Elastic Strains

by Dr. Colton, Physics 581 (last updated: Fall 2020)

I found Kittel pg. 73-75 to be nearly incomprehensible. After doing some research and talking to an acoustics professor, I found a much better description in Fetter and Walecka, Theoretical Mechanics of Particles and Continua, pg 460-463. This mainly follows their treatment.

 $\vec{u} = \text{displacement field, describes where each point goes under a deformation.}$ i. e. $\vec{r}' = \vec{r} + \vec{u}(\vec{r})$ is the new position of \vec{r} $\vec{r}_0' = \vec{r}_0 + \vec{u}(\vec{r}_0)$ is the new position of \vec{r}_0

We will consider only small displacements; do a Taylor's series, first order.

Taylor's Series Review:

In 1-D

$$- f(x) = f(x_0) + \frac{\partial f}{\partial x}\Big|_{x_0} (x - x_0)$$

For 3-D scalar functions

-
$$f(x,y,z) = f(x_0,y_0,z_0) + \frac{\partial f}{\partial x}\Big|_{x_0} (x-x_0) + \frac{\partial f}{\partial y}\Big|_{y_0} (y-y_0) + \frac{\partial f}{\partial z}\Big|_{z_0} (z-z_0) =>$$

-
$$f(\mathbf{r}) = f(\mathbf{r}_0) + \nabla f|_{\mathbf{r}_0} \cdot (\mathbf{r} - \mathbf{r}_0) =>$$

- $f(\mathbf{r}) - f(\mathbf{r}_0) = \sum_{j=1}^3 \frac{\partial f}{\partial x_j} \Big|_{\vec{r}_0} (r_j - r_{0j})$ where j =1, 2, 3 refer to the x,y,z components of a vector, respectively, and the ∂x_i derivatives refer to ∂x , ∂y , ∂z .

For 3-D vector functions: each component of $\mathbf{u} = (u_x, u_y, u_z)$ is a scalar function. For the ith component:

- $u_i(\mathbf{r}) - u_i(\mathbf{r}_0) = \sum_{j=1}^3 \frac{\partial u_i}{\partial x_j} \Big|_{\mathbf{r}_0} (r_j - r_{0j})$ which is just like matrix multiplication:

$$\begin{pmatrix} \frac{\partial u_x}{\partial x} & \frac{\partial u_x}{\partial y} & \frac{\partial u_x}{\partial z} \\ \frac{\partial u_y}{\partial x} & \frac{\partial u_y}{\partial y} & \frac{\partial u_y}{\partial z} \\ \frac{\partial u_z}{\partial x} & \frac{\partial u_z}{\partial y} & \frac{\partial u_z}{\partial z} \end{pmatrix} \begin{pmatrix} r_x - r_{0x} \\ r_y - r_{0y} \\ r_z - r_{0z} \end{pmatrix}$$

Elastic Strains - pg 1

The 3×3 matrix $\frac{\partial u_i}{\partial x^i}$ is called the "deformation gradient".

Break for some notation and connections to Kittel

- **u** is the same as Kittel's **R**, Eq. 3.27
- The components (u_x,u_y,u_z) are the same as Kittel's (u,v,w)
- The nine $\frac{\partial u_i}{\partial x_i}$ terms are Kittel's ϵ_{ij} components

Now write the deformation gradient as a sum of symmetric and anti-symmetric matrices,

