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The Central Equation 
by Dr. Colton, Physics 581 (last updated: Fall 2020) 

 
This is the Central Equation: 
 

𝜆 𝐸 𝐶𝐤 𝑈𝐆𝐶𝐤 𝐆

𝐆

0 

 
It’s a set of equations, one for each 𝐤, which basically represent a Fourier transform of the Schroedinger 
equation.  

 The 𝐆 vectors are the reciprocal lattice vectors, or RLVs for short. 
 The 𝑈𝐆 terms are the Fourier components of the potential energy, 𝑈 𝐫 . Remember from Chapter 

2 that the 3D Fourier transform of a periodic function results in a summation over the reciprocal 
lattice vectors, 𝑈 𝐫 ∑ 𝑈𝐆𝑒 𝐆⋅𝐫

𝐆 .  
 The 𝐶𝐤 terms are the expansion coefficients of the wave function 𝜓 written as a Fourier series of 

plane waves, 𝜓 𝐫 ∑ 𝐶𝐤𝑒 𝐤⋅𝐫
𝐤 .  

 𝜆
ℏ

 represents the free particle energy corresponding to a given momentum 𝑘.    

 
Here’s a recipe for how to use the Central Equation to solve for allowed energies, given a periodic 
potential energy function 𝑈 𝐫 . 
 

1) Decide on an appropriate level in which to truncate the summation over the RLVs; in the example 
below we use 14 𝐆 values.  

2) Calculate the Fourier coefficients of 𝑈, the 𝑈𝐆 values, for the 𝐆’s decided on in step 1. 
3) Pick a particular 𝐤 value you’re interested in. 
4) Figure out which other 𝐤 values are connected to your particular 𝐤 via your chosen set of 𝐆’s. 

The ones that couple to 𝐤 are 𝐤 𝐆 , 𝐤 𝐆 , etc. Those form a set of 𝐤 values. Similarly 𝐶𝐤, 
𝐶𝐤 𝐆𝟏, 𝐶𝐤 𝐆𝟐 , etc., form a set of expansion coefficients you’ll be working with.  

5) Write down the Central Equation for each of the 𝐤’s in your set: your 𝐤 plus each of the 
connected 𝐤’s. There will be a lot of 𝐶𝐤-type expansion coefficients in the equations, some of 
which are 𝐶𝐤 for your particular 𝐤 of interest; others of which are coefficients for different 𝐤’s. 

6) Throw out all of the 𝐶𝐤’s that go beyond your chosen set of 𝐤 values. You’ll be left with, say, five 
equations and five unknowns (the number depends on your choice in step 2). The unknowns are 
the 𝐶𝐤 coefficients for your particular 𝐤 and for all of the connected 𝐤’s which remain.  

7) Set up an eigenvalue-style matrix equation which you can use to solve for the energies, e.g. five 
different 𝐸 values which are the energies for the first five bands at your chosen 𝐤.  

 
Compare this to how you might calculate the Madelung constant for an arbitrary crystal type: you would 
set up an infinite summation, but then cut it off at a certain point in real space and say that further 
distances don’t matter.  Here we are cutting off an infinite summation at a certain point in reciprocal 
space, and are saying that further spatial frequencies don’t matter. 
 
How to use that recipe is best shown via an example. This particular example is an actual final exam 
question from when I took this class, and very likely uses more terms in the summation than I would ever 
require you to keep.  
 
Example: Apply the Central Equation to GaAs to solve for the energies at 𝑘 0,0,0 . Only use RLVs 

with magnitude |𝐺| . Work out the equations to the level that you could solve for the energies were 

you to be given the 𝑈 𝑥  function.  
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Step 1: 

The problem says to consider all of the 𝐆’s with |𝐺| . To figure those out, I need to consider the 

lattice type. GaAs has an fcc lattice, so I’ll look up the primitive RLVs in chapter 2: 
 

𝐛
2𝜋
𝑎

1,1,1  

𝐛
2𝜋
𝑎

1, 1,1  

𝐛
2𝜋
𝑎

1,1, 1  

 
A general RLV is given by a linear combination of the primitive RLVs: 
 

