10}\right|\left|r^{12}\right| \underbrace{\cos \left(\phi^{10}+\phi^{12}+\delta\right)} \\
& \text { Trig trick: } \cos \Phi=1-2 \sin ^{2} \frac{\Phi}{2} \\
& =1+\left|r^{10}\right|^{2}\left|r^{12}\right|^{2}-2\left|r^{10}\right|\left|r^{12}\right|+4\left|r^{10}\right|\left|r^{12}\right| \sin ^{2} \frac{\Phi}{2} \\
& \text { where } \Phi=\phi^{10}+\phi^{12}+2 k_{1} d \cos \theta_{1} \\
& \text { denom }=\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}+4\left|r^{10}\right|\left|r^{12}\right| \sin ^{2} \frac{\Phi}{2}
\end{aligned}
$$

Put denominator back into $T^{t o t}$ equation:

$$
\begin{aligned}
& T^{t o t}=\frac{n_{2}}{n_{0}} \frac{\cos \theta_{2}}{\cos \theta_{0}} \frac{\left|t^{10}\right|^{2}\left|t^{12}\right|^{2}}{\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}+4\left|r^{10}\right|\left|r^{12}\right| \sin ^{2} \frac{\Phi}{2}} \times \frac{\frac{1}{\left(1-\left.\left|r^{10}\right|\left|r^{12}\right|\right|^{2}\right.}}{\frac{1}{\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}}} \\
& T^{t o t}=\frac{n_{2}}{n_{0}} \cos \theta_{2} \frac{\frac{\left.|t|^{10}\right|^{2}\left|1^{12}\right|^{2}}{\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}}}{\cos \theta_{0}} \frac{4| |^{10} \| r^{2} \mid}{\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}} \sin ^{2} \frac{\Phi}{2}
\end{aligned}
$$

Define some symbols to make it look simpler:

$$
\begin{equation*}
T^{\text {tot }}=\frac{T^{\max }}{1+F \sin ^{2} \frac{\Phi}{2}} \tag{4.15}
\end{equation*}
$$

$$
T^{\max }=\frac{n_{2} \cos \theta_{2}}{n_{0} \cos \theta_{0}} \frac{\left|t^{01}\right|^{2}\left|t^{12}\right|^{2}}{\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}}
$$

P\&W Eq (4.16.) equiv.

$$
F=\frac{4\left|r^{10}\right|\left|r^{12}\right|}{\left(1-\left|r^{10}\right|\left|r^{12}\right|\right)^{2}}
$$

P\&W Eq. (4.18)
called "coefficient of finesse"
and Φ as defined on the previous page,

P\&W Eq. (4.17)

Further note: my $T^{\max }$ equation does not look exactly like Eq (4.16)
To complete things, write numerator like this:

$$
\begin{aligned}
T^{\max } \text { numer }= & \frac{n_{2}}{n_{1}} \frac{\cos \theta_{2}}{\cos \theta_{1}}\left|t^{12}\right|^{2} \frac{n_{1}}{n_{0}} \frac{\cos \theta_{1}}{\cos \theta_{0}}\left|t^{01}\right|^{2} \\
& \quad \text { (because } n_{1} \text { 's and } \cos \theta_{1} \text { 's will cancel out) } \\
= & T^{12} T^{01}
\end{aligned}
$$

Write $\left|r^{10}\right|$ as $\sqrt{R^{10}}$ and $\left|r^{12}\right|$ as $\sqrt{R^{12}}$, then

$$
\text { (alternate version) } T^{\max }=\frac{T^{01} T^{12}}{\left(1-\sqrt{R^{10} R^{12}}\right)^{2}}
$$

P\&W Eq. (4.16)

