What You Should Already Know
by Dr. Colton, Physics 581 (last updated: Fall 2020)

Chemistry

- The Periodic Table: valence electrons, atomic mass
- Atomic orbitals: what s, p, d, and f refer to
- Spin degeneracy: two electrons in each orbital (spin up and spin down)
- Molar mass:
 - number of moles = \(\frac{m}{MM} \) ("\(MM \)" = molar mass; make sure units of \(m \) and \(MM \) agree)
 - number of atoms = number of moles \(\times N_A \) = \(\frac{m}{MM} \times N_A \), where \(N_A \) = Avogadro’s number
- Hydrogen atom energy levels: \(E_n = -\frac{13.6 \text{ eV}}{n^2} \); 13.6 eV is known as the Rydberg constant

Physics 121

- Vectors, typically symbolized by bold letters
 - How to add/subtract
 - How to do dot and cross products
 - Unit vector notation, e.g. \(\hat{\mathbf{x}} = (1,0,0) \), etc.
- Newton’s 2nd Law: \(\Sigma \mathbf{F} = m \mathbf{a} \)
- Energy, divided into…
 - Kinetic energy of object: \(KE = \frac{1}{2}mv^2 \)
 - Potential (for “conservative” forces), often symbol \(U \)
- Momentum of object: \(p = mv \)
- Connection between kinetic energy and momentum: \(KE = \frac{p^2}{2m} \)
- Springs
 - Force by spring: \(F = -kx \) (Hooke’s law; \(k \) is the “spring constant”)
 - Potential energy stored in spring: \(PE = \frac{1}{2}kx^2 \)
- SI Units: distance measured in meters, force in newtons, mass in kilograms, and energy in joules

Physics 123

- Thermodynamics:
 - \(R = \frac{k_B}{N_A} \) (relationship between universal gas constant \(R \), Boltzmann’s constant \(k_B \), and Avogadro’s number \(N_A \))
 - Heat, symbol \(Q \)
 - Heat transfer by thermal conduction: \(\frac{\Delta Q}{\Delta t} = \frac{k\Delta T}{l} \), where \(k \) = thermal conductivity
 - Specific heat \(c \) defined by: \(Q = mc\Delta T \)
 - Molar heat capacity \(C \) defined by: \(Q = nC\Delta T \)
- General wave properties:
 - What all of these parameters mean in the equations below: \(x, t, A, \lambda, f, T, v, k, \omega, \phi \)
 - Plane wave: \(f = A \cos(kx - \omega t + \phi) \leftrightarrow \) (complex representation) \(f = A e^{i(kx - \omega t + \phi)} \)
• Complex representation may be new to you; there’s an implied “take the real part” to both sides of the equation; it follows from Euler’s identity (see below).
 o How those parameters interrelate:
 • wavenumber $k = \frac{2\pi}{\lambda}$
 • angular frequency $\omega = 2\pi f = \frac{2\pi}{T}$
 • wave speed $v = \lambda f = \frac{\omega}{k}$
 o Group velocity: $v_{group} = \frac{d\omega}{dk}$ (this equation may be new to you)
 o Waves on a string:
 • $v = \sqrt{\frac{T}{\mu}}$, where $T =$ tension and $\mu =$ linear mass density
 • Reflected power $R = \left(\frac{v_2-v_1}{v_2+v_1}\right)^2$ (this equation may be new to you)
• Electromagnetic waves:
 o Spectrum of light (approximate boundaries):
 • 10 - 400 nm = UV
 • 400 - 700 nm = visible
 • 700 nm - 100 μm = IR
 o Index of refraction, n
 • speed of light in a material $= \frac{c}{n}$
 • $n = \sqrt{\epsilon_r}$, where ϵ_r is the dielectric constant (sometimes symbol K), aka the “relative permittivity” (this fact may be new to you)
• Diffraction:
 o 2 slit result: $d \sin \theta_{bright} = m\lambda$, where $d =$ distance between slits
 o Bragg’s Law: $2d \sin \theta = m\lambda$, where $d =$ separation between crystal planes