$$\frac{\partial u_{i}}{\partial x_{j}} = \frac{1}{2} \begin{pmatrix} \frac{\partial u_{x}}{\partial x} + \frac{\partial u_{x}}{\partial x} & \frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} & \frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x} \\ \frac{\partial u_{y}}{\partial x} + \frac{\partial u_{x}}{\partial y} & \frac{\partial u_{y}}{\partial y} + \frac{\partial u_{y}}{\partial y} & \frac{\partial u_{y}}{\partial z} + \frac{\partial u_{z}}{\partial y} \\ \frac{\partial u_{z}}{\partial x} + \frac{\partial u_{x}}{\partial z} & \frac{\partial u_{z}}{\partial y} + \frac{\partial u_{y}}{\partial z} & \frac{\partial u_{z}}{\partial z} + \frac{\partial u_{z}}{\partial z} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \frac{\partial u_{x}}{\partial x} - \frac{\partial u_{x}}{\partial x} & \frac{\partial u_{x}}{\partial y} - \frac{\partial u_{y}}{\partial x} & \frac{\partial u_{x}}{\partial z} - \frac{\partial u_{z}}{\partial x} \\ \frac{\partial u_{y}}{\partial x} - \frac{\partial u_{x}}{\partial y} & \frac{\partial u_{y}}{\partial y} - \frac{\partial u_{y}}{\partial y} & \frac{\partial u_{y}}{\partial z} - \frac{\partial u_{z}}{\partial z} \\ \frac{\partial u_{z}}{\partial x} - \frac{\partial u_{x}}{\partial z} & \frac{\partial u_{z}}{\partial y} - \frac{\partial u_{y}}{\partial z} & \frac{\partial u_{z}}{\partial z} - \frac{\partial u_{z}}{\partial z} \end{pmatrix}$$

(Note that the on-diagonal elements of the anti-symmetric matrix are zero.)

In much more compact form:

$$\frac{\partial u_i}{\partial x_j} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$$
$$= \varepsilon_{ij} + O_{ij}$$

Here the ε_{ij} terms (= $\frac{1}{2} \epsilon_{ij,in \, kittel}$) are related to elastic deformations. This is what we care about! Without giving any proof for this, I'll tell you that the O_{ij} terms are related to rigid rotations, and we'll disregard them as unimportant.

In Summary:

-
$$u_i(\mathbf{r}) - u_i(\mathbf{r}_0) = \sum_{j=1}^3 \varepsilon_{ij} \left(r_j - r_{0j} \right)$$

- $\Delta \mathbf{u} = (\varepsilon_{ij}) \cdot (\Delta \mathbf{r})$ using matrix multiplication

Applications

1) What happens to the vector $a\hat{\mathbf{x}}$? Let $\mathbf{r}=a\hat{\mathbf{x}}$, $\mathbf{r}_0=0$

$$\Delta \mathbf{u} = \begin{pmatrix} \varepsilon_{ij} \\ \varepsilon_{ij} \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \varepsilon_{11} a \\ \varepsilon_{12} a \\ \varepsilon_{13} a \end{pmatrix}$$

The new vector is then,

new
$$a\hat{\mathbf{x}} = a\hat{\mathbf{x}} + a(\varepsilon_{11}\hat{\mathbf{x}} + \varepsilon_{12}\hat{\mathbf{y}} + \varepsilon_{13}\hat{\mathbf{z}})$$

= $a[(1 + \varepsilon_{11})\hat{\mathbf{x}} + \varepsilon_{12}\hat{\mathbf{y}} + \varepsilon_{13}\hat{\mathbf{z}}]$

This clearly has a different direction than $a\hat{\mathbf{x}}$. What about length?

new length =
$$[(new \ a\hat{\mathbf{x}}) \cdot (new \ a\hat{\mathbf{x}})]^{1/2}$$

= $a\sqrt{(1+\varepsilon_{11})^2 + \varepsilon_{12}^2 + \varepsilon_{13}^2}$
= $a(1+2\varepsilon_{11}+\varepsilon_{11}^2 + \varepsilon_{12}^2 + \varepsilon_{13}^2)^{1/2}$

Keeping only terms which include one factor of ε in them (because the matrix values are assumed to be small), we have:

new length =
$$a(1 + \varepsilon_{11})$$

 ε_{11} is therefore equal to the fractional change in length, namely $\varepsilon_{11} = \frac{\Delta L}{L} = \frac{new\ length-a}{a}$, which is precisely what we would normally call the "strain" for compression in the $\hat{\mathbf{x}}$ direction.

