What You Should Already Know

by Dr. Colton, Physics 581 (last updated: Fall 2020)

Chemistry

- The Periodic Table: valence electrons, atomic mass
- Atomic orbitals: what $\mathrm{s}, \mathrm{p}, \mathrm{d}$, and f refer to
- Spin degeneracy: two electrons in each orbital (spin up and spin down)
- Molar mass:
- number of moles $=\frac{m}{M M} \quad$ (" $M M$ " $=$ molar mass; make sure units of m and $M M$ agree $)$
- number of atoms $=$ number of moles $\times N_{A}=\frac{m}{M M} \times N_{A}$, where $N_{A}=$ Avogadro's number
- Hydrogen atom energy levels: $E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}} ; 13.6 \mathrm{eV}$ is known as the Rydberg constant

Physics 121

- Vectors, typically symbolized by bold letters
- How to add/subtract
- How to do dot and cross products
- Unit vector notation, e.g. $\widehat{\mathbf{x}}=(1,0,0)$, etc.
- Newton's $2^{\text {nd }}$ Law: $\Sigma \mathbf{F}=$ ma
- Energy, divided into...
- Kinetic energy of object: $K E=\frac{1}{2} m v^{2}$
- Potential (for "conservative" forces), often symbol U
- Momentum of object: $p=m v$
- Connection between kinetic energy and momentum: $K E=\frac{p^{2}}{2 m}$
- Springs
- Force by spring: $\mathbf{F}=-k \mathbf{x}$ (Hooke's law; k is the "spring constant")
- Potential energy stored in spring: $P E=\frac{1}{2} k x^{2}$
- SI Units: distance measured in meters, force in newtons, mass in kilograms, and energy in joules

Physics 123

- Thermodynamics:
- $R=\frac{k_{B}}{N_{A}}$ (relationship between universal gas constant R, Boltzmann's constant k_{B}, and Avogadro's number N_{A})
- Heat, symbol Q
- Heat transfer by thermal conduction: $\frac{\Delta Q}{\Delta t}=\frac{k A \Delta T}{L}$, where $k=$ thermal conductivity
- Specific heat c defined by: $Q=m c \Delta T$
- Molar heat capacity C defined by: $Q=n C \Delta T$
- General wave properties:
- What all of these parameters mean in the equations below: $x, t, A, \lambda, f, T, v, k, \omega, \phi$
- Plane wave: $f=A \cos (k x-\omega t+\phi) \leftrightarrow$ (complex representation) $f=A e^{i(k x-\omega t+\phi)}$
- Complex representation may be new to you; there's an implied "take the real part" to both sides of the equation; it follows from Euler's identity (see below).
- How those parameters interrelate:
- wavenumber $k=\frac{2 \pi}{\lambda}$
- angular frequency $\omega=2 \pi f=\frac{2 \pi}{T}$
- wave speed $v=\lambda f=\frac{\omega}{k}$
- Group velocity: $v_{\text {group }}=\frac{d \omega}{d k}$ (this equation may be new to you)
- Waves on a string:
- $v=\sqrt{\frac{\mathrm{T}}{\mu}}$, where $T=$ tension and $\mu=$ linear mass density
- Reflected power $R=\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right)^{2}$ (this equation may be new to you)
- Electromagnetic waves:
- Spectrum of light (approximate boundaries):
- $10-400 \mathrm{~nm}=\mathrm{UV}$
- $400-700 \mathrm{~nm}=$ visible
- $700 \mathrm{~nm}-100 \mu \mathrm{~m}=\mathrm{IR}$
- Index of refraction, n
- speed of light in a material $=\frac{c}{n}$
- $n=\sqrt{\epsilon_{r}}$ where ϵ_{r} is the dielectric constant (sometimes symbol K), aka the "relative permittivity" (this fact may be new to you)
- Diffraction:
- 2 slit result: $d \sin \theta_{\text {bright }}=m \lambda$, where $d=$ distance between slits
- Bragg's Law: $2 d \sin \theta=m \lambda$, where $d=$ separation between crystal planes

