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The Central Equation 
by Dr. Colton, Physics 581 (last updated: Fall 2020) 

 
This is the Central Equation: 
 

ሺ𝜆௞ െ 𝐸ሻ𝐶𝐤 ൅෍𝑈𝐆𝐶𝐤ି𝐆
𝐆

ൌ 0 

 
It’s a set of equations, one for each 𝐤, which basically represent a Fourier transform of the Schroedinger 
equation.  

 The 𝐆 vectors are the reciprocal lattice vectors, or RLVs for short. 
 The 𝑈𝐆 terms are the Fourier components of the potential energy, 𝑈ሺ𝐫ሻ. Remember from Chapter 

2 that the 3D Fourier transform of a periodic function results in a summation over the reciprocal 
lattice vectors, 𝑈ሺ𝐫ሻ ൌ ∑ 𝑈𝐆𝑒௜𝐆⋅𝐫𝐆 .  

 The 𝐶𝐤 terms are the expansion coefficients of the wave function 𝜓 written as a Fourier series of 
plane waves, 𝜓ሺ𝐫ሻ ൌ ∑ 𝐶𝐤𝑒௜𝐤⋅𝐫𝐤 .  

 𝜆௞ ൌ
ℏమ௞మ

ଶ௠
 represents the free particle energy corresponding to a given momentum 𝑘.    

 
Here’s a recipe for how to use the Central Equation to solve for allowed energies, given a periodic 
potential energy function 𝑈ሺ𝐫ሻ. 
 

1) Decide on an appropriate level in which to truncate the summation over the RLVs; in the example 
below we use 14 𝐆 values.  

2) Calculate the Fourier coefficients of 𝑈, the 𝑈𝐆 values, for the 𝐆’s decided on in step 1. 
3) Pick a particular 𝐤 value you’re interested in. 
4) Figure out which other 𝐤 values are connected to your particular 𝐤 via your chosen set of 𝐆’s. 

The ones that couple to 𝐤 are 𝐤 െ 𝐆ଵ, 𝐤 െ 𝐆ଶ, etc. Those form a set of 𝐤 values. Similarly 𝐶𝐤, 
𝐶𝐤ି𝐆𝟏, 𝐶𝐤ି𝐆𝟐 , etc., form a set of expansion coefficients you’ll be working with.  

5) Write down the Central Equation for each of the 𝐤’s in your set: your 𝐤 plus each of the 
connected 𝐤’s. There will be a lot of 𝐶𝐤-type expansion coefficients in the equations, some of 
which are 𝐶𝐤 for your particular 𝐤 of interest; others of which are coefficients for different 𝐤’s. 

6) Throw out all of the 𝐶𝐤’s that go beyond your chosen set of 𝐤 values. You’ll be left with, say, five 
equations and five unknowns (the number depends on your choice in step 2). The unknowns are 
the 𝐶𝐤 coefficients for your particular 𝐤 and for all of the connected 𝐤’s which remain.  

7) Set up an eigenvalue-style matrix equation which you can use to solve for the energies, e.g. five 
different 𝐸 values which are the energies for the first five bands at your chosen 𝐤.  

 
Compare this to how you might calculate the Madelung constant for an arbitrary crystal type: you would 
set up an infinite summation, but then cut it off at a certain point in real space and say that further 
distances don’t matter.  Here we are cutting off an infinite summation at a certain point in reciprocal 
space, and are saying that further spatial frequencies don’t matter. 
 
How to use that recipe is best shown via an example. This particular example is an actual final exam 
question from when I took this class, and very likely uses more terms in the summation than I would ever 
require you to keep.  
 
Example: Apply the Central Equation to GaAs to solve for the energies at 𝑘 ൌ ሺ0,0,0ሻ. Only use RLVs 

with magnitude |𝐺| ൑
ସగ

௔
. Work out the equations to the level that you could solve for the energies were 

you to be given the 𝑈ሺ𝑥ሻ function.  
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Step 1: 

The problem says to consider all of the 𝐆’s with |𝐺| ൑
ସగ

௔
. To figure those out, I need to consider the 

lattice type. GaAs has an fcc lattice, so I’ll look up the primitive RLVs in chapter 2: 
 

