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The Central Equation 
by Dr. Colton, Physics 581 (last updated: Fall 2020) 

 
This is the Central Equation; it essentially represents a Fourier transform of the Schroedinger equation: 
 

ሺ𝜆 െ 𝐸ሻ𝐶𝐤 𝑈𝐆𝐶𝐤ି𝐆
𝐆

ൌ 0 

 
This actually represents an infinite set of equations for a given 𝐤 within the first Brillouin zone (BZ), let’s 
call that 𝐤ଵ. That is, the first equation of the infinite set will have 𝐤 ൌ 𝐤ଵ. There is one equation for each 
𝐤 which is “connected” to 𝐤𝟏 by a reciprocal lattice vector (RLV), let’s call those 𝐤ଶ, 𝐤ଷ, 𝐤ସ, etc. Recall 
that in the empty lattice approximation, the energy for 𝐤 + a RLV gets folded back into the first Brillouin 
zone (BZ) to the same 𝐤 value. 
 

 
 
The energies that can be obtained from the Central Equation represent the infinite set of vertically stacked 
energies at 𝐤𝟏, which result from the folding back of the free electron parabola, combined with some 
knowledge of the actual potential energy function 𝑈ሺ𝐫ሻ which describes how the energy landscape 
departs from the free electron case. 
 
More details: 

 The 𝐆 vectors are the RLVs. 
 The 𝑈𝐆 terms are the Fourier components of 𝑈ሺ𝐫ሻ. Remember from Chapter 2 that the 3D Fourier 

transform of a periodic function results in a summation over the reciprocal lattice vectors, 𝑈ሺ𝐫ሻ ൌ
∑ 𝑈𝐆𝑒𝐆⋅𝐫𝐆 .  

 The 𝐶𝐤 terms are the expansion coefficients of the wave function 𝜓, when written as a Fourier 
series of plane waves expanded over your infinite set of 𝐤 values, 𝐤ଵ, 𝐤ଶ, 𝐤ଷ, etc.: 𝜓ሺ𝐫ሻ ൌ
∑ 𝐶𝐤𝑒

𝐤⋅𝐫
 .  



Central Equation – pg 2 
 

 𝜆 is the energy of the free electron parabola corresponding to each 𝑘 value in your infinite set, 

namely 𝜆 ൌ
ℏమమ

ଶ
. 

 
The equation can most easily be understood written in matrix form. Each row of the matrix equation is the 
Central Equation for one of the 𝐤 values in your infinite set. 
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⎞

 

 
This is an infinite matrix equation! It’s also an eigenvalue equation, where the allowed energies 𝐸 are the 
eigenvalues, and the sets of plane wave expansion coefficients ሺ𝐶ଵ,𝐶ଶ,𝐶ଷ, … ሻ are the eigenvectors. The 
𝑈 terms are the Fourier components of the potential energy, where e.g. 𝑈ଶଷ is the Fourier coefficient for 
the specific RLV which connects 𝐤ଶ to 𝐤ଷ, i.e. 𝐆 ൌ 𝐤ଶ െ 𝐤ଷ. 
 
Multiplying out the first row or two of the matrix equation may convince you that it is equivalent to the 
Central Equation as given above.1  
 
Obviously one cannot find the eigenvalues of an infinite matrix, so the first thing one must do to solve 
this equation is decide where to cut off the matrix. That’s exactly analogous to deciding how many terms 
of a Fourier series must be included to accurately represent a function, since the 𝐶 coefficients are 
exactly the Fourier coefficients of the representation of 𝑈ሺ𝐫ሻ.  
 
The recipe for how to use the Central Equation to solve for the allowed energies, given a periodic 
potential energy function 𝑈ሺ𝐫ሻ, is therefore as follows. 
 

1) Pick a particular 𝐤 value you’re interested in, within the first BZ. This is 𝐤ଵ, although it doesn’t 
really have to be listed first in your set of 𝐤 values. 

2) Decide where you want to truncate the matrix. That is to say, how many connected 𝐤 values do 
you want to consider? Connected means they are equal to 𝐤ଵ minus a reciprocal lattice vector. 
Form your finite set of 𝐤 values. 

3) Calculate the 𝜆 values for your set of 𝐤’s. 
4) Calculate the Fourier expansion coefficients 𝑈 for the 𝐆 vectors which connect all of the 𝐤’s in 

your set, or at least as many as reasonably possible. (In some cases the 𝐆 vector needed to 
connect 𝐤 to 𝐤 might be beyond where you’d like to take the expansion of 𝑈ሺ𝐫ሻ.) 

5) Write down the matrix and solve for the eigenvalues using your favorite method.  
 
 
Let’s do an example. This particular example is an actual final exam question from when I took this class 
as a graduate student at UC Berkeley.  
 

