What You Should Already Know About Optics

by Dr. Colton (last updated: Winter 2024)

From Phys 123 (some of this only in the majors section)

Complex numbers:
Euler's identity: $e^{i x}=\cos x+i \sin x$
Complex numbers as points in the complex plane; polar \leftrightarrow rectangular conversion
General wave properties:
what all of these parameters mean: $x, t, A, \lambda, f, v, k, \omega, \phi$
$f=A \cos (k x-\omega t+\phi) \leftrightarrow A \mathrm{e}^{\mathrm{i}(k x-\omega t+\phi)}$
(and how to extend that to 3D for arbitrary wave direction and arbitrary oscillation direction)
$k=2 \pi / \lambda ; \omega=2 \pi / T$
$v=\lambda f$
wave packets: $v_{\text {phase }}=\omega / k ; v_{\text {group }}=\left(\frac{\partial \omega}{\partial k}\right)_{k_{\text {ave }}}$
Uncertainty relationships:
$\Delta x \Delta k \geq 1 / 2 ; \Delta x \Delta p \geq \hbar / 2$
$\Delta t \Delta \omega \geq 1 / 2 ; \Delta t \Delta E \geq \hbar / 2$
Reflection/transmission coefficients at normal incidence:

$$
\begin{aligned}
& r=\frac{v_{2}-v_{1}}{v_{2}+v_{1}}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} ; t=\frac{2 v_{2}}{v_{2}+v_{1}}=\frac{2 n_{1}}{n_{1}+n_{2}} \\
& R=|r|^{2} ; \quad T=1-R
\end{aligned}
$$

Fourier series:
$f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{2 \pi n x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{2 \pi n x}{L}$

$$
\left(2 \pi / L=k_{0}=\text { fundamental [spatial] frequency }\right)
$$

$a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$
$a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{2 \pi n x}{L} d x$
$b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{2 \pi n x}{L} d x$
Fourier series in time: $x \rightarrow t ; L \rightarrow T ; k_{0} \rightarrow \omega_{0}$
Index of refraction, n
speed of light $=c / n$
$\lambda_{\text {material }}=\lambda_{\text {vacuum }} / n$
Laws of reflection/refraction:
$\theta_{\text {incident }}=\theta_{\text {reflected }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ (θ measured from the perpendicular)
Total internal refraction: $\theta_{\text {critical }}$ of high index material is when $\theta_{2}=90^{\circ}$
Polarization
Difference between linear and circular polarization
$\theta_{\text {Brewster }}=\tan ^{-1}\left(\theta_{2} / \theta_{1}\right)$
Difference between s - and p-polarization
Lenses/mirrors
Thin lens equation: $1 / f=1 / p+1 / q$
Mirror: $f=R / 2$
Lensmaker's eqn: $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
($R_{1}=\operatorname{pos}, R_{2}=$ neg if convex-convex)
magnification: $M=h_{i} / h_{o}=-q / p$
f-number of a lens $=f / D$
Diffraction through slits/apertures:

Phase difference due to path-length difference: $\phi=2 \pi(\Delta P L / \lambda)$
Parallel ray approximation, if screen distance \gg slit separation: $\Delta P L=d \sin \theta$ ($d=$ distance to reference of phase)
Field at location on screen is sum of fields from each slit: $E=E_{0}\left(\mathrm{e}^{\mathrm{i} \phi 1}+\mathrm{e}^{\mathrm{i} \phi 2}+\ldots\right)$ (integrate if needed)
Intensity $I \sim|E|^{2}$
2 slit result: $I=I_{0} \cos ^{2}\left(\frac{2 \pi}{\lambda} \frac{d}{2} \sin \theta\right) ; d \sin \theta=m \lambda$ (maxima); $d \sin \theta=(m+1 / 2) \lambda$ (minima)
1 wide slit result: $I=I_{0} \operatorname{sinc}^{2}\left(\frac{\pi a \sin \theta}{\lambda}\right) ; a \sin \theta=m \lambda$ (minima)
2 wide slits result: $I=(2$ slit result $) \times(1$ wide slit result $)$
Arbitrary number/arrangement of slits: how to apply this technique to get $I(\theta)$
Small angle approximation sometimes applies: $\theta \approx \sin \theta \approx \tan \theta=y / L$
Circular aperture result, Rayleigh criterion: $\theta_{\text {min.resolve }}=1.22 \lambda / D$
Grating result: $d \sin \theta_{\text {bright }}=m \lambda$
Spectrometer: $R=\lambda_{\text {ave }} / \Delta \lambda=\#$ slits $\times m$
Thin film interference:
$\mathrm{OPL}=\mathrm{PL} \times n \quad(\mathrm{PL}=$ "path length"; OPL $=$ "optical path length")
$\Delta \mathrm{OPL}+$ other phase shifts $=m \lambda($ constructive $) ; \quad \ldots=(m+1 / 2) \lambda$ (destructive)
Photons: (possibly not learned until Phys 222)
photon momentum $p=h / \lambda$
photon energy $E=p c=h c / \lambda$

