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Fourier series and transforms: a summary by Dr Colton 
(in the context of the Physics of Light and Optics textbook by Peatross and Ware, available for free at 

optics.byu.edu) 

 

Fourier Series 
 

 Any reasonably well-behaved periodic function (period = 𝑇) can be written as a sum of sines and 

cosines, as: 

𝑓(𝑡) = 𝑎0 +∑𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑇
)

∞

𝑛=1

+∑𝑏𝑛 sin (
2𝜋𝑛𝑡

𝑇
)

∞

𝑛=1

 

  
 

The 𝑎𝑛 and 𝑏𝑛 numbers are called the “Fourier coefficients” and represent the amount of each cosine and 

sine term present in the original function.  

 

 a0 represents the average value of the function, and is calculated by: 

𝑎0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡
𝑇

0

 

 

 The other an coefficients can be calculated by the formula: 

𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡) cos (

2𝜋𝑛𝑡

𝑇
)𝑑𝑡

𝑇

0

 

 

 The bn coefficients can be calculated by the formula: 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡) sin (

2𝜋𝑛𝑡

𝑇
)𝑑𝑡

𝑇

0

 

 

 All integrals can be done from −𝑇/2 to −𝑇/2, or for that matter over any full period, instead of from 0 

to 𝑇, if it makes things easier. 

 

Symmetry Notes: 

 If the function 𝑓(𝑡) is even, only the cosine terms will be present. The 𝑏𝑛 coefficients will all be zero. 

 If the function 𝑓(𝑡) is odd, only the sine terms will be present. The 𝑎𝑛 coefficients will all be zero. 

 

Notation Notes: 

 Often the constant term in the series expansion is written as “𝑎0/2” instead of just “𝑎0”. That makes 𝑎0 

twice as big as in my definition. People do that so that the general 𝑎𝑛 formula will also work for 𝑎0. 

 The equations are often written in terms of 𝜔0 instead of in terms of 𝑇, with 𝜔0 = 2𝜋/𝑇. This is my 

personal preference. That is done so that it’s apparent all terms in the series are multiples of the lowest 

frequency, 𝝎𝟎, called the “fundamental frequency”. The series can therefore be written like this: 

𝑓(𝑡) = 𝑎0 + ∑𝑎𝑛

∞

𝑛=1

cos(𝑛𝜔0𝑡) +∑𝑏𝑛

∞

𝑛=1

sin (𝑛𝜔0𝑡) 

 

The formulas for the coefficients can be written like this: 

𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡) cos(𝑛𝜔0𝑡) 𝑑𝑡
𝑇

0

 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡) sin(𝑛𝜔0𝑡) 𝑑𝑡
𝑇

0

 

 

 P&W write the fundamental frequency as Δ𝜔 instead of 𝜔0. That’s not standard notation. 
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 Sometimes people write the expansion in terms of complex exponentials instead of sines and cosines, 

using Euler’s identity 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin𝑥 to combine the 𝑎𝑛 and 𝑏𝑛 coefficients into a single (complex) 

coefficient, typically called 𝑐𝑛. P&W shows on page 14 that if you write the series as  

𝑓(𝑡) =  ∑ 𝑐𝑛

∞

𝑛=−∞

𝑒−𝑖𝑛𝜔0𝑡 

 

then the 𝑐𝑛 coefficients are related to the 𝑎𝑛 and 𝑏𝑛 coefficients as follows:  

𝑐𝑛 =

{
 

 
𝑎−𝑛−𝑖𝑏−𝑛

2
  for 𝑛 < 0

𝑎0  for 𝑛 = 0
𝑎𝑛+𝑖𝑏𝑛

2
  for 𝑛 > 0

   

 

The formula to obtain the 𝑐𝑛 coefficients is: 

𝑐𝑛 =
1

𝑇
∫ 𝑓(𝑡)𝑒𝑖𝑛𝜔0𝑡𝑑𝑡
𝑇

0

 

 

 In an exponential series like that, sometimes 𝑓(𝑡) is expanded in terms of 𝑒+𝑖𝑛𝜔0𝑡 instead of 𝑒−𝑖𝑛𝜔0𝑡. 
In that case, the equations for 𝑐𝑛 would need to be modified accordingly. 

 The same procedure can be done with functions of 𝑥 instead of functions of 𝑡. In that case the spatial 

period 𝐿 is used instead of the temporal period 𝑇, and the symbol 𝑘 (rads/meter) is used in place of 𝜔 

(rads/second).  