                                                      
1 Disclaimer: I haven’t included the 𝑈 terms in the matrix equation, namely the constant term of the Fourier series. 
If 𝑈ሺ𝐫ሻ has a non-zero average value, then 𝑈 will be non-zero and all diagonal terms will have 𝑈 added to them. 
This will simply have the effect of shifting all eigenvalues by 𝑈 so one can actually more simply solve for the 
eigenvalues without the 𝑈 terms present, then shift all of the eigenvalues (the energies) by 𝑈 at the end. 
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Worked Problem: Apply the Central Equation to GaAs to solve for the energies at 𝐤 ൌ ሺ0,0,0ሻ. Only use 

RLVs with magnitude 𝐺 
ସగ


. Work out the equations to the level that you could solve for the energies 

were you to be given the 𝑈ሺ𝐫ሻ function.  
 
Step 1: Pick a particular 𝐤 value you’re interested in 
 
The 𝐤 value of interest within the first BZ is given: 𝐤ଵ ൌ ሺ0,0,0ሻ. 
 
 
Step 2: Decide where you want to truncate the matrix 
 

The problem says to consider all of the 𝐆’s with |𝐺| 
ସగ


. To figure those out, we need to consider the 

lattice type. GaAs has an fcc lattice; the reciprocal lattice is bcc with lattice constant 4𝜋/𝑎. Here’s the 
unit cell of the reciprocal lattice: 
 

 
 
By visualizing the expanded bcc lattice we can identify all of the specified 𝐆 vectors, which turn out to be 
the 14 shortest ones. 
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ሺ1,0,0ሻ  

ସగ


ሺ0,1,0ሻ  
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ସగ
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ସగ


ሺ0,0,െ1ሻ 

  

These are the 14 points on the bcc lattice which are closest to the origin: the eight body centered atoms of 
the eight cubes surrounding the origin, plus the six closest points along the േ𝑥,േ𝑦,േ𝑧 directions. All 
other RLVs have magnitudes larger than the specified cutoff. The first eight vectors have magnitudes of 
ଶగ


√3; the others have magnitudes of 

ସగ


. 

 
Because in this particular problem the 𝐤 point of interest is in fact the origin, those 𝐆 vectors, along with 
ሺ0,0,0ሻ, comprise our set of 𝐤’s. Let’s label them as follows: 
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𝐤ଵ ൌ ሺ0,0,0ሻ  

𝐤ଶ ൌ
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𝐤ଵ ൌ
ସగ


ሺ1,0,0ሻ  

𝐤ଵଵ ൌ
ସగ


ሺ0,1,0ሻ  

𝐤ଵଶ ൌ
ସగ


ሺ0,0,1ሻ

𝐤ଵଷ ൌ
ସగ
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Step 3: Calculate the 𝜆 values for your set of 𝐤’s. 
 
There are actually only three different values of 𝜆 for our situation because there are only three 

magnitudes of 𝑘:  𝐤ଵ has 𝜆 ൌ 0, then the next eight all have 𝜆 ൌ
ℏమ

ଶ

ଵଶగమ

మ
, which I will call 𝜆ଵ, and the 

final six all have 𝜆 ൌ
ℏమ

ଶ

ଵగమ

మ
, which I will call 𝜆ଶ.  

 
 
Step 4: Calculate the Fourier expansion coefficients 𝑈 
 
We aren’t given the details of 𝑈ሺ𝐫ሻ so we can’t calculate the Fourier coefficients. We’ll just assume that 
we could do that if we had the details. Note, however, that some of the 𝑈 terms will involve 𝐆 vectors 

longer than we were told to use. As an example, 𝐤ଵ െ 𝐤ଵଷ ൌ
଼గ


ሺ1,0,0ሻ. Terms like that don’t need to 

show up in our matrix. 
 
 
Step 5: Write down the matrix and solve for the eigenvalues 
 
The allowed energies are the eigenvalues of this matrix: 
 

⎝

⎜
⎛

0 𝑈ଵଶ 𝑈ଵଷ . 𝑈ଵ,ଵହ

𝑈ଶଵ 𝜆ଵ 𝑈ଶଷ . .
𝑈ଷଵ 𝑈ଷଶ 𝜆ଵ . .

. . . . .
𝑈ଵହ,ଵ . . . 𝜆ଶ ⎠

⎟
⎞

 

 
The diagonal elements are the free electron parabola values. The off diagonal elements are the Fourier 
components of 𝑈ሺ𝐫ሻ—specificially, 𝑈 is the Fourier coefficient 𝑈𝐆 for 𝐆 ൌ 𝐤 െ 𝐤… with some of the 
𝑈 terms being set to zero if ห𝐤 െ 𝐤ห is too long. (I’m assuming the constant term in the Fourier 
expansion 𝑈 ൌ 0, if not see footnote 1.) 
 
The eigenvalues will give you an approximation to the 15 lowest energies at 𝐤 ൌ 0. The eigenvectors tell 
you how the wave functions at each of those particular energy states are constructed from plane waves. A 
large coefficient for 𝐶ହ in your eigenvector, for example, would mean that the wave function for that 

particular energy state has a lot of 𝑒
రഏ
ೌ
ቀ
భ
మ

,
భ
మ

,ି
భ
మ
ቁ⋅𝐫 character to it, since 𝑘ହ ൌ

ସగ


ቀଵ
ଶ

,
ଵ

ଶ
,െ

ଵ

ଶ
ቁ.  

 
And we’re done! Without knowing the potential energy function that’s as far as we can go. 