𝐆 ℎ𝐛 𝑘𝐛 𝑙𝐛  
 
I’m labeling the RLVs with ℎ𝑘𝑙 subscripts so we can tell them apart. Plugging in the primitive RLV 
formulas, we have: 
 

𝐆 ℎ
2𝜋
𝑎

1,1,1 𝑘
2𝜋
𝑎

1, 1,1 𝑙
2𝜋
𝑎

1,1, 1  

𝐆
2𝜋
𝑎

ℎ 𝑘 𝑙, ℎ 𝑘 𝑙, ℎ 𝑘 𝑙  

 

With a little bit of experimenting, I can tell that there are 14 𝐆’s which have magnitude . Using the 

notation that a negative sign is indicated by a bar over a number, they are: 
 

𝐺
2𝜋
𝑎

1 0 0, 1 0 0, 1 0 0
2𝜋
𝑎

1,1,1  

𝐺
2𝜋
𝑎

0 1 0, 0 1 0, 0 1 0
2𝜋
𝑎

1, 1,1  

𝐺
2𝜋
𝑎

0 0 1, 0 0 1, 0 0 1
2𝜋
𝑎

1,1, 1  

𝐺
2𝜋
𝑎

1 0 0, 1 0 0, 1 0 0
2𝜋
𝑎

1, 1, 1  

𝐺
2𝜋
𝑎

0 1 0, 0 1 0, 0 1 0
2𝜋
𝑎

1,1, 1  

 
(skipping some work now) 

𝐺
2𝜋
𝑎

1, 1,1  

𝐺
2𝜋
𝑎

1,1,1  

𝐺
2𝜋
𝑎

1, 1, 1  

𝐺
2𝜋
𝑎

2,0,0  

𝐺
2𝜋
𝑎

0,2,0  
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𝐺
2𝜋
𝑎

0,0,2  

𝐺
2𝜋
𝑎

2,0,0  

𝐺
2𝜋
𝑎

0, 2,0  

𝐺
2𝜋
𝑎

0,0, 2  

 

The first eight have magnitudes of √3.  The other six have magnitudes of . 

 
Another, possibly better, way of thinking about these 14 𝐆 values is that they are the 14 points on the bcc 
lattice which is reciprocal to the GaAs fcc lattice, which points are closest to the origin: the eight centered 
atoms of the eight cubes surrounding the origin, plus the six closest points along the 𝑥, 𝑦, 𝑧 
directions. All other RLVs have magnitudes larger than the specified cutoff.  
 
Step 2  
We aren’t given the details of 𝑈 𝐫  so we can’t calculate the Fourier coefficients, 𝑈𝐆. We’ll just assume 
that we could do that if we had the details. I will index the Fourier coefficients with ℎ𝑘𝑙 like I’m doing for 
the 𝐆 vectors, and will refer to them as 𝑈 , 𝑈 , etc. 
 
Step 3: 
The specified 𝐤 value is 0,0,0 . 
 
Step 4: 
The set of 𝐤 values is obtained doing the operation 0,0,0 𝐆 for each of the 14 𝐆 values (plus keeping 
0,0,0  itself). They are summarized in the right hand column of this table, with the left hand column 

values indicating which 𝐆 vector gave rise to the 𝐤 value via the 𝐤 𝐆 operation. 
 

𝐆 Set of 𝐤’s obtained 
from 0,0,0 𝐆 

n/a 0,0,0  
𝐺  2𝜋

𝑎
1, 1, 1  

𝐺  2𝜋
𝑎

1,1, 1  

𝐺  2𝜋
𝑎

1, 1,1  

𝐺  2𝜋
𝑎

1,1,1  

𝐺  2𝜋
𝑎

1, 1,1  

𝐺  2𝜋
𝑎

1,1, 1  

𝐺  2𝜋
𝑎

1, 1, 1  

𝐺  2𝜋
𝑎

1,1,1  

𝐺  2𝜋
𝑎

2,0,0  

𝐺  2𝜋
𝑎

0, 2,0  

𝐺  2𝜋
𝑎

0,0, 2  

𝐺  2𝜋
𝑎

2,0,0  

𝐺  2𝜋
𝑎

0,2,0  

𝐺  2𝜋
𝑎

0,0,2  

 
 
The set of expansion coefficients can be written as 𝐶 , , ,𝐶 , , ,𝐶 , , , etc. 