Physics 220
• Electric fields
 o Force from electric field: $F = qE$, where q is the charge (in coulombs) and E is the electric field
 o Potential difference (in volts) $\Delta V = -\int_{path} E \cdot d\ell$, which means that $|E| = \frac{\Delta V}{d}$ in regions where electric field is constant
• Circuits
 o Ohm’s Law: $V = IR$, where I is the current and R is the resistance of the circuit element
 o Resistance of an ohmic material $R = \frac{\rho \ell}{A}$, where $\rho =$ resistivity, ℓ is the length, and A is the cross-sectional area
• Magnetic fields:
 o Lorentz force: $F = qv \times B$, force on a moving charge; use right hand rule for direction
 o Hall effect: transverse voltage when a current is passed through a perpendicular magnetic field
• Coulomb’s Law:
 o $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$ (field from a point charge located at origin; $\frac{1}{4\pi\varepsilon_0}$ also sometimes written as k_e, the Coulomb force constant)
 o $U = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r}$ (potential energy of interaction between two charges q and Q)

What you should already know – pg 2
Flux of a field through a surface: \(\Phi = \int_{\text{surface}} (\text{Field}) \cdot dA \)

Maxwell’s equations in integral form
- Gauss’s Law
 \[\oint_{\text{closed surface}} \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \] (electric flux is proportional to \(q_{\text{enclosed}} \))
- Gauss’s Law for magnetism
 \[\oint_{\text{closed surface}} \mathbf{B} \cdot d\mathbf{A} = 0 \] (no point sources of magnetic flux; “no magnetic monopoles”)
- Faraday’s Law
 \[\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_B}{dt} \] (changing magnetic fields act as sources of electric fields)
- The left hand side is the induced voltage or EMF (electromotive force), so this is also written as induced EMF = –d(magnetic flux)/dt
- Ampere’s Law, with Maxwell correction
 \[\oint_{\text{closed path}} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enclosed}} + \varepsilon_0 \mu_0 \frac{d\Phi_B}{dt} \] (currents act as sources of magnetic fields; so do changing electric fields)

Physics 222
- Photons
 - photon momentum \(p = \frac{h}{\lambda} \)
 - photon energy \(E = hf = h\omega = \frac{hc}{\lambda} = pc \)
- Quantum mechanical wavefunctions:
 - Schrödinger equation: \(-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} + U(x)\Psi = E\Psi \) (1D, time independent)
 - \(U(x) \) = potential energy function; \(\Psi \) and \(E \) are the solutions to equation, namely the allowed wavefunctions and corresponding energies
 - \(\int_{x_1}^{x_2} |\Psi|^2 dx \) = probability of finding particle between \(x_1 \) and \(x_2 \)
 - \(\int_{-\infty}^{\infty} |\Psi|^2 dx = 1 \), normalization condition
- “Particle in a box” aka “infinite square well”, where particle restricted to region between \(x = 0 \) and \(x = L \)
 - Wavefunctions: \(\Psi_n = A \sin \left(\frac{n\pi x}{L} \right) \)
 - Energies: \(E_n = \frac{n^2\pi^2\hbar^2}{2mL^2} = n^2E_1 \)

Math
- Complex numbers
 - Complex numbers as points in the complex plane; polar ↔ rectangular conversion
 - Euler’s identity: \(e^{ix} = \cos x + i \sin x \)
- Basic calculus
 - Basic derivatives
 - Basic integrals

What you should already know – pg 3
Taylor series

\[f(x_0 + \Delta x) = f(x_0) + \frac{df}{dx}\bigg|_{x=x_0}(\Delta x) + \frac{d^2f}{dx^2}\bigg|_{x=x_0}\frac{(\Delta x)^2}{2!} + \cdots \]
(general formula)

\((1 + x)^n \approx 1 + nx\) for small \(x\) (useful specific application)

- Fourier series, when \(f(x)\) = periodic function with period \(L\) (\(x\) and \(L\) have units of meters)
 - Fundamental frequency \(k_0 = \frac{2\pi}{L}\) (this is called a “spatial frequency”, units of \(m^{-1}\))
 - Expansion in terms of multiples of the fundamental frequency:
 \[f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nk_0x) + \sum_{n=1}^{\infty} b_n \sin(nk_0x) \]
 Coefficients given by:
 \[a_0 = \frac{1}{L} \int_{0}^{L} f(x) \, dx, \text{ which is just the average value of the function} \]
 \[a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(nk_0x) \, dx \]
 \[b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin(nk_0x) \, dx \]

