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Introduction 
 
When photons enter a material, if their frequencies match up against other excitations which can occur (e.g. 
the UV resonance of bound electrons, the IR resonance of ions, and the plasma resonance of conductors), 
then this coupling causes the usual photon dispersion curves to be modified. At these frequencies the photons 
not only can but necessarily must excite these other types of oscillations as the electromagnetic wave enters 
the material.  
 
The regular photon dispersion, 𝜔 vs 𝑘, is simply a straight line: 𝜔 𝑣𝑘, where 𝑣 is the speed of light in the 
material, 𝑣 𝑐/𝑛. (Here 𝑛 is the index of refraction.) It can be summarized by this important equation: 
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However, as was discussed in the Lorentz oscillator model of the dielectric function handout, near these 
resonances 𝑛 itself is a function of 𝜔. Therefore that simple looking equation, which appears to describe a 
linear relationship between 𝜔 and 𝑘 actually turns into a much more complicated dispersion relation.  
 
We can make that 𝜔 𝑘  dependence more explicit by squaring both sides and using 𝑛 𝜖 𝜔 . 
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The functional dependence of 𝜖 𝜔  was given for several situations in the Lorentz oscillator handout. We 
will use that dependence to obtain the actual, complicated dispersion relations for the IR resonance of ions 
and the plasma resonance of conductors. 
 
 
Phonon Polaritons 
 
Polaritons (or more specifically, phonon polaritons) are quasiparticles which result from the coupling of 
photons to the optical phonon modes in the material. From the Lorentz model handout we had the following 
equation for the IR resonance due to oscillating ions (assuming no damping, for simplicity):  
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Plugging Eq. 2 into Eq. 1 yields the following polariton dispersion relation: 
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Eq. 3 cannot easily be solved for 𝜔 𝑘 … but using a trick that we’ve used before, we can solve it for 𝑘 𝜔 : 
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I’ll plot that equation for 𝑐 1, 𝜖 ∞ 2, 𝜖 0 3, and 𝜔 1. Incidentally, those are the same 𝜖 ∞  
and 𝜖 0  values used in Kittel, Fig. 14.13a which plot was given in the Lorentz oscillator handout. It will 
also become important to recognize that for those values, the LST relation predicts 𝜔 1.22474. 

 
At very low frequencies the wave vector starts out obeying the normal photon behavior of 𝜔 𝑐𝑘/𝑛, with 𝑛 

equal to the low frequency value 𝜖 0 . At very high frequencies the wave vector again obeys the normal 

photon behavior of 𝜔 𝑐𝑘/𝑛, now with 𝑛 equal to the high frequency value 𝜖 ∞ . 
 
At frequencies between those two cases, namely around the TO phonon frequency 𝜔 𝜔 , the regular 
photon dispersion goes wacky as photons start automatically creating TO phonons! In fact, in this region, 
you can’t even talk about photons and TO phonons as being separate entities. They are intimately connected, 
and therefore in this region we must only consider the joint polariton quasiparticle. Also, note that for 
frequencies between 𝜔  and 𝜔  no polaritons can propogate, giving rise to perfect reflectivity as depicted in 
Yu & Cardona Fig. 6.31(b) in the Lorentz model handout. 
 
I’ll use some Mathematica trickery (not shown) to reverse the axes so I can plot 𝜔 𝑘 .  
 
 
 

Colton plot 1. Plot of polariton 
dispersion, namely 𝑘 𝜔  for the coupling 
between EM waves and the TO phonon 
modes, with 𝑐 1, 𝜖 ∞ 2, 𝜖 0
3, and 𝜔 1. 

𝑘 

𝜔 

𝜔  𝜔  



Polaritons and plasmons – pg 3 
 

 
Compare that plot to Kittel Fig. 14.11, shown next, which additionally makes the point that these polaritons 
are the coupling between photons and the TO phonons; the LO phonons don’t couple to the EM wave and 
therefore exist undisturbed. 
 

 
 
Kittel Fig. 14.12 gives another plot of 𝜔 𝑘  for the polariton mode, but additionally plots the imaginary 
component of 𝑘 in the region of no propagation (i.e. between 𝜔  and 𝜔 ) and makes some interesting 
comments about absorption in the figure caption.  
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blue slope 𝑐/ 𝜖 0  

red slope 𝑐/ 𝜖 ∞  

Colton plot 2. Plot of polariton 
dispersion, 𝜔 𝑘  for the coupling 
between EM waves and the TO phonon 
modes, with 1, 𝜖 ∞ 2, 𝜖 0 3, 
and 𝜔 1. 