𝐛ଵ ൌ
2𝜋
𝑎
ሺെ1,1,1ሻ 

𝐛ଶ ൌ
2𝜋
𝑎
ሺ1,െ1,1ሻ 

𝐛ଷ ൌ
2𝜋
𝑎
ሺ1,1,െ1ሻ 

 
A general RLV is given by a linear combination of the primitive RLVs: 
 

𝐆௛௞௟ ൌ ℎ𝐛ଵ ൅ 𝑘𝐛ଶ ൅ 𝑙𝐛ଷ 
 
I’m labeling the RLVs with ℎ𝑘𝑙 subscripts so we can tell them apart. Plugging in the primitive RLV 
formulas, we have: 
 

𝐆௛௞௟ ൌ ℎ
2𝜋
𝑎
ሺെ1,1,1ሻ ൅ 𝑘

2𝜋
𝑎
ሺ1,െ1,1ሻ ൅ 𝑙

2𝜋
𝑎
ሺ1,1,െ1ሻ 

𝐆௛௞௟ ൌ
2𝜋
𝑎
ሺെℎ ൅ 𝑘 ൅ 𝑙, ℎ െ 𝑘 ൅ 𝑙, ℎ ൅ 𝑘 െ 𝑙ሻ 

 

With a little bit of experimenting, I can tell that there are 14 𝐆’s which have magnitude ൑
ସగ

௔
. Using the 

notation that a negative sign is indicated by a bar over a number, they are: 
 

𝐺ଵ଴଴ ൌ
2𝜋
𝑎
ሺെ1 ൅ 0 ൅ 0, 1 െ 0 ൅ 0, 1 ൅ 0 െ 0ሻ ൌ

2𝜋
𝑎
ሺെ1,1,1ሻ 

𝐺଴ଵ଴ ൌ
2𝜋
𝑎
ሺ0 ൅ 1 ൅ 0, 0 െ 1 ൅ 0, 0 ൅ 1 െ 0ሻ ൌ

2𝜋
𝑎
ሺ1,െ1,1ሻ 

𝐺଴଴ଵ ൌ
2𝜋
𝑎
ሺ0 ൅ 0 ൅ 1, 0 െ 0 ൅ 1, 0 ൅ 0 െ 1ሻ ൌ

2𝜋
𝑎
ሺ1,1,െ1ሻ 

𝐺ଵഥ଴଴ ൌ
2𝜋
𝑎
ሺ1 ൅ 0 ൅ 0,െ1 െ 0 ൅ 0,െ1 ൅ 0 െ 0ሻ ൌ

2𝜋
𝑎
ሺ1,െ1,െ1ሻ 

𝐺଴ଵഥ଴ ൌ
2𝜋
𝑎
ሺ0 െ 1 ൅ 0, 0 ൅ 1 ൅ 0, 0 െ 1 െ 0ሻ ൌ

2𝜋
𝑎
ሺെ1,1,െ1ሻ 

 
(skipping some work now) 

𝐺଴଴ଵഥ ൌ
2𝜋
𝑎
ሺെ1,െ1,1ሻ 

𝐺ଵଵଵ ൌ
2𝜋
𝑎
ሺ1,1,1ሻ 

𝐺ଵഥଵഥଵഥ ൌ
2𝜋
𝑎
ሺെ1,െ1,െ1ሻ 

𝐺଴ଵଵ ൌ
2𝜋
𝑎
ሺ2,0,0ሻ 

𝐺ଵ଴ଵ ൌ
2𝜋
𝑎
ሺ0,2,0ሻ 
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𝐺ଵଵ଴ ൌ
2𝜋
𝑎
ሺ0,0,2ሻ 

𝐺଴ଵഥଵഥ ൌ
2𝜋
𝑎
ሺെ2,0,0ሻ 

𝐺ଵഥ଴ଵഥ ൌ
2𝜋
𝑎
ሺ0,െ2,0ሻ 

𝐺ଵഥଵഥ଴ ൌ
2𝜋
𝑎
ሺ0,0,െ2ሻ 

 

The first eight have magnitudes of 
ଶగ

௔
√3.  The other six have magnitudes of 

ସగ

௔
. 

 
Another, possibly better, way of thinking about these 14 𝐆 values is that they are the 14 points on the bcc 
lattice which is reciprocal to the GaAs fcc lattice, which points are closest to the origin: the eight centered 
atoms of the eight cubes surrounding the origin, plus the six closest points along the േ𝑥,േ𝑦,േ𝑧 
directions. All other RLVs have magnitudes larger than the specified cutoff.  
 
