What You Should Already Know by Dr. Colton, Physics 581 (last updated: Fall 2020)

Chemistry

- The Periodic Table: valence electrons, atomic mass
- Atomic orbitals: what s, p, d, and f refer to
- Spin degeneracy: two electrons in each orbital (spin up and spin down)
- Molar mass:
 - o number of moles = $\frac{m}{MM}$ ("MM" = molar mass; make sure units of m and MM agree)
 - o number of atoms = number of moles $\times N_A = \frac{m}{MM} \times N_A$, where $N_A = \text{Avogadro's}$ number
- Hydrogen atom energy levels: $E_n = -\frac{13.6 \text{ eV}}{n^2}$; 13.6 eV is known as the Rydberg constant

Physics 121

- Vectors, typically symbolized by **bold** letters
 - How to add/subtract
 - How to do dot and cross products
 - O Unit vector notation, e.g. $\hat{\mathbf{x}} = (1,0,0)$, etc.
- Newton's 2^{nd} Law: $\Sigma \mathbf{F} = m\mathbf{a}$
- Energy, divided into...
 - Kinetic energy of object: $KE = \frac{1}{2}mv^2$
 - o Potential (for "conservative" forces), often symbol *U*
- Momentum of object: p = mv
- Connection between kinetic energy and momentum: $KE = \frac{p^2}{2m}$
- Springs
 - Force by spring: $\mathbf{F} = -k\mathbf{x}$ (Hooke's law; k is the "spring constant")
 - Potential energy stored in spring: $PE = \frac{1}{2}kx^2$
- SI Units: distance measured in meters, force in newtons, mass in kilograms, and energy in joules

Physics 123

- Thermodynamics:
 - o $R = \frac{k_B}{N_A}$ (relationship between universal gas constant R, Boltzmann's constant k_B , and Avogadro's number N_A)
 - o Heat, symbol Q
 - Heat transfer by thermal conduction: $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{L}$, where k = thermal conductivity
 - Specific heat c defined by: $Q = mc\Delta T$
 - Molar heat capacity C defined by: $Q = nC\Delta T$
- General wave properties:
 - O What all of these parameters mean in the equations below: $x, t, A, \lambda, f, T, v, k, \omega, \phi$
 - O Plane wave: $f = A\cos(kx \omega t + \phi) \leftrightarrow \text{(complex representation)} f = Ae^{i(kx \omega t + \phi)}$

- Complex representation may be new to you; there's an implied "take the real part" to both sides of the equation; it follows from Euler's identity (see below).
- How those parameters interrelate:
 - wavenumber $k = \frac{2\pi}{3}$
 - angular frequency $\omega = 2\pi f = \frac{2\pi}{T}$
 - wave speed $v = \lambda f = \frac{\omega}{k}$
- Group velocity: $v_{group} = \frac{d\omega}{dk}$ (this equation may be new to you)
- Waves on a string:
 - $v = \sqrt{\frac{T}{\mu}}$, where T = tension and $\mu =$ linear mass density
 - Reflected power $R = \left(\frac{v_2 v_1}{v_2 + v_1}\right)^2$ (this equation may be new to you)
- Electromagnetic waves:
 - Spectrum of light (approximate boundaries): 0
 - 10 400 nm = UV
 - 400 700 nm = visible
 - $700 \text{ nm} 100 \text{ } \mu\text{m} = \text{IR}$
 - Index of refraction, n

 - speed of light in a material = ^c/_n
 n = √ε_r where ε_r is the dielectric constant (sometimes symbol K), aka the "relative permittivity" (this fact may be new to you)
- Diffraction:
 - 2 slit result: $d \sin \theta_{bright} = m\lambda$, where d = distance between slits
 - Bragg's Law: $2d \sin \theta = m\lambda$, where d = separation between crystal planes

Physics 220

- Electric fields
 - Force from electric field: $\mathbf{F} = q\mathbf{E}$, where q is the charge (in coulombs) and E is the electric field
 - Potential difference (in volts) $\Delta V = -\int_{path} \mathbf{E} \cdot d\boldsymbol{\ell}$, which means that $|E| = \frac{\Delta V}{d}$ in regions where electric field is constant
- Circuits
 - Ohm's Law: V = IR, where I is the current and R is the resistance of the circuit element
 - Resistance of an ohmic material $R = \frac{\rho \ell}{A}$, where $\rho =$ resistivity, ℓ is the length, and A is the cross-sectional area
- Magnetic fields:
 - Lorentz force: $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, force on a moving charge; use right hand rule for direction
 - o Hall effect: transverse voltage when a current is passed through a perpendicular magnetic field
- Coulomb's Law:
 - o $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$ (field from a point charge located at origin; $\frac{1}{4\pi\epsilon_0}$ also sometimes written as k_e , the Coulomb force constant)
 - o $U = \frac{1}{4\pi\epsilon_0} \frac{qQ}{r}$ (potential energy of interaction between two charges q and Q)

- Flux of a field through a surface: $\Phi = \int_{surface} (\mathbf{Field}) \cdot d\mathbf{A}$
- Maxwell's equations in integral form
 - o Gauss's Law
 - $\oint_{closed} \mathbf{E} \cdot d\mathbf{A} = \frac{q_{enclosed}}{\epsilon_0}$ (electric flux is proportional to $q_{enclosed}$)
 - Gauss's Law for magnetism
 - $\oint_{closed} \mathbf{B} \cdot d\mathbf{A} = 0$ (no point sources of magnetic flux; "no magnetic monopoles")
 - Faraday's Law
 - $\oint_{closed} \mathbf{E} \cdot d\ell = -\frac{d\Phi_B}{dt}$ (changing magnetic fields act as sources of electric fields)
 - The left hand side is the induced voltage or EMF (electromotive force), so this is also written as induced EMF = -d(magnetic flux)/dt)
 - o Ampere's Law, with Maxwell correction
 - $\oint_{closed} \mathbf{B} \cdot d\ell = \mu_0 I_{enclosed} + \epsilon_0 \mu_0 \frac{d\Phi_E}{dt} \quad \text{(currents act as sources of magnetic fields; so do changing electric fields)}$

