The action for a gravitating, charged scalar field is

s= [vEde{ e - 00000 V(6.6 - {Eur )

167G

where we have made the definitions

D, =V, —icA,

F,, =V,A, -V,A,
¢ =¢1 +iga

with the charge e being the coupling between the scalar field and the gauge field, A,,.
The resulting equations of motion are

1
Ry, = 87G (T;w —3 'yWT)\)‘)

VFEE 0 = ie{9*Vad — ¢V ad*} + 26°0d* Ay = ja
ov

V. VF¢ = 2ie A"V ¢ + 2P A, AP + iegV , AF + e

where the stress tensor is

Top = (Da¢) (D;LQS)* + (Da¢)* (Du(b) — Yau (DA¢) (DAQZ))* - ’Yauv(¢7 ¢*) + FaﬁFuﬁ - i em F)\JF/\U

We choose to work in the Lorentz gauge: V,A* = 0.
The Maxwell equations in curved space can be written

1
VIV, Ay = jo + 87G <Ta“ = 5% T,\’\) A,

where, in order to write the vector Laplacian of A,, we have commuted covariant derivatives (which is how
we picked up the Ricci tensor) and used the Lorentz gauge.

We want to perform the (24 1) 4+ 1 decomposition on these equations. In our original writeup, this was
performed for the Einstein—scalar equations. Most of that can be taken over here, though the electromagnetic
field will certainly modify those equations. Although we will try to write out all the relevant equations, much
of our effort here will be focused on decomposing the electromagnetic field. We will rely heavily on our earlier
definitions and the reader is referred to that for greater detail as to our approach and formalism.

The Maxwell equations
Recall that the metric on the 4-manifold can be written in terms of the other metrics
(4)’Ylw = (B)QMV + SLQXMXV
= @h,, —nun, + S%XMXV
where n* is the timelike unit vector normal to the spatial 2-hypersurface and X* is the Killing vector

associated with the axisymmetry. The scalar field s defines the norm of the Killing vector: X*X, = s%.
Decomposing the covariant derivative of the gauge field, we get

ViAo = 0,Aq =D T Ay

= D, Ay — %sgg”’\ YoZuo + YuZoo — 0, (Ins?)Y, Y, ] Ay — %Y*AA [0,(5%Ya) + 0a(5°Y,)]

where we have defined Y# = X”/s2 = 5’;/82 and Z,, = 0,Y, — 0,Y,, with D, defined to be the covariant
derivative on the 3-manifold with metric g,,,. With this we can calculate the vector Laplacian. What we
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really want, however, is the parts of the vector Laplacian projected into the 3-manifold and along the Killing
vector. After some calculation, these are

1 1 1
9a” - V'V Ao = D'DyAq + —D"sDyAq = 5 Dys A" Dos — DAy 2" — =Dy (s2",) A,
S S S
1 1
X V'V, Ay = D'Dy Ay — D" (ApD,s) — s> DA Z,,\ — EAADM(S?*Z“ A)

1
= D'DyA, - —D" (ApD,s) — s> DA Z,\ + 87G (T, — Y T,) A

where, in the last line, we have used a result from our earlier writeup. At this point, we make what is
a crucial observation for the consistency of our subsequent development. In our original considerations of
axisymmetric gravitational collapse, our matter was only a scalar field (perhaps with a potential). However,
this allowed a significant simplification at the time, namely the introduction of the scalar twist, or twist
potential, w. This was defined by

Vow=w, = eW,\UX”VAX”

In the present case, this can be rewritten as
1 4 vV r7Ao
wy, = 55 €uvraY " 477
Our use of the scalar twist arose through one of the Einstein equations in the 3-manifold:
D(s3Zy,) = 167G's (Ty, — Y3 T)p)

The twist, w,,, can always be defined, but the scalar twist, w, can be defined provided the right hand side of
the above Einstein equation is zero. For a nontrivial electromagnetic field, this quantity, Ty, — AT, will
be zero if and only if A, = 0. If we make this assumption, it might be tempting to think that we can now
use the scalar twist and all is well. However, note the above vector Laplacian projected along the Killing
vector, X*. This is an evolution equation for A,. Even when additional stress-energy terms are included,
this equation is not always satisfied with A, = 0. Indeed, there is a term s?Z,, AD*A* which will source A,
unless it is identically zero as well. Because we want to allow A* to be nonzero, we must choose Zux=0.
However, this defines our scalar twist and is nonzero if and only if there is rotation in the spacetime. Thus, to
continue to use the scalar twist in our formalism together with an electromagnetic field forces us to consider
only poloidal magnetic fields (i.e. A, = 0) with no rotation: w = 0. Certainly, we could change our approach
to allow for rotating electromagnetic fields, but we would then have to use the twist, w,, and our formalism
would be considerably modified. At this point, though it is certainly something of a sacrifice to temporarily
give up on rotating electromagnetic fields, it seems to me that we have more than enough to do to consider
just collapsing non-rotating fields.

