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Intrinsic reminder 
 
As a reminder, for intrinsic materials we were able to deduce the number of electrons in the conduction 
band as a function of temperature, 𝑛ሺ𝑇ሻ for a given material (with a given band gap), by writing these 
equations for 𝑛 and 𝑝, and using the equation 𝑛 ൌ 𝑝 to connect the two. 
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 𝑛 ൌ 𝑝   ሺintrinsic conditionሻ (3) 

 
Those were the three governing equations for the intrinsic case. 𝐸 and 𝐸௩ are the conduction and valence 
band energies, respectively.  
 
None of the equations individually gives enough information to solve for 𝑛ሺ𝑇ሻ, because we don’t know 
how 𝜇 varies with temperature (at least, we didn’t at first). However, multiplying (1) and (2) and taking 
the square root allowed us to determine 𝑛ሺ𝑇ሻ by recognizing that 𝑛ଶ ൌ 𝑛𝑝 from the intrinsic condition. 
We were also able to determine 𝜇ሺ𝑇ሻ by plugging (1) and (2) into (3) and solving for 𝜇.  
 
Alternatively, we could have first solved for 𝜇ሺ𝑇ሻ and then plugged it back into (1). That would have led 
to the same result for 𝑛ሺ𝑇ሻ that we obtained through the other method. We’ll take that second approach 
for extrinsic (doped) materials: to find 𝑛ሺ𝑇ሻ we will first find 𝜇, then plug 𝜇 into (1) to get 𝑛. 
 
 
Governing equations for extrinsic materials 
 
Let’s now consider an n-type doped material; hopefully the extrapolation to a p-type material will be clear 
should you ever need to do that. For an n-type material, (1) and (2) for 𝑛 and 𝑝 are still the same,1 but the 
equation connecting the two is now different: 
 

 𝑛 ൌ 𝑝  𝑁ௗ
ା  ሺextrinsic conditionሻ (4) 

 
Here 𝑁ௗ

ା is the concentration of ionized donors, i.e. the number of donors per volume whose electrons 
have been promoted to the conduction band. A formula for 𝑁ௗ

ା can be obtained via a thermodynamic 
treatment of ionized donors, as the following:2  
 

                                                      
1 This is actually an approximation, since technically in deriving (1) and (2) we had to make a small temperature 
approximation which may or may not exactly apply now. But we’ll ignore that, since everyone else does, and the 
resulting equations work well. 
2 See for example, problem 7.5 in Daniel Schroeder, An Introduction to Thermal Physics; and also these websites 
https://lampx.tugraz.at/~hadley/psd/problems/ionizeddonors/Q.php and 
http://ecee.colorado.edu/~bart/book/extrinsi.htm (under “2.7.4.2 General analysis”). 
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where 𝑁ௗ is the total concentration of donors and 𝐸ௗ is the absolute energy of the donor level (i.e. not the 
donor ionization energy, which is the difference between 𝐸 and 𝐸ௗ).  
 
Equations (1), (2), (4), and (5) are the governing equations for the extrinsic case. 
 
 
Solving the governing equations for the extrinsic case 
 
We can now put the four governing equations together by plugging (1), (2), and (5) into (4), like this:  
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For a situation where we are given the material and the amount of doping, 𝜇 and 𝑇 are the only unknowns 
in that equation. The equation can therefore in theory then be solved for 𝜇 as a function of 𝑇, and 𝜇ሺ𝑇ሻ 
can then be plugged into (1) to give us 𝑛ሺ𝑇ሻ.  
 
However, unlike the intrinsic case, (6) is not analytically solvable for 𝜇ሺ𝑇ሻ. Therefore we must solve it 
numerically: pick a temperature, solve numerically for 𝜇 at that temperature, then plug that 𝜇 into (1) to 
get 𝑛 for that temperature. Let’s do that in an example. 
 
 
Example 1: Silicon Doped With 1021 Donors/m3, T = 77 and 300 K 
 
For silicon at 300 K, the appropriate “density of states effective masses” for electrons and holes are 

1.091𝑚 and 0.999𝑚, and the bandgap is 1.1242 eV.3 Therefore the quantity 2 ቀ
்

ଶగℏమ
ቁ
ଷ/ଶ

 equals 

2.85962 ൈ 10ଶହ m-3 and the quantity 2 ቀ
்

ଶగℏమ
ቁ
ଷ/ଶ

 equals 2.50565 ൈ 10ଶହ m-3. To simplify typing things 

into Mathematica, I’m therefore going to rewrite (1) and (2) like this:  
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where the temperatures must now be explicitly given in kelvins and the concentrations 𝑛 and 𝑝 are in m3. 
 