 
Step 5:  
Here’s the Central Equation again:  

𝜆 𝐸 𝐶𝐤 𝑈𝐆𝐶𝐤 𝐆

𝐆

0 
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Notice that there are actually only two different values of 𝜆  for our situation: the first 𝑘 value in the set 

has 𝜆 0, then the next eight all have 𝜆
ℏ

, which I will call 𝜆 , and the final six all have 𝜆
ℏ

, which I will call 𝜆 . 

 
I now need to write out 15 equations! One equation for each of the 𝐤 values in my set. 
 
For 𝑘 0,0,0 : 
 

0 𝐸 𝐶 , , 𝑈 𝐶
, ,

𝑈 𝐶
, ,

12 more terms 0 

𝐸𝐶 , , 𝑈 𝐶
, ,

𝑈 𝐶
, ,

12 more terms 0 

 

For 𝑘 1, 1, 1 : 

𝜆 𝐸 𝐶
, ,

𝑈 𝐶
, , , ,

, ,

𝑈 𝐶
, , , ,

, ,

12 more terms 0 

𝜆 𝐸 𝐶
, ,

𝑈 𝐶
, ,

𝑈 𝐶
, ,

12 more terms 0 

 

For 𝑘 1,1, 1 : 

𝜆 𝐸 𝐶
, ,

𝑈 𝐶
, , , ,

, ,

𝑈 𝐶
, , , ,

. .

12 more terms 0 

𝜆 𝐸 𝐶
, ,

𝑈 𝐶
, ,

𝑈 𝐶
. .

12 more terms 0 

 
Plus 12 more equations, the last six of which have λ ′s in them.   

 
Step 6:  
Throw out all of the terms that have coefficients corresponding to 𝐤’s outside of our set. For example, the 
second equation contains 𝐶 , ,  and the third equation has 𝐶 . . . 

 
The 15 equations become 
 

𝐸𝐶 , , 𝑈 𝐶
, ,

𝑈 𝐶
, ,

⋯ 0 

𝜆 𝐸 𝐶
, ,

𝑈 𝐶
, ,

⋯ 0 

𝜆 𝐸 𝐶
, ,

𝑈 𝐶
, ,

⋯ 0 

Plus 12 more equations, the last six of which have λ ′s in them.  
 
There are now 15 equations and only 15 unknowns. 
 
Step 7: 
The set of equations can be written as a matrix equation as: 
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⎝

⎜
⎛

𝐸 𝑈 𝑈 … 𝑈
… 𝜆 𝐸

𝜆 𝐸
…

… … 𝜆 𝐸⎠

⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝐶 , ,

𝐶
, ,

𝐶
, ,

…
𝐶

, , ⎠

⎟
⎟
⎟
⎞

0 

 
For brevity I’ll refrain from writing down very many matrix elements, but the on-diagonal elements of the 
matrix end up being the 𝜆 𝐸 values where lambda is the energy for the matching 𝐶  of the row.  The 
𝑖, 𝑗  off-diagonal elements end up being the 𝑈𝐆 Fourier components where 𝐆 is the reciprocal lattice 

vector connecting the 𝑖  𝐤-value in your set to the 𝑗  𝐤-value. 
 
You can solve for the allowed energies by setting the determinant of the matrix equal to 0. Or you can use 
an eigenvalue solver by noticing that the allowed energies are the eigenvalues of this matrix: 
 

⎝

⎜
⎛

0 𝑈 𝑈 … 𝑈
… 𝜆

𝜆
…

… … 𝜆 ⎠

⎟
⎞

 

 
The eigenvectors are vectors comprised of the 𝐶𝐤 coefficients, that tell you how the wave functions at 
those particular energy states are made up of plane waves. A large coefficient for 𝐶 , , , for 

example, means that particular energy state has a lot of 𝑒 , , ⋅𝐫 character to it.  