Therefore, for consistency, we will set A, = 0 and Z,,, = 0 in the following. Note that we have thereby
solved the X* - V*V A, equation exactly.

We now do the ADM decomposition. Considering the vector Laplacian in the 3-manifold, we first project
it in the timelike direction, ¢.e. along n®,

(1) @) 3)
nga® - VAV, Ay = D, D*(n%A,) —2D,n® D*A, — D, D"n® - A,

) (5) «©)

1 n a a 1 m a
+ gD s (Dyu(n"Ag) —Aq Dyn®) — ?A Dys-n"Dgs

where, because we are now living fully in the 3-manifold, we can switch from using Greek indices (u, A, - -)
to using Latin indices (a, b, --) which range over 0,1, and 2. Note the numbering above each term. In the
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hope of keeping things somewhat orderly, let’s consider each term in turn:

(1) DyD®(n"A4,) = h*AgAy(nA) + K - nDy(nA) — n*Dy[n’ Dy(nA)| + n*Dan® - Dy(nA)
(2) Dyn®DYA, = —K®D, Ay — n®Dyn, n°D A
(3) DyD’n® - A, = A¢- ¢ Ay Apne + (nA)K“bKab — K, A® - n’Dyn® + K - A®nPDyn,
—n*D, [anb(nA)] +n®*D, (nanDcAb) +n*Dy A’ - nD.ny,
1 1
(4) ngs - Dp(nd) = B h*Ays Ay(nA) + xn®Dgy(nA)
1 b a 1 ab a b
(5) gAaD s Dyn :—;K Ay Dys+ xn®Dgny - A
1
(6) —A%Dqys n®Dys = X h® A, Dys — x? - (nA)
s s
where we have used sy = —n®D,s from our earlier definitions (recall that y =) K% and n, = (—a,0,0))
and the 2-extrinsic curvature, K,, = —Dyn; with trace K = K,,h®®.* (Recall, as well, that with maximal
slicing, K = —x.) The derivative operator, A,, is the covariant derivative on the 2 dimensional spatial

hypersurfaces built out of the corresponding metric h,,. We have also defined a new scalar variable (short-
hand, really) nA = n,A® With the exception of term #3, each of the above calculations is a relatively
straightforward projection using gu.p = hap — Nap-

All but two of the above terms are now expressed in terms of quantities on the 2-manifold. The
exceptions are n®Dgyny, - h* and Dy Ay. Defining n, = (—a,0,0) such that n® = (1,8, 3?), these can be
shown to be

n® Dy - b = b . 22
(0%
DaAb = AaAb — nahbd . nCDcAd - ana (’I?,A) — nbAdKad — nananDcnd . Ad

Putting all of this together, changing to partial derivatives where appropriate, and grouping according
to terms involving A* and its derivatives, we get

nagaa . vuv,uAa = —n?0, (nbncDCAb)
+ h® A, Ay (nA)
+ (K + x) [n*Dq(nA) — A® - anbna]

+ h* 9, (nA) [aba + abs]
« S

+ (nA) [x* — Koy K™
+ 2K AL A,

L her B2 ep A,
@
+ A, [—AbAbn“ + Kb <ab—a + %> + x b %]
o s s
Of course, this is only one side of the Maxwell equation. The full equation is
1
ng," - V*V, Ay = n® [ja + 871G (Ta“ - 37" Tﬁ) A#}

At this point, it is convenient to define some auxiliary variables. For evolution variables, we will use the
spatial components of the gauge field: h,”Ay, (which, in our eventual cylindrical coordinate system, will be
A, and A.). Their “conjugate variables” will be

II, = —hy‘n*D,A.

* Note that this definition for the extrinsic curvature includes a minus sign which is different from the
definition in Wald.