Physics 220

- Electric fields
- Force from electric field: $\mathbf{F}=q \mathbf{E}$, where q is the charge (in coulombs) and E is the electric field
- Potential difference (in volts) $\Delta V=-\int_{\text {path }} \mathbf{E} \cdot d \boldsymbol{\ell}$, which means that $|E|=\frac{\Delta V}{d}$ in regions where electric field is constant
- Circuits
- Ohm's Law: $V=I R$, where I is the current and R is the resistance of the circuit element
- Resistance of an ohmic material $R=\frac{\rho \ell}{A}$, where $\rho=$ resistivity, ℓ is the length, and A is the cross-sectional area
- Magnetic fields:
- Lorentz force: $\mathbf{F}=q \mathbf{v} \times \mathbf{B}$, force on a moving charge; use right hand rule for direction
- Hall effect: transverse voltage when a current is passed through a perpendicular magnetic field
- Coulomb's Law:
- $\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \quad$ (field from a point charge located at origin; $\frac{1}{4 \pi \epsilon_{0}}$ also sometimes written as k_{e}, the Coulomb force constant)
- $U=\frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{r}$ (potential energy of interaction between two charges q and Q)
- Flux of a field through a surface: $\Phi=\int_{\text {surface }}($ Field $) \cdot d \mathbf{A}$
- Maxwell's equations in integral form
- Gauss's Law
- $\oint_{\text {closed }}^{\text {surface }} \mathbf{E} \cdot d \mathbf{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$ (electric flux is proportional to $q_{\text {enclosed }}$)
- Gauss's Law for magnetism
- $\oint_{\text {closed }} \mathbf{B} \cdot d \mathbf{A}=0$ (no point sources of magnetic flux; "no magnetic surface monopoles")
- Faraday's Law
- $\oint_{\substack{\text { closed } \\ \text { path }}} \mathbf{E} \cdot d \ell=-\frac{d \Phi_{B}}{d t} \quad$ (changing magnetic fields act as sources of electric fields)
- The left hand side is the induced voltage or EMF (electromotive force), so this is also written as induced EMF $=-\mathrm{d}($ magnetic flux $) / \mathrm{dt})$
- Ampere's Law, with Maxwell correction
- $\oint_{\substack{\text { closed } \\ \text { path }}} \mathbf{B} \cdot d \ell=\mu_{0} I_{\text {enclosed }}+\epsilon_{0} \mu_{0} \frac{d \Phi_{E}}{d t} \quad$ (currents act as sources of magnetic fields; so do changing electric fields)

Physics 222

- Photons
- photon momentum $p=\frac{h}{\lambda}$
- photon energy $E=h f=\hbar \omega=\frac{h c}{\lambda}=p c$
- Quantum mechanical wavefunctions:
- Schrödinger equation: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+U(x) \Psi=E \Psi$ (1D, time independent)
- $U(x)=$ potential energy function; Ψ and $E=$ the solutions to equation, namely the allowed wavefunctions and corresponding energies
- $\int_{x_{1}}^{x_{2}}|\Psi|^{2} d x=$ probability of finding particle between x_{1} and x_{2}
- $\int_{-\infty}^{\infty}|\Psi|^{2} d x=1$, normalization condition
- "Particle in a box" aka "infinite square well", where particle restricted to region between $x=0$ and $x=L$
- Wavefunctions: $\Psi_{n}=A \sin \left(\frac{n \pi x}{L}\right)$
- Energies: $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}=n^{2} E_{1}$

Math

- Complex numbers
- Complex numbers as points in the complex plane; polar \leftrightarrow rectangular conversion
- Euler's identity: $e^{i x}=\cos x+i \sin x$
- Basic calculus
- Basic derivatives
- Basic integrals
- Taylor series
- $f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+\left.\frac{d f}{d x}\right|_{x=x_{0}}(\Delta x)+\left.\frac{d^{2} f}{d x^{2}}\right|_{x=x_{0}} \frac{(\Delta x)^{2}}{2!}+\cdots$ (general formula)
- $(1+x)^{n} \approx 1+n x$ for small x (useful specific application)
- Fourier series, when $f(x)=$ periodic function with period L (x and L have units of meters)
- Fundamental frequency $k_{0}=\frac{2 \pi}{L}$ (this is called a "spatial frequency", units of m^{-1})
- Expansion in terms of multiples of the fundamental frequency:
- $f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n k_{0} x\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n k_{0} x\right)$
- Coefficients given by:
- $a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$, which is just the average value of the function f
- $a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(n k_{0} x\right) d x$
- $b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(n k_{0} x\right) d x$
- Exponential version of Fourier series
- $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{-i n k_{0} x}$
- $c_{n}=\frac{1}{L} \int_{0}^{L} f(x) e^{+i n k_{0} x} d x$
- Linear Algebra
- How to solve simultaneous equations via matrices; here's a 3 equation example where the $a_{i j}$'s and C 's are known numbers:

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=C_{1} \\
& a_{21} x+a_{22} y+a_{23} z=C_{2} \\
& a_{31} x+a_{32} y+a_{33} z=C_{3}
\end{aligned} \Rightarrow\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)^{-1}\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)
$$

- Determinants: how to calculate, what significance is $(\operatorname{det}(\mathbf{M})=0$ if and only if \mathbf{M} has no inverse)
- How to solve eigenvalue-type equations using determinants; here's a 3 equation example:

$$
\begin{aligned}
& \left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\lambda\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { a common type of equation, called an "eigenvalue equation" } \\
& \begin{array}{l}
a_{11} x+a_{12} y+a_{13} z=\lambda x \\
a_{21} x+a_{22} y+a_{23} z=\lambda y \\
a_{31} x+a_{32} y+a_{33} z=\lambda z
\end{array} \Rightarrow\left(\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \Rightarrow \operatorname{det}\left(\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right)=0
\end{aligned}
$$

The determinant $=0$ condition gives an algebraic equation for λ from which you can get the 3 allowed values but programs such as Mathematica and Mathematica will have functions to automatically find the eigenvalues of a matrix (i.e. solve the eigenvalue equation) without having to manually do the algebra.

- Multivariable Calculus
- Scalar and vector functions:
- Example: $f(x, y, z)=x^{2} y+\sin z$ is a scalar function of x, y, z.
- Example: $\mathbf{F}(x, y, z)=\left(x^{2} y+\sin z, x y z, 4\right)$ is a vector function of x, y, z. Equivalent statements are:
- $\mathbf{F}(x, y, z)=\left(x^{2} y+\sin z\right) \hat{\mathbf{x}}+x y z \hat{\mathbf{y}}+4 \hat{\mathbf{z}}$
- $F_{x}=x^{2} y+\sin z, F_{y}=x y z, F_{z}=4$
- Gradient of a scalar function: $\nabla f=\left(\frac{\partial f}{d x}, \frac{\partial f}{d y}, \frac{\partial f}{d z}\right)$, which is a vector function
- Divergence of a vector function: $\nabla \cdot \mathbf{F}=\frac{\partial F_{x}}{d x}+\frac{\partial F_{y}}{d y}+\frac{\partial F_{z}}{d z}$, which is a scalar function
- Curl of a vector function: $\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{x} & F_{y} & F_{z}\end{array}\right|$, which is a vector function
- Divergence theorem: $\oint_{\text {closed }}^{\text {surface }} \mathbf{F} \cdot d \mathbf{A}=\int_{\substack{\text { volume bounded } \\ \text { by the surface }}} \nabla \cdot \mathbf{F} d v$
- Stokes' theorem: $\begin{gathered}\oint_{\substack{\text { closed } \\ \text { path }}} \mathbf{F} \cdot d \boldsymbol{\ell}=\int_{\substack{\text { surface bounded } \\ \text { by the path }}}(\nabla \times \mathbf{F}) \cdot d \mathbf{A}, ~(\nabla)\end{gathered}$
- Both of those last two theorems are summarized like this: the integral of a function over a closed boundary can be obtained by adding up (integrating) a derivative over the region of space being bounded.

Computational Skills

- Know how to use a program such as Mathematica to do the following:
- Symbolic integrals
- Symbolic algebra, if desired
- Numeric integrals
- Numeric root finding, including finding the intersection of two functions
- Matrix inverses
- Matrix multiplication
- Matrix eigenvalues
- Plotting
- Know how to do basic programming in a language of your choice