 - Exponential version of Fourier series
 \[f(x) = \sum_{n=-\infty}^{\infty} c_n e^{-ink_0x} \]
 \[c_n = \frac{1}{L} \int_{0}^{L} f(x) e^{+ink_0x} \, dx \]

- Linear Algebra
 - How to solve simultaneous equations via matrices; here’s a 3 equation example where the \(a_{ij}\)’s and \(C\)’s are known numbers:
 \[
 \begin{align*}
 a_{11}x + a_{12}y + a_{13}z &= C_1 \\
 a_{21}x + a_{22}y + a_{23}z &= C_2 \\
 a_{31}x + a_{32}y + a_{33}z &= C_3
 \end{align*}
 \Rightarrow
 \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix}
 =
 \begin{pmatrix}
 C_1 \\
 C_2 \\
 C_3
 \end{pmatrix}
 \Rightarrow
 \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix}
 =
 \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{pmatrix}^{-1}
 \begin{pmatrix}
 C_1 \\
 C_2 \\
 C_3
 \end{pmatrix}
 \]
 - Determinants: how to calculate, what significance is \((\det(M) = 0\) if and only if \(M\) has no inverse\)
 - How to solve eigenvalue-type equations using determinants; here’s a 3 equation example:
 \[
 \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix}
 = \lambda \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix}
 \text{ a common type of equation, called an “eigenvalue equation”}
 \]
 \[
 \begin{pmatrix}
 a_{11} - \lambda & a_{12} & a_{13} \\
 a_{21} & a_{22} - \lambda & a_{23} \\
 a_{31} & a_{32} & a_{33} - \lambda
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix}
 = 0
 \Rightarrow
 \det
 \begin{pmatrix}
 a_{11} - \lambda & a_{12} & a_{13} \\
 a_{21} & a_{22} - \lambda & a_{23} \\
 a_{31} & a_{32} & a_{33} - \lambda
 \end{pmatrix}
 = 0
 \]
 The determinant = 0 condition gives an algebraic equation for \(\lambda\) from which you can get the 3 allowed values but programs such as Mathematica and Matlab will have functions to automatically find the eigenvalues of a matrix (i.e. solve the eigenvalue equation) without having to manually do the algebra.

- Multivariable Calculus
 - Scalar and vector functions:
 - Example: \(f(x, y, z) = x^2y + \sin z\) is a scalar function of \(x, y, z\).
 - Example: \(F(x, y, z) = (x^2y + \sin z, xyz, 4)\) is a vector function of \(x, y, z\).
 Equivalent statements are:
 - \(F(x, y, z) = (x^2y + \sin z)\hat{x} + xyz\hat{y} + 4\hat{z}\)
 - \(F_x = x^2y + \sin z, F_y = xyz, F_z = 4\)
Grad of a scalar function: \(\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \), which is a vector function.

Divergence of a vector function: \(\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \), which is a scalar function.

Curl of a vector function: \(\nabla \times \mathbf{F} = \left| \begin{array}{ccc} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{array} \right| \), which is a vector function.

Divergence theorem: \(\oint_{\text{closed}} \mathbf{F} \cdot d\mathbf{A} = \int_{\text{volume bounded}} \nabla \cdot F \, dV \)

Stokes' theorem: \(\oint_{\text{closed}} \mathbf{F} \cdot d\mathbf{l} = \int_{\text{surface bounded by the path}} (\nabla \times \mathbf{F}) \cdot d\mathbf{A} \)

Both of those last two theorems are summarized like this: the integral of a function over a closed boundary can be obtained by adding up (integrating) a derivative over the region of space being bounded.

Computational Skills

- Know how to use a program such as Mathematica to do the following:
 - Symbolic integrals
 - Symbolic algebra, if desired
 - Numeric integrals
 - Numeric root finding, including finding the intersection of two functions
 - Matrix inverses
 - Matrix multiplication
 - Matrix eigenvalues
 - Plotting

- Know how to do basic programming in a language of your choice