 

Example 1: Square wave (infinite, repeating) 

 

As an example, consider this function, plotted as shown: 

 

 

 

 

 

 

 

In this case, the period is 1, so the fundamental frequency is 𝜔0 = 2𝜋. All of the terms in the series will have 

angular frequencies that are multiples of 2.  The average value of the function is 0, so 𝑎0 = 0. Additionally, 

the function is odd, so the expansion will contain only sine terms. A formula for the coefficients of the sine 

terms for this specific case can be obtained by performing the 𝑏𝑛 integral: 

 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡) sin(𝑛𝜔0𝑡) 𝑑𝑡
𝑇

0

 

      =
2

1
∫ 𝑓(𝑡) sin(2𝜋𝑛𝑡) 𝑑𝑡

1
2

−
1
2

 

      = 2(∫ (−1) sin(2𝜋𝑛𝑡) 𝑑𝑡
0

−
1
2

+∫ (1) sin(2𝜋𝑛𝑡) 𝑑𝑡

1
2

0

) 

      = 2(
cos(2𝜋𝑛𝑡)

2𝜋𝑛
|
−
1
2

0

 −
cos(2𝜋𝑛𝑡)

2𝜋𝑛
|
0

1
2

) 

      =
4(1 − cos(𝜋𝑛))

2𝜋𝑛
 

1 

–1 

1 𝑓(𝑡) = {
−1,   for −

1

2
< 𝑡 < 0

1,   for 0 < 𝑡 <
1

2

  

 

(repeated with a period of 1) 
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      =
2(1 − cos(𝜋𝑛))

𝜋𝑛
 

 

That expression is equal to 0 for even values of 𝑛, and equal to 
4

𝜋𝑛
 for odd values of 𝑛, so with the terms 

explicitly written out the series looks like this: 

𝑓(𝑡) =
4

𝜋
sin(2𝜋𝑡) +

4

3𝜋
sin(6𝜋𝑡) +

4

5𝜋
sin(10𝜋𝑡) +

4

7𝜋
sin(14𝜋𝑡) + ⋯   

 

 

In terms of the complex exponential representation, the series is: 

𝑓(𝑡) = ⋯+ (−
2𝑖

5𝜋
) 𝑒𝑖10𝜋𝑡 + (−

2𝑖

3𝜋
) 𝑒𝑖6𝜋𝑡 + (−

2𝑖

𝜋
) 𝑒𝑖2𝜋𝑡 +

2𝑖

𝜋
𝑒−𝑖2𝜋𝑡 +

2𝑖

3𝜋
𝑒−𝑖6𝜋𝑡 +

2𝑖

5𝜋
𝑒−𝑖10𝜋𝑡 +⋯ 

 

It would be a good “exercise for the reader” to verify these 𝑐𝑛 coefficients using the integral formula above. 

One can also verify that this equation and the sine equation are identical using the identity sin 𝑥 =
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
. 

 

The set of Fourier coefficients can be thought of as a list like this:  

 

{… ,−
2𝑖

5𝜋
, 0,−

2𝑖

3𝜋
, 0,−

2𝑖

𝜋
, 0,
2𝑖

𝜋
, 0,

2𝑖

3𝜋
, 0,

2𝑖

5𝜋
,… } 

 

It can also be thought of as a table of ordered pairs*, or even as a plot: 

 

n = n0 cn 

… … 

–10 –2i/(5) 

–8 0 

–6 –2i/(3) 

–4 0 

–2 –2i/ 

0 0 

 2i/ 

 0 

 2i/(3) 

8 0 

10 2i/(5) 

… … 

 

 

 

 

  

                                                 
* The values in the right hand column may initially seem to you to be the negative of what they should be. However these are correct, 

because the way the complex series has been defined in terms of 𝑓(𝑡) =  ∑ 𝑐𝑛
∞
𝑛=1 𝑒−𝑖𝑛𝜔0𝑡 means that, for example, the 𝑒𝑖10𝜋𝑡 term 

has 𝜔𝑛 = −10𝜋, rather than 𝜔𝑛 = 10𝜋 as would perhaps be more intuitive. 
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Fourier Transforms 
 

If the period of a function increases, then the spacing between frequency components that form the x-axis of 

the plot decreases. And in the limit of infinite period, where the function is not periodic at all, then an 

amazing thing happens: the spacing between frequencies goes to zero and instead of a set of discrete 𝑐𝑛 

points we have a continuous function! That is called a Fourier transform. 

 

In place of 𝜔𝑛 we now have simply 𝜔 as the x-axis. Similarly, in place of 𝑛𝜔0 in the exponential, we have 

just 𝜔. And instead of a summation over 𝑛 in the series expansion equation, we have an integral over 𝜔: 

𝑓(𝑡) =
1

√2𝜋
∫ 𝑐(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔
∞

−∞

 

 

Here the factor of 
1

√2𝜋
 has been arbitrarily added in to make this equation and the next one look symmetric. It 

has no physical significance. 