Kittel Fig. 14.11. A plot of the 
observed energies and wavevectors of 
the polaritons and of the LO phonons 
in GaP. The theoretical dispersion 
curves are shown by the solid lines. 
The dispersion curves for the 
uncoupled phonons and photons are 
shown by the short, dashed lines. 
(Apologies for the strange x-axis; it’s 
essentially the wave vector 𝑘, but 
written in units of eV.) 
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Plasmon Polaritons 
 
Plasmons are quasiparticles which result from the quantization of the plasma oscillations. To quote 
Wikipedia: 
 

The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, 
just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) 
oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a 
photon to create another quasiparticle called a plasmon polariton. 

 
Kittel Fig. 14.8 provides evidence for the creation of these plasmon quasiparticles through electron energy 
loss spectra. The loss of electron energy here can be considered to be due to the creation of plasmons, just 
like the loss of photon energy in Raman scattering can be considered to be due to the creation of phonons.  
 

 
 
 
 
 
 
 

Kittel Fig. 14.12. Coupled modes of photons 
and TO phonons in an ionic crystal. The fine 
horizontal line represents oscillators of 
frequency 𝜔  in the absence of coupling to the 
electromagnetic field and the diagonal fine line 
corresponds to electromagnetic waves in the 
crystal, uncoupled to the lattice oscillators T. 
The heavy lines are the dispersion relations in 
the presence of coupling between the lattice 
oscillators and the electromagnetic wave. 
Between the 𝜔  to 𝜔  frequency gap the 
wavevector is pure imaginary, with magnitude 
given by the broken line in the figure. In the gap 
the wave attenuates as exp |𝐾|𝑥 , and we see 
from the plot that the attenuation is much 
stronger near 𝜔  than near 𝜔 .  

Kittel Fig. 14.8. Energy loss spectra 
for electrons reflected from films of 
(a) aluminum and (b) magnesium, 
for primary electron energies of 
2020 eV. The 12 loss peaks 
observed in Al are made up of 
combinations of 10.3 and 15.3 eV 
losses, where the 10.3 eV loss is due 
to surface plasmons and the 15.3 eV 
loss is due to volume plasmons. The 
ten loss peaks observed in Mg are 
made up of combinations of 7.1 eV 
surface plasmons and 10.6 eV 
volume plasmons.  
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As the Wikipedia quote said, the quasiparticle created by the coupling of photons to the plasma oscillations 
in conductors can be called plasmon polaritons. From the Lorentz model handout we had the following 
equation for conductors (assuming no damping, for simplicity): 
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Plugging Eq. 5 into Eq. 1 yields the following plasmon polariton dispersion equation: 
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Eq. 6 can be solved analytically for 𝜔 𝑘  with just a couple of lines of algebra (which I’ll skip): 
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I’ll plot that equation for 𝑐 1, 𝜖 ∞ 12, and 𝜔 0.25, which are the same values used in “Colton 
plot 4” in the Lorentz oscillator handout.  
 
 

 
 
For large frequencies the dispersion obeys the normal photon behavior of 𝜔 𝑐𝑘/𝑛, with 𝑛 equal to the high 

frequency value 𝜖 ∞ . However, for low frequencies the photons do not follow their normal dispersion but 
instead they couple to the plasma oscillations of the free electrons. At frequencies sufficiently close to the 
modified plasma frequency, namely 𝜔 / 𝜖𝑟 ∞ , you can’t even talk about photons and free electrons as 
being separate entities. The two are intimately connected, and therefore in this region we must only consider 
the joint plasmon polariton quasiparticle. Frequencies less than that frequency cannot couple into the material 
at all and give rise to perfect reflectivity as plotted in “Colton plot 4” in the Lorentz oscillator handout.  
 

This is also depicted in Kittel Fig. 14.2, which assumes 𝜖 ∞ 1.  
 

Colton plot 3. Plot of plasmon polariton 
dispersion, namely 𝜔 𝑘  for the coupling 
between EM waves and the free electrons 
in metals, with 𝑐 1, 𝜖 ∞ 12, and 
𝜔 0.25. red slope 𝑐/ 𝜖𝑟 ∞  
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Exciton Polaritons 
 
There is also such a thing as an exciton polariton, which is a coupling between photons and excitons which 
occurs when the absorption of a photon automatically leads to the creation of an exciton. Here’s a plot from 
Yu and Cardona which demonstrates how the normal photon and excitons dispersion relations couple 
together in the region where frequencies and wave vectors overlap. 
 

Kittel Fig. 14.2. Dispersion relation for 
transverse electromagnetic waves in a 
plasma. The group velocity vg = d/dK is 
the slope of the dispersion curve. 
Although the dielectric function is 
between zero and one, the group velocity 
is less than the velocity of light in 
vacuum. 

Yu and Cardona Fig. 6.22. Dispersion curves of a 
“bare” photon, a “bare” exciton (dashed curves) 
and an exciton-polariton (solid curves labeled I and 
II) for the A exciton in CdS. The curves labeled I 
and II are usually referred to as the “upper” and 
“lower” branches of the polariton.  


