Assignment 3
Arfken 2.1.6 The metric or spacetime interval in Minkowski space is
ds* = dzd — da? — da3 — da’
We can read off the coefficients g;; as
goo =1 g11 = g22 = g3z = —1

with all the rest (off-diagonal terms) being zero. Putting this into a matrix form, we get

1 0 0 0
o -1 0 o
0 0 0 -1

Arfken 2.2.2 Find the divergence and curl of the unit vector é; in an arbitrary orthogonal coordinate
system.

Using equation 2.21 with V= (1,0,0) we get for the divergence
5 o 1 0
% = — | — (h2h
V- Vg1, q2,93) Tihals [aql( 2 3)]

with the other terms zero.
Using the determinant form for the curl in equation 2.27, we get

5 - 1 . Ohy . Ohy
= — ho—— — é3 hg——
V x V(q1,q2,3) hihaha [62 2 945 €3 N3 8q2]

Arfken 2.4.11 Show that (V- V)(V x @) = 0 with & = 2v(p) leads to a third order differential equation
satisfied by v = vy + agp?.

First take the curl of our v:

= v
VXU=—-p—
U %) p
Now we must take the vector Laplacian of this vector, call it V =V x . Note that V, = —dv/dp is the only
nonzero component. Using Eq. 2.37 we get
Lo ) 1
(V- 9)P)]| =V -V,
p

©

where we are taking the ¢ component of the vector Laplacian equation. Now we take the scalar Laplacian
of the ¢ component of V:

_lofoVe) 1V, &V, 1
. POp Pop p? 02 9z2 pr ¥

10 0%v 1 v

“oop\ "o2) 2\
Since this is zero by assumption, it is exactly the differential equation we want (up to a multiplication by
—1). It is then straightforward to show that v = vy + agp? satisfies it.
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Arfken 2.4.14 Consider TEM waves in a coaxial wave guide.

The electric field E = E(p, p)e!**=%) and magnetic induction B = B(p, p)e!**=“!) are such that
E(p, ) and B(p, ¢) both satisfy the vector Laplacian equation. We want to show that E(p, ) = pEoa/p
and g(p, ) = $Bopa/p satisty their respective equations.

For E (p, ), the relevant equation is just the p component of the vector Laplacian given in equation
2.35 since the other components vanish:

1

2
10 ( 0E,\ 1
=~ (p=2) - SE

pﬁ/J(p@P) p* "’
E

_ 10 <—1E0a) _ 1 Eoa

T pdp \ p P’ p
=0

(V-V)E=V2E, - F,

For B?(,o7 ©), the relevant equation is now the ¢ component of the vector Laplacian:

W o\ o 1
2
(V-v)B=v By~ 5B,
and in an otherwise indentical calculation, this yields 0 for the above form for B, (p, ¢).
Now we must verify that the general solutions satisfy Maxwell’s equations (for example look at the

equations in the introduction of the text). The two divergence equations are

0=V-E
10 10F OF
=_—-— (pE i 2 z
10
= —— (Eoa
>0 (Eoa)
=0
0=V B
10 10B 0B
=—-— (pB i 2 2
The curl equations are
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= E _—
0=VxFE+ ot
L . OB
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This will be consistent provided By/Ey = k/w = poeo w/k as demanded.

Arfken 2.4.15 For B = ¢By(p), find (B-V)B

L Lo 1 _
(B-V)B = (B,d, + By 0, + B.d.) B

where in the first line B, = B, = 0 and we have used the result (e.g. from Exercise 2.4.3) 0; (¢) = —p in
the last line.

Arfken 2.5.2 Find the partial derivatives of the unit vectors in spherical polar coordinates and use these
to derive the Laplacian in these coordinates.

Using the expressions for 7, 6 and ¢ from exercise 2.5.1:

7= Zsinfcosy+ gsinfsiny + 2 cos
6= Zcosbfcosp+ ycoshsing — Zsinb

@ =—Isinp+gycosyp

From these, we see the following R
72,7“ = e,r = ()5,7‘ =0

The 6 derivatives are

and the ¢ derivatives are

7o =-sn0p 0, =cosfp $.p = —(sin @7 + cos 0 0)

We can now construct the scalar Laplacian V- 61/) in the following way

o oo (72 4 gLl0 L, L 0N (00 4100 1 OY
v vw_(rﬁr—i_er@H—HprsinG&p) <r6r 0r89+wrsin9&p)

such that when we apply the second 67 we use the differential operators before finding the scalar product
between the unit vectors. We get

L o ) R R | ~ (1 R 1 . 1
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which is indeed the Laplacian in spherical coordinates and where we have used the comma notation to denote
partial differentiation.

Arfken 2.5.10 Find the spherical coordinate components of a particle moving through space with distance
vector 7(t) = 7(t)r(t)

To do this, we need the time derivatives of the unit vectors:
F=2 (cos@coswé — sinGsincpcp)
+9 (cosﬂsingpé + sin@coscpgb)
—%sinff
=00+ @psind
o

z (fsiHQCoscpéfcosHsinapgb)
+ g (—sin@singpé—l—cos@cosgogb)
— 2 cos 00

= 70+ ¢ cosbByp

—Zcospp —ysinp

= —7 sin 6y fécosegb

ASIY
Il

=

The velocity vector is ¥ = 7(t):
7= 7(t) () + Fr(t)
=it (éé+sm0¢¢>
The acceleration vector is @ = 7(t):
F= P i (éé+ <psin9¢a) +r (éé+ 60 + Gsinfg + o cos 00 ¢ + <psine¢)
— FF 4 [éé+ sﬁgbsin@] i (éé+¢sm9¢)
+7r [09 +6 (—fé + cos@gbgﬁ) + @sinfp + gbcos@écﬁ — p?sinf (fsin@ + écos@)}
=7 {7‘ —rf? — rsin® 9@2] +0 [27’“9 + 76 — ¢ sin 0 cos 9] + ¢ [27@ s$in @ + 2r6¢ cos 0 + r@sin 9}
and for both, one can read off the appropriate components.

Arfken 2.5.11 From Newton’s second law, m 7 = # f(7), show 7 x ¥ =&

Cross 7 into the second law to get

and notice that

Integrating this then leads to the desired result 7 x 7 = & where @ is a constant vector. This is nothing
more than a statement that angular momentum is conserved (i.e. a constant: mé). Geometrically, one can
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interpret this as the area of the parallelogram formed by 7 and 7.7, i.e. the rate at which the radius vector
sweeps out area is a constant.

Arfken 2.5.17 Verify some operator identities with L=—ifxV.

—iF x [h = —7 x (7 x Vi)
——f’x( % -0 ! W)

00 sin @ Oy
w s r oy
"96 T ¥ sino Op
ST IR
"or @ rsinf dp or
aw
5 200
=72V —ir o
Rearranging this and peeling off the ¢ gives us
.0 Px L
v ar T2

Now consider

iV x Ly =V x (Fx V)

=V <</3l/1,0 B 81n9w¢)

= L { (rsin 6y, 9) (ﬁ%w) — 76 (rsin 91/)79)7T + rsin 6o (—;w,g,) r}
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1
_ = 2 .
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T2 _1; _
r (r w’r>ﬂ‘ 7"9 (TT/J,G),T rsin 6 (Tw’w)”'

= FV2¢ - [72 (w,r + w,r + Tw,rr)
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