 

Instead of the previous integrals for 𝑎𝑛 and 𝑏𝑛, it can be shown via the Fourier integral theorem (P&W pg 

16) that the proper equation for 𝑐(𝜔) is now:  

𝑐(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

 

 

The function 𝑐(𝜔) is called the “Fourier Transform” of 𝑓(𝑡).  The function 𝑓(𝑡) is called the “Inverse 

Fourier Transform” of 𝑐(𝜔). 
 

Symmetry Notes: 

 In general, 𝑐(𝜔) is a complex function. It’s perhaps unexpected to get complex numbers from the 

transform of a real function. However, notice that with the way things are defined, that happens with the 

𝑐𝑛 coefficients of a Fourier series as well. 

 If 𝑓(𝑡) is purely real, then 𝑐(−𝜔) = the complex conjugate of 𝑐(𝜔). 
 If 𝑓(𝑡) is a purely real even function, then 𝑐(𝜔) = a purely real even function. That’s the equivalent of an 

even periodic function giving rise to only cosine terms in the Fourier series. 

 If 𝑓(𝑡) is a purely real odd function, then 𝑐(𝜔) = a purely imaginary odd function. That’s the equivalent 

of an odd periodic function giving rise to only sine terms in the Fourier series. 

 

Notation Notes: 

 Unfortunately “𝑐(𝜔)” is not the standard notation for the Fourier transform of 𝑓(𝑡). The Fourier 

transform of 𝑓(𝑡) is typically labeled 𝑓(𝜔). This is unfortunate in my opinion since the two functions 

both called “𝑓”, namely 𝑓(𝑡) and 𝑓(𝜔), are not the same function at all! Other ways of labeling the 

Fourier transform of 𝑓(𝑡) include 𝐹(𝜔), ℱ(𝑓(𝑡)), 𝐹𝑇{𝑓(𝑡)}, etc. 

 Factors of √2𝜋 are not always included this way. Two alternate methods are: 

o If 1/√2𝜋 is not included in the 𝑓(𝑡) equation, the 𝑐(𝜔) equation will need to have 1/(2𝜋) in it. 

o Sometimes a factor of 1/(2𝜋) is included with the 𝑓(𝑡) equation; in that case 𝑐(𝜔) has no 

leading constant at all.  

 The equations to calculate the Fourier transform and the inverse Fourier transform differ only by the sign 

of the exponent of the complex exponential. Many sources define the Fourier transform with 𝑒𝑖𝜔𝑡, in 

which case the 𝑐(𝜔) equation has 𝑒−𝑖𝜔𝑡 in it. Be careful. 

 

 

Example 2: Square wave pulse (finite, nonrepeating) 

 

Consider this function, plotted as shown: 
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Just as the 𝑐𝑛 coefficients of the Fourier series in Example 1 represent how much of each frequency 

component is present in 𝑓(𝑡), the 𝑐(𝜔) function in this example represents how much of each frequency 

component is present. The only difference is that for the periodic function in Example 1 there are only certain 

discrete frequency components present, whereas here there are contributions from all frequencies—a 

continuum of frequencies.  

 

The Fourier transform function can be calculated using the 𝑐(𝜔) formula: 

𝑐(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

          =
1

√2𝜋
(∫ (−1)𝑒𝑖𝜔𝑡𝑑𝑡

0

−
1
2

+∫ (1)𝑒𝑖𝜔𝑡𝑑𝑡

1
2

0

) 

          =
1

√2𝜋
(−

𝑒𝑖𝜔𝑡

𝑖𝜔
|
−
1
2

0

 +
𝑒𝑖𝜔𝑡

𝑖𝜔
|
0

1
2

) 

          =
1

√2𝜋
( 
−1 + 𝑒−

𝑖𝜔
2

𝑖𝜔
+
𝑒
𝑖𝜔
2 − 1

𝑖𝜔
) 

          =
1

√2𝜋

2

𝑖𝜔
 ( 
𝑒
𝑖𝜔
2 + 𝑒−

𝑖𝜔
2

2
− 1) 

          = √
2

𝜋
 
𝑖

𝜔
 (1 − cos

𝜔

2
) 

 

 

That function can be plotted, and looks like this:   

 

 
 

Many similarities between this plot and the plot of the Fourier series coefficients in Example 1 are apparent.  

1 

–1 

0.5 

–0.5 𝑓(𝑡) = {
−1,   for −

1

2
< 𝑡 < 0

1,   for 0 < 𝑡 <
1

2

  

 

(non-repeating) 