Note that this is a quantity in the spatial hypersurface and will only have two components. (Indeed, we
could replace b with B where we use capital Latin letters to run over 1 and 2.) We will also take nA = n®A4,
as another evolution variable. It turns out to be a much more natural choice than, say, A;. Its conjugate
variable will be

Mipay = n’n®D, A, = n®d, (nA) — A% n°D.ny

It becomes clear that the equation we have been dealing with is the evolution equation for I, 4). Finally,
noting that the Laplacian of n® in the above equation can be written

—AaAanb = AaKab
= AK — O R,n®h,

0 19)
= Ab(K + x) + h%, X%S — Kba%S — 871G T, - n°h%,

we can combine these facts and write out the evolution equation as
0,4y =00, (nbnchAb) = h®A, A (nA)
+ (K + X)) + R Ay Ay (K + x)
O (as)

as
+ (nA) [X2 — KabK“b]

+2KA A,

+ h 9,(nA)

_ pab 8,1_04 I,
@

81705

+ A {Kba +2x bt %}
S

a
1
—n%j, — 81G [QTabn“hbcAC — (nA) n*n’T,, — 3 (nA) %

We consider now, the same quantity: g,* - V#V,A,, but now projected into the spatial hypersurface,
8 9
@ (8) 9)

hy® - go* - VHV  Aq = b DeDAg + ™ =D sD:Aq — hp® — DgsD.sA°

s s

Again, working on the terms individually, we find

(7) hy* D DA, = g°*AAgAy — KT, 4+ b - n°D.I1,
+ TlaDanb (AbAC + hbcH(nA)) + K,° [86 (TI,A) + AdKCd]
1
(8) hy" ~D°sD.A, = haC%ACAb I,
1 1 1
(9) hy® S—2DQSDCSAC =3 hy®Dys h®D.s Ay + X(nA) B hy*D,s

So that on combining these we get

hy® - ga” - VILVNAQ = hp® -n°D I, + h*“A A Ay — (K + X)Hb

Oq
+ H(nA) hy® a
«

—i—haCA A aa(as)
c1b s

+ K3° [0:(nA) + K. *A4]

1 1
— g hbaDas ; thAchS + X (nA)
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Equating with the appropriate right hand side,

1
hy® 'gaa ' VMVMAoc = hp |:ja + 871G (Tau - §7aMT/\>\> AM:|
1
= hba ja + 87TG [hbathTacAd - hbancTac (TLA) — EhbaAa T)\)\

Because this is the evolution equation for II,, we can write

hy* n?Dgll, = —A,AAp + (K + x)IT,
= Hay Oa
(0%
Oy (ozs)
as
— Kbc [80 (nA) + chAd]

— h*°ALA,

1 1
+ = hp®Dys [— h°®A D.s + X (nA)
S S
1
+ hp? Ja + G |:hbathTaCAd — hp*n Ty, (nA) — ihbaAa T)\A

With this, it might seem that we’re finished with the Maxwell equations. Actually, we still need to
consider two equations. These are the Lorentz gauge condition and the Gauss constraint, i.e. the curved
space generalization of Gauss’ Law. The first is fairly straightforward and comes right out of our decomposed
covariant derivative

0=V, A"
0]
= A A — 0%y (nA) + A Deng + h* A, 22 4 x(nA)
s
Ops
= AaAa — H(nA) + habAa% + X(HA)

The Gauss constraint defines the initial value problem and must be solved on the first time slice in order
to provide good initial data. It arises because the a = ¢ component of the original Maxwell equation is not an
evolution equation but an elliptic equation. Another way to think of it is that V#F,, = V#V A, — V#V, A,
has no second time derivatives of A; (or any other component of A,,).

To deal with this, we must go back to the original Maxwell equations and decompose

90" (VY Ay — VAV 0 AL) = 60%Ja

along n®. The first term we have already done. The second term takes some work, but we can show that
the entire expression becomes

1
n® - g," (DDA — DDy A%) + ; n®ge" D°s(DcAy — DyAc) — ng." DAy - Zoy = 192"

where, if we assume A, = 0 and Z,, = 0, the third term drops out. Note too that the middle term in
parentheses is just Fi, the Maxwell tensor projected onto the 3—manifold. Rewriting the second derivatives

we have
(1) (2) (3)

n*DyD*A, — n*DyD, A" = (DyD"(n"A,) —2 Dyn® D* A, — Dy D'n* - A, )
(10) (11)
— (Dy(n"D,A%) — Dyn® D, A)
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where the first three terms were calculated earlier. The other two become

