Physics 471 - Study guide for exam 2
Dr Colton, Winter 2024

- Chapter 4 – Three Materials, Two Interfaces (the part that wasn’t covered on exam 1)
 o How to use the matrix method to determine transmission and reflection for a multilayer stack

- Chapter 5 – Crystals
 o Biaxial – Given n_x, n_y, and n_z, and a direction of travel, how to determine the index of refraction for the two main polarizations…
 ▪ If traveling in x, y, or z, how to get the answers trivially
 ▪ If traveling in a different direction, how to solve the Fresnel crystal equation to determine this (although if one polarization is in x, y, or z, it’s still trivial for that polarization)
 o What are the “optic axes”—how to determine and what they mean
 o Uniaxial – Given n_o and n_e, and especially for the particular orientation where the optic axis points along the plane of the interface, and for both s and p polarizations…
 ▪ What is the “fast axis”
 ▪ Given a direction of travel, how to determine the index of refraction
 ▪ How to determine the direction of the k-vector
 ▪ How to determine the direction of the Poynting vector

- Chapter 6 – Jones & Stokes/Mueller
 o What Jones vectors mean, how to determine them for a given situation
 o What Jones matrices mean, how to use them to determine the effect of various optical elements on the Jones vector
 o What Stokes vectors mean, how to determine them for a given situation
 o What Mueller matrices mean, how to use them to determine the effect of various optical elements on the Stokes vector
 o How to connect the vectors to quantities such as overall intensity
 o Behavior of some common configurations such as quarter wave plate at ±45°, half waveplate at angle θ

- Chapter 7 – Fourier and Dispersion
 o How to determine phase and group velocities for a material given its dispersion relation and a given set (or range) of frequencies
 o What are Fourier transforms—how to calculate them for basic cases, and what they mean
 o What are delta functions—basic properties, how to use them, and what they mean
 o What are convolutions—how to calculate them and what they mean
 ▪ What are the convolution theorems and how to use them
 o Linear dispersion – what impact it has on a pulse traversing a medium, how to calculate effects such as:
 ▪ speed of travel
 ▪ time delay
 ▪ reduction of amplitude from absorption
 o Quadratic dispersion – what impact it has on a pulse traversing a medium, how to calculate effects such as:
 ▪ speed of travel
 ▪ spreading out of pulse in time
 ▪ reduction of amplitude (from absorption but also from spreading out)
 ▪ pulse chirping (qualitative only)