Determining n(T) for Extrinsic Materials
by Dr. Colton, Physics 581 (last updated: Fall 2020)

Intrinsic reminder
As a reminder, for intrinsic materials we were able to deduce the number of electrons in the conduction

band as a function of temperature, n(T) for a given material (with a given band gap), by writing these
equations for n and p, and using the equation n = p to connect the two.

3/2
n= (mekT) o= Ecmi)/kT
2mh?

3/2
p = 2 (Zlh::) e_(“_Ev)/kT
T

n =p (intrinsic condition)

Those were the three governing equations for the intrinsic case. E, and E,, are the conduction and valence
band energies, respectively.

None of the equations individually gives enough information to solve for n(T), because we don’t know
how u varies with temperature (at least, we didn’t at first). However, multiplying the first two equations
together allows us to determine n(T) by recognizing that np = n? is true, from the intrinsic condition. As
an added bonus, we could also determine u(T) by equating the first two equations and solving for .

Alternatively, we could have first determined the equation for u(7T), and then plugged that back into the n
equation. That would have led to the same result for n(T) that we obtained by multiplying n and p
together. We’ll take that second approach for extrinsic (doped) materials: first find u, then plug that value
of u into the equation for n, to find n.

Governing equations for extrinsic materials
Let’s now consider an n-type doped material; hopefully the extrapolation to a p-type material will be clear

should you ever need to do that. For an n-type material, the above equations for n and p are still the
1
same,

3/2
n= (mekT) e_(Ec_#)/kT
2mh?

3/2
p=2 (T;lh:z') e_(H_Ev)/kT
s

but the equation connecting the two is now different:

n=p+ Nj (extrinsic condition)

! This is actually an approximation, since technically in deriving the earlier equations for n and p we had to make a
small temperature approximation which may or may not exactly apply now. But we’ll ignore that, since everyone
else does, and the resulting equations work well.
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Here N is the concentration of ionized donors, i.e. the number of donors per volume whose electrons
have been promoted to the conduction band. A formula for N can be obtained via a thermodynamic
treatment of ionized donors, as the following:

N = Na
d 7 1 4 2¢W—Eg)/kT

where N is the total concentration of donors and Ej; is the absolute energy of the donor level (i.e. not the
donor ionization energy, which is the difference between E, and Ej).

Those are the four governing equations for the extrinsic case.

Solving the governing equations for the extrinsic case
We can now put the four equations together by plugging Egs. 1, 2, and 4 into Eq. 3 like this:

n=p+ Nj (extrinsic condition)

3/2 3/2
(mekT) o= E— /KT _ o (mhkT) o—(H-ED/KT Ny
2mh? 2mh? 1 + 2e(W—EQ)/kT

For a situation where we are given the material and the amount of doping, ¢ and T are the only unknowns
in that equation. The equation can therefore in theory then be solved for u as a function of T, and u(T)
can then be plugged into the first governing equation to give us n(T).

However, unlike the intrinsic case, that equation is not analytically solvable for u(T). Therefore we must
solve it numerically: pick a temperature, solve numerically for u at that temperature, then plug that u into
the first governing equation to get n for that temperature. Let’s do that in an example.

Example: Silicon Doped With 10! Donors/m?, T = 77 and 300 K

mekT
21h?

3/2
For silicon at room temperature, the quantity 2 ( ) equals 2.86 X 102° m™ and the quantity

3/2
(Z:';:ZT ) equals 2.50434 X 102> m>. (Stokes calls these values N, and N,,, respectively.) To simplify

typing things into Mathematica, I’m therefore going to rewrite the first two governing equations like this:

3/2
n = 2.86 x 1025 (%) e~ (Ec—m)/kT

3/2

T
— 2.50434 x 1025 (—) ~(u=Ey)/KT
P 300) ¢

where the temperatures now must explicitly be given in kelvins and the concentrations in m’.

I’m also going to set the valence band energy to zero, as is often done, so E,, = 0, E. = band gap, and
E4 = E; — 0.045 eV (taking the donor ionization energy for silicon to be 45 meV).
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units of 10*! m>

With all of that, I need to then numerically solve this equation for p, then plug that p back into the first

governing equation to get n. I’ll now turn to Mathematica to first solve for 77 K and then for 300 K. Pay
attention to the comments in the code.

