Fresnel's Equation Examples, solving for \mathbf{n} in crystals

by Dr. Colton, Physics 471 (last updated: Winter 2024)

Fresnel's equation to find index of refraction for wave travel in crystals is this:

$$
\frac{1}{n^{2}}=\frac{u_{x}^{2}}{n^{2}-n_{x}^{2}}+\frac{u_{y}^{2}}{n^{2}-n_{y}^{2}}+\frac{u_{z}^{2}}{n^{2}-n_{z}^{2}}
$$

where ($u x, u y, u z$) are components of the unit vector in the direction of travel and ($n x, n y, n z$) are the refractive index parameters with the coordinate system aligned to the principle axes for which the susceptibility tensor is diagonal.

Example 1. $n x=1.2, n y=1.3, n z=1.4$. What are the two n values for wave travel in the $(1,1,1)$ direction?

Solve[1/n^2 = (1/3)/(n^2-1.2^2)+(1/3)/(n^2-1.3^2)+(1/3)/(n^2-1.4^2), n]
(... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding
exact system and numericizing the result.
Out $[1]=\{\{n \rightarrow-1.35397\},\{n \rightarrow-1.23836\},\{n \rightarrow 1.23836\},\{n \rightarrow 1.35397\}\}$
$\ln [2]:=\operatorname{Plot}\left[\left\{1 / n^{\wedge} 2,(1 / 3) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.4\right)^{\wedge} 2\right)\right\}$, $\{n, 1.1,1.5\}$, PlotRange $\rightarrow\{-10,10\}]$

$\ln [3]:=$
$\operatorname{Plot}\left[\left\{1 / n^{\wedge} 2,(1 / 3) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.4^{\wedge} 2\right)\right\}\right.$, $\{n, 1.1,1.5\}$, PlotRange $\rightarrow\{0,2\}$, Exclusions $\rightarrow\{n=1.2, n==1.3, n=1.4\}]$

$\ln [4]=$ FindRoot[1/n^2 ==
$\left.(1 / 3) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.4^{\wedge} 2\right),\{n, 1.24\}\right]$ FindRoot $\left[1 / n^{\wedge} 2\right.$ ==
$\left.(1 / 3) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)+(1 / 3) /\left(n^{\wedge} 2-1.4^{\wedge} 2\right),\{n, 1.35\}\right]$
Out[4] $=\quad\{\mathrm{n} \rightarrow 1.23836\}$
Out[5]= $\quad\{n \rightarrow 1.35397\}$

Example 2. $n x=1.2, n y=1.3, n z=1.4$. What are the two n values for wave travel in the $(1,0,0)$ direction?
(* As discussed in class, the two indices must be $n=1.3$ and $n=1.4$. *)
Example 3. $n x=1.2, n y=1.3, n z=1.4$. What are the two n values for wave travel in the $(1,1,0)$ direction?
$\ln [7]:=$ (* As discussed in class, one of the indices must be $n=1.4$. With that identification, Fresnel's Eq becomes this: *)
Solve[1/n^2 == (1/2)/(n^2-1.2^2)+(1/2)/(n^2-1.3^2),n]
\ldots Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

Out $[7]=\{\{\mathbf{n} \rightarrow-1.247\},\{n \rightarrow 1.247\}\}$
$\ln [8]:=$
Plot $\left[\left\{1 / n^{\wedge} 2,(1 / 2) /\left(n^{\wedge} 2-1.2^{\wedge} 2\right)+(1 / 2) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)\right\}\right.$, $\{n, 1.1,1.5\}$, PlotRange \rightarrow \{-10, 10\}]

Out[9]=
$\ln [10]:=$
(* Alternately, we can use the original Fresnel's equation and the "limit method" to get both n's at once. Assume the direction is very very close to $(1,1,0)$ but not quite exactly in that direction. For example, let $u=1 / s q r t(20001) *(100,100,1)$. Then: *)

Solve[1/n^2 == (10000/20001)/(n^2-1.2^2)+
$\left.(10000 / 20001) /\left(n^{\wedge} 2-1.3^{\wedge} 2\right)+(1 / 20001) /\left(n^{\wedge} 2-1.4^{\wedge} 2\right), n\right]$
... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.
Out[10]=
$\{\{n \rightarrow-1.39999\},\{n \rightarrow-1.247\},\{n \rightarrow 1.247\},\{n \rightarrow 1.39999\}\}$