(10) Dy (nD,A%) = —AII° — 11, - n’ Dyn® + K - I, 4) — n*Dyll (0
(11) Dyn® Dy A* = —K* Dy A® — h**0, (nA)n°Deny, — KA, - n°Deny,

Putting it all together and using our expression for —A,A%n; again, we get the following elliptic equation
for nA:

A A (nA) = —KPA Ay — A°- A (K +X)
+ (nA) KKy,
— R AT,
Ags
S
+ 1%, 487G n*hb T, A°

+

[Ab(Kab _ habX) _ Fabnb]

Collecting all the relevant equations from this section, we have the evolution equation for II(, 4y (the
Maxwell equation projected along n®)

n*Dall(na) = h* Ao Ap(nA) + (K + X)L (4) + h* Ag Ay (K + x)

0
+ hab é)a(nA) b(OZS) + (nA) [X2 . KabKab} + QKabAaAb
_ pab aa_o‘nb + A, [Kba 81’_0‘ + 2y hbe %]
« « S

1
—n%j, — 871G {ZTabnahbcAc — (nA)n*n’T,y, — 5 (nA) T,\’\}
the evolution equation for II, (the Maxwell equation projected into the spatial 2-hypersurface)

O 04
hy® ndDdHa = —A,A%Ay + (K + X) I, — H(nA) hy® Oza — h*A A, ﬂ

as

1 1
— K3° [0c(nA) + K.4Ag] + = by Dys | = h°“AyD.s + (nA)]
S s
a apcd a,c 1 a A
+ hb Ja + &G hb h TacAd — hb n Tac (nA) — ihb Aa TA
the Lorentz gauge (constraint) condition
a ab abs
0= AaA - H(nA) + h Aa? + X(TLA)

and the Gauss constraint

AAY(nA) = —KPA Ay — A°- A (K +X) + (nA) K Ko, — h* AL,

Ags
_|_

[Ab (Kab — habx) — F% nb] + n%, + 817G n®h T, AC
The scalar field equation

The equation for the scalar field is also changed with the addition of electromagnetism. So let’s revisit
it. The general equation is

ov

V. VF =2ie A"V ¢ + ¢ A, AP + iepV , AF + Fre




where we will not drop the term with V,A* because we will use it in our definition of Iy

a slightly more convenient form

ov

V*(Vid = ieAud) = ied" (Vud — iedud) + 5o

Decomposing this equation, we get

n°DIly = A, (A% — ieA%®) + ie(nA) [y + K¢
Oq(as)

as

— ’ieAa:| (61,(;5 — ieAb(b) — a—V

ab
+h { o

where we have defined
H¢ = nd (ad(b - ieAd¢)

to be the variable conjugate to ¢.

. First rewrite in



The stress tensor
Now consider the stress tensor. It is, again,

* * N 1 -
Top = (Da(b) (D#‘b) +C.Co— Yap (Dws) (D)\‘b) — YoV (6, ¢7) + FaﬁFuB = g Tan Py, F*
where c.c. denotes the complex conjugate of the preceding term. Decomposing the Maxwell tensor yields
F., =0,A,-0,A,

1 1
= (hy* —nun* + s—quX*) (ho” = mun” + 5 X, X7) (O3 As = 05 43)

=B, + Qn[uhu])‘ Ex— S%X[uaV}Aso
where we define the auxiliary quantities
By = hyu % (03 As — 05A))
Ex =D, (nA) + Ky, A" + 11\ +ny - n? Dy (nA)

Note that both B, and &, live in the spatial hypersurfaces (n*&, = n*B,, = 0). In addition, we have
B, = —B,,. Thus B, has only one independent component. We can now write

5 1 1
F.sF.% =1 {Bag + nahs*Ex — SQXaaﬁAg,] [BW +nuh, Ny — SQXIL&,A“,}

1

— 1 »
- [hoﬁg - ijanﬁaﬁAw} {hﬁ@ - 2 Xun 6,A4

1
+ 8—25@14@8#1499
FopF™P = hP"B,sB", — 217" hg*h, E5En
2 v 2 1%
+ S—Qhﬂ OpAp0u Ay — = nPozA, -n"d, A,
Since our use of the scalar twist requires that A, = 0, we’ll drop those terms in the stress tensor leaving
Tap, == (Da¢) (Dﬂ¢)* +c.c. — ’Yay, |:(D)\¢) (D)\Qﬁ)* + ‘/(¢7 ¢*)i|

