Physics 471 - Study guide for exam 3

Dr Colton, Winter 2024

- Chapter 8 Temporal Coherence (i.e. sections 8.1-8.4 only)
 - How a Michelson interferometer works, what signal you get for monochromatic beam
 - How to determine the signal you get for a beam containing multiple frequency components
 - Note this could be it because it's either pulsed or just not very monochromatic
 - Understanding the gamma function (degree of coherence function)
 - Real part gives oscillations to signal
 - Magnitude gives visibility
 - Integrating magnitude squared gives coherence time
 - Fourier spectroscopy how to use an interferometer to determine the spectrum of the light
- Chapter 9 Rays
 - What the eikonal equation means
 - How to use Fermat's principle, finding path of minimum time
 - How to represent rays as vectors: (height, angle)
 - How to derive ABCD matrices of common optical elements
 - How to use ABCD matrices to determine final rays after passing through optical elements
 - What is the image formation condition and how to use it (and what the magnification is, if an image gets formed)
 - How to use principal planes to simplify an optical system
 - How to determine/enforce the stability of laser cavities
 - Understand what causes the main types of optical aberrations and what steps you can take to improve them
- Chapter 10 Diffraction
 - The four main integral formulas
 - Given an aperture function, how to calculate diffraction pattern using each of the four formulas
 - Know where/when each of the four formulas applies
 - One example: how to calculate the on-axis intensity after a circular hole or obstruction
 - Fraunhofer, more details
 - How/why the Fraunhofer formula relates to Fourier transforms
 - How to calculate Fraunhofer pattern for any aperture function
 - Know/understand the details of the 1D single slit, 1D double slit, 2D rectangular, and 2D circular patterns
- Chapter 11 Diffraction Applications (only sections 11.3-11.5 for this exam: Array Theorem, Gratings, Spectrometers)
 - Understand the convolution theorem and how to/why/when it applies to Fraunhofer diffraction patterns
 - Know how a grating pattern arises, and relevant details about it (e.g. from FT of comb function)
 - Spectrometers
 - Which wavelengths get selected
 - What the resolution is
 - How to use