Step 2  
We aren’t given the details of 𝑈ሺ𝐫ሻ so we can’t calculate the Fourier coefficients, 𝑈𝐆. We’ll just assume 
that we could do that if we had the details. I will index the Fourier coefficients with ℎ𝑘𝑙 like I’m doing for 
the 𝐆 vectors, and will refer to them as 𝑈ଵ଴଴, 𝑈଴ଵ଴, etc. 
 
Step 3: 
The specified 𝐤 value is ሺ0,0,0ሻ. 
 
Step 4: 
The set of 𝐤 values is obtained doing the operation ሺ0,0,0ሻ െ 𝐆 for each of the 14 𝐆 values (plus keeping 
ሺ0,0,0ሻ itself). They are summarized in the right hand column of this table, with the left hand column 
values indicating which 𝐆 vector gave rise to the 𝐤 value via the 𝐤 െ 𝐆 operation. 
 

𝐆 Set of 𝐤’s obtained 
from ሺ0,0,0ሻ െ 𝐆 

n/a ሺ0,0,0ሻ 
𝐺ଵ଴଴ 2𝜋

𝑎
ሺ1,െ1,െ1ሻ 

𝐺଴ଵ଴ 2𝜋
𝑎
ሺെ1,1,െ1ሻ 

𝐺଴଴ଵ 2𝜋
𝑎
ሺെ1,െ1,1ሻ 

𝐺ଵഥ଴଴ 2𝜋
𝑎
ሺെ1,1,1ሻ 

𝐺଴ଵഥ଴ 2𝜋
𝑎
ሺ1,െ1,1ሻ 

𝐺଴଴ଵഥ 2𝜋
𝑎
ሺ1,1,െ1ሻ 

𝐺ଵଵଵ 2𝜋
𝑎
ሺെ1,െ1,െ1ሻ 

𝐺ଵഥଵഥଵഥ 2𝜋
𝑎
ሺ1,1,1ሻ 

𝐺଴ଵଵ 2𝜋
𝑎
ሺെ2,0,0ሻ 

𝐺ଵ଴ଵ 2𝜋
𝑎
ሺ0,െ2,0ሻ 

𝐺ଵଵ଴ 2𝜋
𝑎
ሺ0,0,െ2ሻ 

𝐺଴ଵഥଵഥ 2𝜋
𝑎
ሺ2,0,0ሻ 

𝐺ଵഥ଴ଵഥ 2𝜋
𝑎
ሺ0,2,0ሻ 

𝐺ଵഥଵഥ଴ 2𝜋
𝑎
ሺ0,0,2ሻ 

 
 
The set of expansion coefficients can be written as 𝐶ሺ଴,଴,଴ሻ,𝐶మഏ

ೌ
ሺଵ,ିଵ,ିଵሻ,𝐶మഏ

ೌ
ሺିଵ,ଵ,ିଵሻ, etc. 

 
Step 5:  
Here’s the Central Equation again:  

ሺ𝜆௞ െ 𝐸ሻ𝐶𝐤 ൅෍𝑈𝐆𝐶𝐤ି𝐆
𝐆

ൌ 0 
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Notice that there are actually only two different values of 𝜆௞ for our situation: the first 𝑘 value in the set 

has 𝜆௞ ൌ 0, then the next eight all have 𝜆௞ ൌ
ℏమ

ଶ௠

ଵଶగమ

௔మ
, which I will call 𝜆ଵ, and the final six all have 𝜆௞ ൌ

ℏమ

ଶ௠

ଵ଺గమ

௔మ
, which I will call 𝜆ଶ. 

 
I now need to write out 15 equations! One equation for each of the 𝐤 values in my set. 
 
For 𝑘 ൌ ሺ0,0,0ሻ: 
 

ሺ0 െ 𝐸ሻ𝐶ሺ଴,଴,଴ሻ ൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

൅ ሾ12 more termsሿ ൌ 0 

െ𝐸𝐶ሺ଴,଴,଴ሻ ൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

൅ ሾ12 more termsሿ ൌ 0 

 

For 𝑘 ൌ
ଶగ

௔
ሺ1,െ1,െ1ሻ: 