I’m also going to set the valence band energy to zero, as is often done, so 𝐸௩ ൌ 0, 𝐸 ൌ band gap, and 
𝐸ௗ ൌ 𝐸 െ 0.045 eV (taking the donor ionization energy for silicon to be 45 meV). Remember, the 
procedure is to use (6) to solve for 𝜇 for the given T, then plug that 𝜇 back into (1) to get 𝑛. I’ll now turn 
to Mathematica to first solve for 77 K and then for 300 K. Pay attention to the comments in the code. 
 

                                                      
3 These values will shift with temperature. However, for simplicity in the examples that follow I’ll continue to use 
these 300 K values even though the masses will go up and energy gap will go down with increasing temperature 
because the lattice undergoes thermal expansion which affects the band structure. 
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𝑛, plotted as a function of 𝜇 
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First step: 𝜇ሺT ൌ 77Kሻ ൌ 1.06765 eV 

Second step: 𝑛ሺT ൌ 77Kሻ ൌ 7.40182 ൈ 10ଶ mିଷ  
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Example 2: Silicon Doped With 1021 Donors/m3, all temperatures 
 
That same procedure can be employed to determine 𝜇 for any arbitrary temperature. I’ll do all 
temperatures at the same time now, letting Mathematica do the “pick a temperature” part automatically. 
 

  

Plot of 𝜇 in eV as a function of 
temperature in K, for Si with 
Nd = 1021 m-3 

the point where 𝑛 ൌ 𝑝  𝑁ௗ
ା,  

for this new temperature 

First step: 𝜇ሺT ൌ 300Kሻ ൌ 0.858922 eV 

Second step: 𝑛ሺT ൌ 300Kሻ ൌ 9.99602 ൈ 10ଶ mିଷ  
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Approximate results for the three temperature regimes 
 
As you can tell from the last plot, there are three distinct types of behavior for low, medium, and high 
temperatures. They have to do with how the terms in (4) compare in size. It’s fairly easy to get 
approximate results for the three regimes.  
 
I’ll now use the notation that the non-exponential parts of (1) and (2) can be written as 𝑛 and 𝑝:  
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Low temperature regime: 𝑛 ൎ 𝑁ௗ

ା 
 
At really low temperatures, essentially none of the electrons in the valence band are thermally excited into 
the conduction band: 𝑝 ൎ 0. Therefore all of the conduction electrons come from the ionized donors and 
(4) becomes: 
 
 

𝑛 ൌ
𝑁ௗ

1  2𝑒ሺఓିாሻ/்
 (7) 

 
If the temperature is low enough, then ሺ𝜇 െ 𝐸ௗሻ/𝑘𝑇 is large, and the exponential in the denominator of 
(7) is much larger than 1. 
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2
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We can multiply the left and right have sides by the left and right hand sides of (1) to remove 𝜇 from the 
equation, then take the square root of 𝑛ଶ to obtain 𝑛: 
 

Plot of 𝑛 in m-3 as a function of 
temperature in K, for Si with 
Nd = 1021 m-3 

 

This is the main result of this 
handout! 
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𝑛 ൌ ඨ
𝑛𝑁ௗ

2
 𝑒ିா,್/ଶ் (8) 

 
This is Kittel’s Eq. 8.53 (but he doesn’t derive it), although he is missing a factor of √2 in his equation. 
This is called the “freeze out” regime because typically 𝑛 will be quite small. 
 
Medium temperature regime (includes 300 K): 𝑛 ൎ 𝑁ௗ 
 
As the temperature increases, all of the donors get ionized while the valence band electrons are still not 
able to reach the conduction band. We still have 𝑝 ൎ 0, but the value of 𝑁ௗ

ା is now extremely close to 𝑁ௗ. 
Therefore for this regime we simply have 
 
 𝑛 ൌ 𝑁ௗ (9) 

 
Another way of looking at this regime is that (7) still applies, but the exponential in the denominator of 
(7) is now much less than one because ሺ𝜇 െ 𝐸ௗሻ/𝑘𝑇 has switched from positive to negative. 
 
High temperature regime: 𝑛 ൎ 𝑝 
 
At high enough temperatures, thermal excitation of the electrons from the valence band to the conduction 
band becomes significant. Therefore 𝑝 ≫ 𝑁ௗ

ା in (5) and we have: 
 

𝑛 ൎ 𝑝 
  
That is exactly the condition we already solved for intrinsic semiconductors, and indeed this is called the 
“intrinsic regime”. The result we previously obtained was:  
 
 𝑛 ൌ ඥ𝑛𝑝𝑒

ିா/ଶ் (10) 

 
 
Equations (8), (9), and (10) can be used to approximate the true results for the three temperature regimes. 
 