+ 1% (Bag + na€s) (Buw +1uE0) — Ea&y — i Yau (Ba B —26,E%)
Considering the matter terms in the previous Maxwell equations and with an eye to the source terms

in the Einstein equations, some useful quantities to have are

T\ =7 Ty

Top = XXM Ty,

Pmat = n*n*Toy = nn"Tyy

—Je =n"hb. Ty,

Spa = h"p hq Tae
we can write
T3 = 2[ [n"Dag|” = h*Dugs(Dye) " | — 4V (6, 67)

s2

4

Pmat = 10Ty = [n°Dads |* + 1% Do (Do) + V(6. 6*) + % (BanB™ + 2E,6%)

Tpp = X XH Ty = —5* [0%De¢(Deg)” — |n"Duth |2 +V(9,9")] — = [BacB* — 2E,E%]

—Jo = n"h Top = hPDy(nDadp)” + c.c. — hP By £
Sba = h B4 Tae = Wy h°a[Dad(Deg)” + c.c.] = hua {h*“Dats(Det)” = [n"Duss |* + V(6,6")}
+ h*BpoBae — Ep€q — % hpd [BacBac -2 5a5a]
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At this point, we could go back to our equations, add these matter terms and write out the equations
in their scalar, to-be-differenced form. However, there are two potentially “ugly” terms. This, of course, is a
matter of preference, but if we want to keep the number of terms in our equations to a minimum (admittedly
not a particularly compelling reason if one’s primary objective is a stable code), the term

AYAL Ay
in the evolution equation for II, and the term
2K A, Ay

in the evolution equation for I, 4) both produce a bevy of terms when written out in our coordinate system.
If we accept this minimalist notion, the first term can be dealt with by introducing the commutator of two
2—covariant derivatives and the corresponding Ricci tensor

AN, Ay = A" (A Ay — Dy Ay) + DR A, + 9y(AA,)

and noticing that the first term in parentheses is nothing but the 2—covariant derivative of one of our auxiliary
variables: A®B,;. This is progress since the 2-Ricci tensor is very simple in our chosen coordinate system.

Using this in our evolution equation for II, together with the Lorentz condition and the definition of &,
to eliminate the K,°K.? term, we have

hba ndDdHa = —AaBab — (2)Rab Aa — 81, (AaAa) + (K + X) Hb

_ H(nA) hba aaa o hacAcAb 6‘1 (OéS)
(&%

- Kbc(gc - Hc) + —
+ hp® jo + 87TG hbathTaC Ag — hp*n Ty (nA) — % hy® A, TA)‘

For the second “ugly” term, we note that a term like it is also present in the Gauss constraint. If we
thus use the Gauss constraint and the definition of &,, we can write the evolution equation for I, 4) as

nDall(pa) = —DaA%(nA) + (K + x) Tay — h*Ag Ay (K + X) — 24,11
Oy (as)

— h® 0y (nA) % + (nA) [x* + Ka K] — 211 -

1
+ & Dan’ +nja + 87G (nA) |n"nTay + 5 >

Making a final observation, we can express the Gauss constraint in terms of derivatives of £,. Using the
definition

E. =D, (nA) + KA + 11, + ng - n®D, (nA)

taking a 2—covariant derivative and using the Gauss constraint, we can write the Gauss constraint as
1 a aa
-A, (85 ) =n%j°.
s

This is nice since it accords with what one might expect from the curved space Maxwell equations so it is a
nice check of our method.



All the matter equations in 2-covariant form (general stress—energy)

Collecting all of the matter equations together again and using generic terms from the stress-energy, we
have the following evolution equations

n*o, (nA) =A, habaﬁTa + 14
nDallpa) = —DaA%(nA) + (K + X) Tay — h*Aq Ay (K + X) — 24,11

O
— hab 8(1(71/1) % + (nA) [X2 + KabKab] — 92711 (O‘S)
s as
1
+ & nDyn’ +n%jq + 871G (nA) nnbThp, + 3 A

hbcn“DaAc = —Hb
h* nDyll, = —A"Ba, — PR Ay — 0, (A"Al) + (K +x) T,

Dq Dq
Mo o

— h* A A

0
— K (Ec = o) + == [Hua) — AaA”]