From Phys 220

Coulomb's Law:
$\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q \mathbf{r}}{r^{3}} \quad$ (electric field from a point charge located at origin)
$\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \quad$ (electric field from a point charge located at \mathbf{r}^{\prime})
Biot-Savart Law:
$\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int \frac{I d \boldsymbol{\ell}^{\prime} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \quad$ (magnetic field from a current-carrying wire; integrate over the primed variables)
Gauss's Law (Maxwell \#1):

$$
\left.\oint_{S} \mathbf{E} \cdot d \mathbf{a}=\frac{q_{e n c}}{\varepsilon_{0}} \quad \text { (electric flux is proportional to } \mathrm{q}_{\text {enclosed }}\right)
$$

Gauss's Law for magnetism (Maxwell \#2):
$\oint_{S} \mathbf{B} \cdot d \mathbf{a}=\frac{q_{\text {enc }}}{\varepsilon_{0}} \quad$ (no magnetic monopoles)
Faraday's Law (Maxwell \#3):
$\oint \mathbf{E} \cdot d \boldsymbol{\ell}=-\frac{d \Phi_{\mathrm{B}}}{d t} \quad$ (induced EMF is $-\mathrm{d}($ flux $) / \mathrm{dt}$; minus sign is Lenz's Law)
Ampere's Law, with Maxwell correction (Maxwell \#4):
$\oint \mathbf{B} \cdot d \boldsymbol{\ell}=\mu_{0} I_{e n c}+\epsilon_{0} \mu_{0} \frac{d \Phi_{\mathrm{E}}}{d t} \quad$ (currents act as sources of magnetic fields; so do changing electric fields)

From Multivariable Calculus

Scalar and vector functions:
$f=$ a scalar function of x, y, z. Example: $f(x, y, z)=x^{2} y+\sin z$.
$\mathbf{A}=$ a vector function of x, y, z. Example: $\mathbf{A}(x, y, z)=\left(x^{2} y+\sin z\right) \hat{\mathbf{x}}+x y z \hat{\mathbf{y}}+4 \hat{\mathbf{z}}$, which means $A_{x}=x^{2} y+\sin z, A_{y}=x y z$, and $A_{z}=4$
Gradient of a scalar function $\nabla f=\frac{\partial f}{\partial x} \widehat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}$ (which is a vector function)
Divergence of a vector function $\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$ (which is a scalar function)
Curl of a vector function $\nabla \times \mathbf{A}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right|$ (which is a vector function)

Laplacian of scalar function $\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \quad$ (which is a scalar function)
Laplacian of vector function $\nabla^{2} \mathbf{A}=\nabla^{2} \mathrm{~A}_{x} \hat{\mathbf{x}}+\nabla^{2} \mathrm{~A}_{y} \hat{\mathbf{y}}+\nabla^{2} \mathrm{~A}_{z} \hat{\mathbf{z}} \quad$ (which is a vector function)
Handy "curl of curl" formula: $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$
Gradient Theorem:

$$
\int_{\substack{\text { path } f r o m \\ \mathbf{a} \text { to } \mathbf{b}}}(\nabla f) \cdot d \boldsymbol{\ell}=f(\mathbf{b})-f(\mathbf{a})
$$

Divergence Theorem:

$$
\int_{\text {volume }} \nabla \cdot \mathbf{A} d v=\oint_{\substack{\text { surface bounding } \\ \text { the volume }}} \mathbf{A} \cdot d \mathbf{a}
$$

Stokes' Theorem, aka Curl Theorem:

$$
\int_{\text {surface }}(\nabla \times \mathbf{A}) \cdot d \mathbf{a}=\oint_{\begin{array}{c}
\text { path bounding } \\
\text { the surface }
\end{array}} \mathbf{A} \cdot d \boldsymbol{\ell}
$$