Physics 222

- Photons
 - o photon momentum $p = \frac{h}{\lambda}$
 - o photon energy $E = hf = \hbar\omega = \frac{hc}{\lambda} = pc$
- Quantum mechanical wavefunctions:
 - O Schrödinger equation: $-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + U(x)\Psi = E\Psi$ (1D, time independent)
 - U(x) = potential energy function; Ψ and E = the solutions to equation, namely the allowed wavefunctions and corresponding energies
 - $\int_{x_1}^{x_2} |\Psi|^2 dx$ = probability of finding particle between x_1 and x_2
 - $0 \int_{-\infty}^{\infty} |\Psi|^2 dx = 1, \text{ normalization condition}$
- "Particle in a box" aka "infinite square well", where particle restricted to region between x = 0 and x = L
 - O Wavefunctions: $Ψ_n = A \sin\left(\frac{n\pi x}{I}\right)$
 - O Energies: $E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} = n^2 E_1$

Math

- Complex numbers
 - o Complex numbers as points in the complex plane; polar ↔ rectangular conversion
 - Euler's identity: $e^{ix} = \cos x + i \sin x$
- Basic calculus
 - Basic derivatives
 - o Basic integrals

- Taylor series
 - $f(x_0 + \Delta x) = f(x_0) + \frac{df}{dx}\Big|_{x=x_0} (\Delta x) + \frac{d^2f}{dx^2}\Big|_{x=x_0} \frac{(\Delta x)^2}{2!} + \cdots \text{ (general formula)}$
 - $(1+x)^n \approx 1 + nx$ for small x (useful specific application)
- Fourier series, when f(x) = periodic function with period L (x and L have units of meters)
 - Fundamental frequency $k_0 = \frac{2\pi}{l}$ (this is called a "spatial frequency", units of m⁻¹)
 - Expansion in terms of multiples of the fundamental frequency:

•
$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nk_0 x) + \sum_{n=1}^{\infty} b_n \sin(nk_0 x)$$

- Coefficients given by:
 - $a_0 = \frac{1}{L} \int_0^L f(x) dx$, which is just the average value of the function f
 - $a_n = \frac{2}{r} \int_0^L f(x) \cos(nk_0 x) \, dx$
 - $b_n = \frac{\overline{2}}{L} \int_0^L f(x) \sin(nk_0 x) \, dx$
- Exponential version of Fourier series

 - $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{-ink_0 x}$ $c_n = \frac{1}{I} \int_0^L f(x) e^{+ink_0 x} dx$
- Linear Algebra
 - How to solve simultaneous equations via matrices; here's a 3 equation example where the $a_{i,i}$'s and C's are known numbers:

- Determinants: how to calculate, what significance is $(\det(\mathbf{M}) = 0)$ if and only if \mathbf{M} has no
- How to solve eigenvalue-type equations using determinants; here's a 3 equation example:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \text{a common type of equation, called an "eigenvalue equation"}$$

$$\begin{array}{lll} a_{11}x + a_{12}y + a_{13}z = \lambda x & a_{12} & a_{13} \\ a_{21}x + a_{22}y + a_{23}z = \lambda y & \Rightarrow \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \\ \Rightarrow \det \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix} = 0$$

The determinant = 0 condition gives an algebraic equation for λ from which you can get the 3 allowed values but programs such as Mathematica and Mathematica will have functions to automatically find the eigenvalues of a matrix (i.e. solve the eigenvalue equation) without having to manually do the algebra.

- Multivariable Calculus
 - Scalar and vector functions:
 - Example: $f(x, y, z) = x^2y + \sin z$ is a scalar function of x, y, z.
 - Example: $\mathbf{F}(x, y, z) = (x^2y + \sin z, xyz, 4)$ is a vector function of x, y, z. Equivalent statements are:
 - $\mathbf{F}(x, y, z) = (x^2y + \sin z)\hat{\mathbf{x}} + xyz\hat{\mathbf{y}} + 4\hat{\mathbf{z}}$
 - $F_x = x^2y + \sin z$, $F_y = xyz$, $F_z = 4$

- Gradient of a scalar function: $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$, which is a vector function
- Divergence of a vector function: $\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$, which is a scalar function Curl of a vector function: $\nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$, which is a vector function
- Divergence theorem: $\oint_{closed} \mathbf{F} \cdot d\mathbf{A} = \int_{volume\ bounded} \nabla \cdot \mathbf{F} \ dv$
- Stokes' theorem: $\oint_{closed} \mathbf{F} \cdot d\mathbf{\ell} = \int_{surface\ bounded} (\nabla \times \mathbf{F}) \cdot d\mathbf{A}$ by the path
 - Both of those last two theorems are summarized like this: the integral of a function over a closed boundary can be obtained by adding up (integrating) a derivative over the region of space being bounded.

Computational Skills

- Know how to use a program such as Mathematica to do the following:
 - Symbolic integrals
 - Symbolic algebra, if desired
 - Numeric integrals
 - o Numeric root finding, including finding the intersection of two functions
 - Matrix inverses
 - Matrix multiplication
 - Matrix eigenvalues
 - Plotting
- Know how to do basic programming in a language of your choice