1
+ hp? Ja + G |:hbathTaC Ag — hp*nT,. (nA) — 5 hp® A, T)\)\

n®0,¢ = ie (nA)¢ +1I,
n*0,1ly = A, (A%p — ieA%) +ie(nA) Iy + K¢
Oq(aus)

as

— ieAa] (8“25 — ieAb¢) — al

ab
+h [ "

and constraint equations

0=AgA" — T4 + habAa% + x(nA)
S
AAY(nA) = —KPA Ay — A° - A(K +X) + (nA)K* Ko — h* AL,
048
+
S

[Ab (K“b — habx) — F% nb} +n%jq + 87G nhP T,y AC

(Note that we could use A,(s€%) = sn®j, as the Gauss constraint instead of the last equation above.)
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All the matter equations in 2-covariant form (with charged scalar field as stress—energy)

Again, we write all of the matter equations down but this time with our particular choice for the
stress—energy tensor, namely that for a charged scalar field. The evolution equations are

%9, (nA) = A, hab‘{%a

n*Dallpay = Ao A% (nA) + (K + X) Tay — h* A Ay (K + X) — 24,11
Ou (as)

as

+ H(nA)

— h® 9, (nA) % + (nA) [X* + Ko K*] — 211
+ & n*Dan® + ie[¢*Ily — ¢IT}]
+87G (n4) 2T~V 4 1 (BB +26,6°)

hbcﬂaDaAc = —Hb
hy? n?Dgll, = —A"By, — DR A, — 0y(A%A,) + (K + x) I

Og

—pa) " ” Oa(0s)

as

— ROCALA,

0
— Ky (€ — L) + 2= [Mua) — A A°]

Fiehy [0 (6.0) — 6(67%) — 2ieda| o[’

+ 81G hb“{th Ad[Da¢p (Ded)* +c.c.] + AaV — (nA) [Dagp - 1T, + c.c.|

+Bo B A — E,E°A, — %Au (BeaB°t — 28.£°) + (nA) BQCEC}

n0,¢ = ie(nA) ¢ + Il
n®0ully = AgA% —iel, (A%¢) + ie(nA) [y + K¢
ov

et |20 e, | @uo —iedd) -

and the constraint equations are

0=AgA" — a4 + habAa% + x(nA)
AGAY(nA) = —KPA A, — A% A(K + x) + (nA) KKy, — h® AT,
0,8

+ = [AV (K" = h%x) = £°] +ie[¢7TLy — GIT]

+ 817G h’ A°[Dy 1T + c.c. — Bpa

(Where, again, we could use A, (s€%) = sn®j, as the Gauss constraint instead of the last equation above.)

To these equations we must also add the Einstein equations with a charged scalar field as the matter
source.
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All the (unregularized) equations

Writing out all the equations in our assumed coordinates with maximal slicing, (K + x = 0), we have

(nA),t =P (nA),p + 3 (nA)J + allja) + i S Ap +a AL

12 [(QSHP)W + (asHZ)’Z}

Hinays = BTnayp + B Mina) s = =5 [(n4) ,, + (nA) ]+ —
s S, a Q.
(nd) =5+ (nd) == = &5 = &.—]

+2a(nA) [K,"? + K/Q + K, + K, K.*] —

+
S
(0%
Sl
—iea(¢*Tl, — ¢I1,*) + 87G a(nd) 2|, |* =V + 2}7(5,,2 +E&7+ %Bpf)
1
Ap = BPApp+B7Ap. — (nA)O‘,p —all, + 4, (_O‘Kpp + ﬁ&) + 4. 2 (5; - ﬂ’pz)
1
Wy = By + 71z + 1Ly (—aK,’ +57,) + 115 (8%, = 47.:)
S
pr]

1 «a 1
+ a(_sz),z - ; [ (Ap P + Az,z)] _’p_E I:(OZS)’;)A/LP + (as),zAp)Z}

a

a a., 1
+ A, ) [(7"’ as) » + (7 as) Z} — Azﬁ [(as)ypavz — (a5)72a7p}
—|—aH(nA)(— - —) +aK, (I, — &) + aK,* (11, — £.)
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The constraint equations become
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All the (regularized) equations

After some experience, it has become clear that we must use somewhat different variables. The following
equations use “regularized” variables. More particularly, they incorporate the substitutions a = 9?2, s =
p2ef?, and xy = 3% (2apQ+ﬂﬁ) fﬁfz). In addition, we use the Hamiltonian constraint in the slicing equation
which changes the latter to a nonlinear equation in a.
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The gauge condition can be written as an equation for I, 4) at the initial time
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