ሺ𝜆ଵ െ 𝐸ሻ𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻି

ଶగ
௔ ሺିଵ,ଵ,ଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

మഏ
ೌ ሺమ,షమ,షమሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻି

ଶగ
௔ ሺଵ,ିଵ,ଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

మഏ
ೌ ሺబ,బ,షమሻ

൅ ሾ12 more termsሿ ൌ 0 

ሺ𝜆ଵ െ 𝐸ሻ𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺଶ,ିଶ,଴ሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺ଴,଴,ିଶሻ

൅ ሾ12 more termsሿ ൌ 0 

 

For 𝑘 ൌ
ଶగ

௔
ሺെ1,1,െ1ሻ: 

ሺ𝜆ଵ െ 𝐸ሻ𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻି

ଶగ
௔ ሺିଵ,ଵ,ଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

మഏ
ೌ ሺబ,బ,షమሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻି

ଶగ
௔ ሺଵ,ିଵ,ଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

మഏ
ೌ ሺషమ.మ.షమሻ

൅ ሾ12 more termsሿ ൌ 0 

ሺ𝜆ଵ െ 𝐸ሻ𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺ଴,଴,ିଶሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺିଶ.ଶ.ିଶሻ

൅ ሾ12 more termsሿ ൌ 0 

 
ሾPlus 12 more equations, the last six of which have λଶ′s in them. ሿ  
 
Step 6:  
Throw out all of the terms that have coefficients corresponding to 𝐤’s outside of our set. For example, the 
second equation contains 𝐶మഏ

ೌ
ሺଶ,ିଶ,଴ሻ and the third equation has 𝐶మഏ

ೌ
ሺିଶ.ଶ.ିଶሻ. 

 
The 15 equations become 
 

െ𝐸𝐶ሺ଴,଴,଴ሻ ൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

൅ ⋯ ൌ 0 

ሺ𝜆ଵ െ 𝐸ሻ𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

൅ 𝑈଴ଵ଴𝐶ଶగ
௔ ሺ଴,଴,ିଶሻ

൅ ⋯ ൌ 0 

ሺ𝜆ଵ െ 𝐸ሻ𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

൅ 𝑈ଵ଴଴𝐶ଶగ
௔ ሺ଴,଴,ିଶሻ

൅ ⋯ ൌ 0 

ሾPlus 12 more equations, the last six of which have λଶ′s in them. ሿ 
 
There are now 15 equations and only 15 unknowns. 
 
Step 7: 
The set of equations can be written as a matrix equation as: 
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⎝

⎜
⎛

െ𝐸 𝑈ଵ଴଴ 𝑈଴ଵ଴ … 𝑈ଵഥଵഥ଴
… 𝜆ଵ െ 𝐸

𝜆ଵ െ 𝐸
…

… … 𝜆ଶ െ 𝐸⎠

⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝐶ሺ଴,଴,଴ሻ

𝐶ଶగ
௔ ሺଵ,ିଵ,ିଵሻ

𝐶ଶగ
௔ ሺିଵ,ଵ,ିଵሻ

…
𝐶ଶగ
௔ ሺ଴,଴,ଶሻ ⎠

⎟
⎟
⎟
⎞
ൌ 0 

 
For brevity I’ll refrain from writing down very many matrix elements, but the on-diagonal elements of the 
matrix end up being the 𝜆௞ െ 𝐸 values where lambda is the energy for the matching 𝐶௞ of the row.  The 
ሺ𝑖, 𝑗ሻ off-diagonal elements end up being the 𝑈𝐆 Fourier components where 𝐆 is the reciprocal lattice 
vector connecting the 𝑖௧௛ 𝐤-value in your set to the 𝑗௧௛ 𝐤-value. 
 
You can solve for the allowed energies by setting the determinant of the matrix equal to 0. Or you can use 
an eigenvalue solver by noticing that the allowed energies are the eigenvalues of this matrix: 
 

⎝

⎜
⎛

0 𝑈ଵ଴଴ 𝑈଴ଵ଴ … 𝑈ଵഥଵഥ଴
… 𝜆ଵ

𝜆ଵ
…

… … 𝜆ଶ ⎠

⎟
⎞

 

 
The eigenvectors are vectors comprised of the 𝐶𝐤 coefficients, that tell you how the wave functions at 
those particular energy states are made up of plane waves. A large coefficient for 𝐶మഏ

ೌ
ሺଵ,ିଵ,ିଵሻ, for 

example, means that particular energy state has a lot of 𝑒௜
మഏ
ೌ
ሺଵ,ିଵ,ିଵሻ⋅𝐫 character to it.  


