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Intrinsic reminder 
 
As a reminder, for intrinsic materials we were able to deduce the number of electrons in the conduction 
band as a function of temperature, 𝑛 𝑇  for a given material (with a given band gap), by writing these 
equations for 𝑛 and 𝑝, and using the equation 𝑛 𝑝 to connect the two. 
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𝑛 𝑝   intrinsic condition  

 
Those were the three governing equations for the intrinsic case. 𝐸  and 𝐸  are the conduction and valence 
band energies, respectively.  
 
None of the equations individually gives enough information to solve for 𝑛 𝑇 , because we don’t know 
how 𝜇 varies with temperature (at least, we didn’t at first). However, multiplying the first two equations 
together allows us to determine 𝑛 𝑇  by recognizing that 𝑛𝑝 𝑛  is true, from the intrinsic condition. As 
an added bonus, we could also determine 𝜇 𝑇  by equating the first two equations and solving for 𝜇.  
 
Alternatively, we could have first determined the equation for 𝜇 𝑇 , and then plugged that back into the 𝑛 
equation. That would have led to the same result for 𝑛 𝑇  that we obtained by multiplying 𝑛 and 𝑝 
together. We’ll take that second approach for extrinsic (doped) materials: first find 𝜇, then plug that value 
of 𝜇 into the equation for 𝑛, to find 𝑛. 
 
 
Governing equations for extrinsic materials 
 
Let’s now consider an n-type doped material; hopefully the extrapolation to a p-type material will be clear 
should you ever need to do that. For an n-type material, the above equations for 𝑛 and 𝑝 are still the 
same,1  
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but the equation connecting the two is now different: 
 

𝑛 𝑝 𝑁   extrinsic condition  
 
                                                      
1 This is actually an approximation, since technically in deriving the earlier equations for 𝑛 and 𝑝 we had to make a 
small temperature approximation which may or may not exactly apply now. But we’ll ignore that, since everyone 
else does, and the resulting equations work well. 
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Here 𝑁  is the concentration of ionized donors, i.e. the number of donors per volume whose electrons 
have been promoted to the conduction band. A formula for 𝑁  can be obtained via a thermodynamic 
treatment of ionized donors, as the following:  
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where 𝑁  is the total concentration of donors and 𝐸  is the absolute energy of the donor level (i.e. not the 
donor ionization energy, which is the difference between 𝐸  and 𝐸 ).  
 
Those are the four governing equations for the extrinsic case. 
 
 
Solving the governing equations for the extrinsic case 
 
We can now put the four equations together by plugging Eqs. 1, 2, and 4 into Eq. 3 like this:  
 

𝑛 𝑝 𝑁   extrinsic condition  
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For a situation where we are given the material and the amount of doping, 𝜇 and 𝑇 are the only unknowns 
in that equation. The equation can therefore in theory then be solved for 𝜇 as a function of 𝑇, and 𝜇 𝑇  
can then be plugged into the first governing equation to give us 𝑛 𝑇 .  
 
However, unlike the intrinsic case, that equation is not analytically solvable for 𝜇 𝑇 . Therefore we must 
solve it numerically: pick a temperature, solve numerically for 𝜇 at that temperature, then plug that 𝜇 into 
the first governing equation to get 𝑛 for that temperature. Let’s do that in an example. 
 
 
Example: Silicon Doped With 1021 Donors/m3, T = 77 and 300 K 
 

For silicon at room temperature, the quantity 2
ℏ

/
 equals 2.86 10  m-3 and the quantity 

2
ℏ

/
 equals 2.50434 10  m-3. (Stokes calls these values 𝑁  and 𝑁 , respectively.) To simplify 

typing things into Mathematica, I’m therefore going to rewrite the first two governing equations like this:  
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where the temperatures now must explicitly be given in kelvins and the concentrations in m3. 
 
I’m also going to set the valence band energy to zero, as is often done, so 𝐸 0, 𝐸 band gap, and 
𝐸 𝐸 0.045 eV (taking the donor ionization energy for silicon to be 45 meV). 
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With all of that, I need to then numerically solve this equation for 𝜇, then plug that 𝜇 back into the first 
governing equation to get 𝑛. I’ll now turn to Mathematica to first solve for 77 K and then for 300 K. Pay 
attention to the comments in the code. 
 

 
  

𝑝 𝑁 , plotted as a function of 𝜇 

𝑛, plotted as a function of 𝜇 
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To reiterate: you pick a temperature, solve numerically for 𝜇 for that temperature, then plug that 𝜇 into the 
equation for 𝑛, and you have the value of 𝑛 for that temperature.  
 
 
Silicon Doped With 1021 Donors/m3, arbitrary temperatures 
 
That same procedure can be employed to determine 𝜇 for any arbitrary temperature and make a plot of 
𝜇 𝑇 , and to determine 𝑛 for an arbitrary temperature and make a plot of 𝑛 𝑇 . I’ll let Mathematica do 
the “pick a temperature” part automatically as it creates these plots for me. 
 
 
  

the point where 𝑛 𝑝 𝑁 ,  
for this new temperature 

First step: 𝜇 T 77K 1.06744 eV 

Second step: 𝑛 T 77K 7.40579 10  m   

First step: 𝜇 T 300K 0.858621 eV 

Second step: 𝑛 T 300K 9.99602 10  m   
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Plot of 𝜇 in eV as a function of 
temperature in K, for Si with 
Nd = 1021 m-3 

Plot of 𝑛 in m-3 as a function of 
temperature in K, for Si with 
Nd = 1021 m-3 


