Derivation of Fresnel Equations for s-polarization

by Dr. Colton, Physics 471 (last updated: 29 Jan 2024)
using the method of Griffiths, Introduction to Electrodynamics

For s-polarization the electric field is perpendicular to the plane of incidence. This is out of the page for this image.

The direction of the magnetic field is chosen the make $\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}}$ be in the direction of propagation.

$$
(\hat{x}=\text { into pager) }
$$

Figure 1. Incident, reflected, and transmitted plane wave fields at a material interface.

Boundary condition 1: $\quad\left(E_{\|}\right)_{1}=\left(E_{\|}\right)_{2} \quad$ this is the x-component
$\tilde{E}_{0 i} e^{i\left(\mathbf{k}_{\mathbf{i}} \cdot \mathbf{r}-\omega t\right)}+\tilde{E}_{0 r} e^{i\left(\mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}-\omega t\right)}=\tilde{E}_{0 t} e^{i\left(\mathbf{k}_{\mathbf{t}} \cdot \mathbf{r}-\omega t\right)}$
The exponentials must all be equal, so cancel them out.

$$
\begin{equation*}
\tilde{E}_{0 i}+\tilde{E}_{0 r}=\tilde{E}_{0 t} \tag{1}
\end{equation*}
$$

Boundary condition 2: $\quad \frac{1}{\mu_{1}}\left(B_{\|}\right)_{1}=\frac{1}{\mu_{2}}\left(B_{\|}\right)_{2} \quad$ this is the y-component
Nonmagnetic, so $\mu_{1}=\mu_{2}=\mu_{0}$. Cancel them out.
Cancel exponentials again.
$\frac{1}{v_{1}} \tilde{E}_{0 i}\left(-\cos \theta_{1}\right)+\frac{1}{v_{1}} \tilde{E}_{0 r}\left(+\cos \theta_{1}\right)=\frac{1}{v_{2}} \tilde{E}_{0 t}\left(-\cos \theta_{2}\right)$

$$
\operatorname{Let} \alpha=\frac{\cos \theta_{2}}{\cos \theta_{1}} \quad \beta=\frac{v_{1}}{v_{2}} \quad\left(=\frac{n_{2}}{n_{1}}\right)
$$

Multiply Eq (2) by $\frac{v_{1}}{\cos \theta_{1}}$ on both sides, remove the tildes for simplicity,

$$
\begin{align*}
E_{0 i}+E_{0 r} & =E_{0 t} \tag{3}\\
-E_{0 i}+E_{0 r} & =-\alpha \beta E_{0 t} \tag{4}
\end{align*}
$$

Use Eq (3) and Eq (4) and solve for the ratio $\frac{E_{0 t}}{E_{0 i}}$, call it " t ",

$$
\begin{aligned}
& 2 E_{0 i}=(1+\alpha \beta) E_{0 t} \\
& t=\frac{2}{1+\alpha \beta} \text { "transmission coefficient" for } \mathrm{s}, \mathrm{P} \& \mathrm{~W} \text { Eq.3.21 }
\end{aligned}
$$

Multiply Eq (3) by $\alpha \beta$ then add to Eq (4):

$$
\begin{array}{r}
\alpha \beta E_{0 i}+\alpha \beta E_{0 r}=\alpha \beta E_{0 t} \\
+\quad-E_{0 i}+\quad E_{0 r}=-\alpha \beta E_{0 t} \\
\hline(\alpha \beta-1) E_{0 i}+(1+\alpha \beta) E_{0 r}=0
\end{array}
$$

Solve for the ratio $\frac{E_{o r}}{E_{0 i}}$, call it "r":

$$
r=\frac{1-\alpha \beta}{1+\alpha \beta} \text { "reflection coefficient" for s, P\&W Eq.3.21 }
$$

The two boxed equations for r and t are the "Fresnel equations" for s-polarized light (with α and β defined above).