Similarly, ε_{22} and ε_{33} are equal to the strains in the \hat{y} and \hat{z} directions.

2) What happens to the angle between $a\hat{\mathbf{x}}$, and $a\hat{\mathbf{y}}$ (initially 90 degrees)? As done in Application 1,

new
$$a\hat{\mathbf{x}} = a[(1 + \varepsilon_{11})\hat{\mathbf{x}} + \varepsilon_{12}\hat{\mathbf{y}} + \varepsilon_{13}\hat{\mathbf{z}}]$$

Very similar for y,

new
$$a\hat{\mathbf{y}} = a[\varepsilon_{21}\hat{\mathbf{y}} + (1 + \varepsilon_{22})\hat{\mathbf{y}} + \varepsilon_{23}\hat{\mathbf{z}}]$$

From the dot product formula $(new \ a\hat{\mathbf{x}}) \cdot (new \ a\hat{\mathbf{y}}) = |new \ a\hat{\mathbf{x}}| |new \ a\hat{\mathbf{y}}| \cos \theta \dots$

$$a^{2}[(1+\varepsilon_{11})(\varepsilon_{21})+(\varepsilon_{12})(1+\varepsilon_{22})+(\varepsilon_{13})(\varepsilon_{23})] = a^{2}(1+\varepsilon_{11})(1+\varepsilon_{22})\cos\theta$$

$$\cos\theta = [(1+\varepsilon_{11})(\varepsilon_{21})+(\varepsilon_{12})(1+\varepsilon_{22})+(\varepsilon_{13})(\varepsilon_{23})](1+\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{11}\varepsilon_{22})^{-1}$$

Doing a Taylor series expansion on the last term, namely $(1+x)^n \approx 1+nx$, multiplying everything out, again keeping only terms which include one factor of ε in them, and using the symmetry of $\varepsilon_{21}=\varepsilon_{12}$, this greatly simplifies to

$$\cos \theta = \varepsilon_{21} + \varepsilon_{12} = 2\varepsilon_{12}$$

Since $\cos\theta$ is not zero, these two vectors are no longer perpendicular! And the off-diagonal terms like ε_{12} are a measure of how non-perpendicular the original coordinate axes are, after the deformation.

This is basically Kittel Eq. 3.32: $\mathbf{x}' \cdot \mathbf{y}' = \epsilon_{xy}$ (which =2 × our ϵ_{xy})

3) What happens to the volume of a cube? I'll skip the work here, but if you start with $(a\hat{\mathbf{x}}, a\hat{\mathbf{y}}, a\hat{\mathbf{z}})$, transform each vector, then calculate

new volume =
$$(new \ a\hat{\mathbf{x}}) \cdot (new \ a\hat{\mathbf{y}} \times new \ a\hat{\mathbf{z}})$$

then make similar approximations as in Application 2, you arrive at:

new volume =
$$a^3(1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33})$$

Since the "trace" of a matrix is the sum of the diagonal elements, you can write:

new volume =
$$a^3 \left(1 + \text{Trace}\left(\varepsilon_{ij}\right)\right)$$

$$\frac{\text{new volume}}{\text{old volume}} = 1 + \text{Trace}\left(\varepsilon_{ij}\right)$$

$$\text{Trace}\left(\varepsilon_{ij}\right) = \frac{\text{new volume}}{\text{old volume}} - 1$$

$$\text{Trace}\left(\varepsilon_{ij}\right) = \frac{\text{new volume}}{\text{old volume}}$$

$$\text{old volume}$$

$$\text{Trace}\left(\varepsilon_{ij}\right) = \frac{\Delta V}{V}$$

So the trace of the ε_{ij} matrix relates to the fraction change in volume, if e.g. you compress the object on all sides as opposed to applying a stress only in one direction.

We will learn how to calculate ε_{ij} given the forces on the solid, and now you have some insight as to what the components of ε_{ij} mean.