Setting things up

in[r= k = 1.381%"-23;
e = 1.602%"-19;
Eg = 1.124e; (» band gap of Si in eV, multiplying by e to convert to J &)
Ev=9; (% picking my zero of energy to be at VB =)
Ec = Ev + Eg;
Ed = Ec-98.845e; (» the absolute position of donor level, not relative =)
Nd 1x"21;

(# I'm going to multiply mu by charge of electron in these next equations so mu in the plot
will have units of eV. I will also divide all concentrations by 1821 for now so the
"FindRoot" command doesn't have to work with huge exponents. =)

nimu_, T_] := 2.86%"25 (T /3@8) " (3/2) Exp[(mue-Ec)/ (kT)] /1s"21

plmu_, T_] := 2.50434%"25 (T /300) ~ (3/2) Exp[(Ev - mue) / (kT)] /121

Ndplus[mu , T ] :=Nd/ (1 + 2Exp[(mu e- Ed) / (kT)]) /1%"21(% mu in eV, n in 10721 %)

(#* The extrinsic condition is "n = p + Ndplus". I'm going to plot both sides of that equation
as a function of mu then find the mu where they intersect. Then I'll use that mu in the n
equation to get the answer for a desired temperature. =)

Solvingwhen T=77K

inf1op= T =773
Plot[{n[mu, T], p[mu, T] + Ndplus[mu, T]}, {mu, @, 1.2}]
(# plotting both sides of the extrinsic equation =)

2o -p+ N7, plotted as a function of p
20}
. .- n, plotted as a function of u
out11)= ‘/,/"
M L - thepoint wheren = p + N,
e .
0l L for this temperature
0.I2 0.‘4 U.IB U.IB 1.I0 1.I2

U (ineV)
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in[12;= (* Looks like answer must be around mu = 1.05 )
FindRoot [n[mu, T] == p[mu, T] + Ndplus[mu, T], {mu, 1.85}]

ourizi= {mu - 1.06744) First step: u(T = 77K) = 1.06744 eV

in[13;= foundmu =mu /. %; (% This is needed because the FindRoot command provides its answer in a
weird format =)
n[foundmu, T] #* 1%"21 (» the answer for T=77! &)

out13j= 7.40579 < 10% Second step: n(T = 77K) = 7.40579 x 1020 m~3

Solving when T = 300K

in[14;= (#* I'1ll do everything in one cell now. I'll try to use the same starting point for my in
the FindRoot command that I did for 77 K, namely 1.85. It could fail... but fortunately it doesn't. x)
T = 300;
Plot[{n[mu, T], p[mu, T] + Ndplus[mu, T]}, {mu, @, 1.2}]
FindRoot [n[mu, T] == p[mu, T] + Ndplus [mu, T], {mu, 1.85}]
foundmu = mu /. %;
n[foundmu, T] % 1%"21(% the answer for T=380! )

80

Out1

o

= a0l

nl .- the point wheren = p + Ny,
- A for this new temperature
0‘2 UI4 UIB Ulg_/: 1IU 1I2
outrigi= {mu - 8.858621} First step: u(T = 300K) = 0.858621 eV
ou1s= 9.99602 x 10°° Second step: n(T = 300K) = 9.99602 x 102° m~3

To reiterate: you pick a temperature, solve numerically for u for that temperature, then plug that u into the
equation for n, and you have the value of n for that temperature.

Silicon Doped With 10?! Donors/m?, arbitrary temperatures

That same procedure can be employed to determine u for any arbitrary temperature and make a plot of

u(T), and to determine n for an arbitrary temperature and make a plot of n(T). I’ll let Mathematica do
the “pick a temperature” part automatically as it creates these plots for me.
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Solving for arbitrary temperatures

In[19;= OFf[General: :munfl] (% This suppresses a warning message that will otherwise show up *)
(# I'm going to skip making the plot of the two sides of the extrinsic equation for the
desired temperature and will skip straight to the FindRoot command )
actualmu[T ] :=mu /. FindRoot[n[mu, T] == p[mu, T] + Ndplus[mu, T], {mu, 1.85}];
Plot[actualmu[T], {T, 5, 1@ee}, PlotRange » {0, 1.2}]

121
10}
08l
Plot of i in eV as a function of
outz1= 061 temperature in K, for Si with
Ng=10*" m’
04l
02}
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inizz= actualn[T ] := n[actualmu[T], T] » 1821
LogPlot[actualn[T], {T, 15, 1ee@}, PlotRange -» {{@, 10@@}, {10"19, 18"23}}]

1023 -
1022 L
Plot of n in m™ as a function of
10211 temperature in K, for Si with
Qut[23]= 21 -3
Ng=10"m
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