
“Preliminaries”
Our purpose is to combine the classical Yang-Mills fields with Einstein gravity and examine the evolution

of such fields in spherical symmetry. To this end we of course need the equations of motion. There are a
variety of conventions in the literature and to be honest I have yet to sort it all out. Occasionally, I can’t
tell if a difference is due to a convention or a typo. At the risk of being wrong, what follows is my best
understanding to date of the equations for the Einstein-Yang-Mills-Higgs theory. Of course all this should
be double checked.

Let’s start with some definitions and conventions. We want to work with an SU(2) Yang-Mills field.
Other gauge groups would of course be possible, but SU(2) has been studied extensively and a lot of results
have been found in this case, such as the t’Hooft-Polyakov monopole in flat space, the Bartnik-McKinnon
particle solutions, “colored” black holes, and Matt’s original work in Yang-Mills collapse. Another somewhat
more practical reason is that we have a simple ansatz for the form of the gauge connection Aaµ in spherically
symmetric SU(2). To go beyond this gauge group would require finding a similar ansatz. A similar thing
would be true if we were to generalize our model from spherical symmetry to axisymmetry. We would need
the appropriate form for Aaµ.

Okay, let’s start by trying to unravel Witten’s original ansatz for the gauge field. Most people have
referred to Witten’s 1977 PRL so let’s try to understand it. His ansatz is as follows:

Aaj =
φ2 + 1
r2

εjakxk +
φ1

r3
(δjar2 − xjxa) +A1

xjxa
r2

Aa0 =
A0x

a

r
.

where the functions A0, A1, φ0, and φ1 are all functions of only r and t. Note too that we will shortly change
Witten’s original functions to match those which seem to appear most commonly in the EYM literature.
The gauge indices a run over 1,2, and 3 as do the spacetime indices i, j and k. Both sets of indices refer
to Cartesian coordinates in both the group space and spacetime (e.g. x1 = x, x2 = y, etc). Witten is of
course working in flat space here. The matrices that would be attached to the Aaµ to make the full Aµ are
the Pauli matrices up to some normalization. We will call these matrices τ1, τ2 and τ3. Note that these will
not be the same as those used by say Zhou or BM. Witten’s ansatz “mixes” group and spacetime aspects.
For that reason it is important to get the correct parameterization and that was a source of confusion for me
for a time. The parameterization that several authors use in discussing these solutions in GR (Bartnik and
McKinnon, Zhou and Straumann, Breitenlohner, etc) uses a different parameterization better suited to their
assumption of a spherically symmetric metric. The analogy between Cartesian unit vectors and spherical
polar unit vectors is appropriate here. The relation between the two is given by

τ1 = τr sin θ cosφ+ τθ cos θ cosφ− τφ sinφ
τ2 = τr sin θ sinφ+ τθ cos θ sinφ+ τφ cosφ
τ3 = τr cos θ − τθ sin θ

with the usual expression for the inverse relation. One can think of this choice for the basis of SU(2) as the
spherical projection of the Pauli matrices (Ershov and Galtśov). Bartnik and McKinnon I guess are trying
to say as much in their rather enigmatic paragraph where they write down their from for the gauge field A.
By substituting these expressions into Witten’s ansatz and making the change of variables from (x, y, z) to
(r, θ, φ), one arrives at the following expression for the gauge connection A

A = A0τrdt+A1τrdr + (φ1τθ + (φ2 + 1)τφ)dθ + (φ1τφ − (φ2 + 1)τθ) sin θdφ.

The algebra to get to this point is, as they say, tedious, but I have done it and verified that it is indeed the
case. Examining this, however, you will note that this is not exactly what most people have used. This form
differs from the others by a gauge transformation. (I need to give this transformation... It is included in
Greene, Mathur and O’Neill)

As I mentioned, in this we will use τr, τθ and τφ. They are what BM and Zhou call τ3, τ1 and τ2 respec-
tively. Note that both sets satisfy the usual commutation relations with the same choice of normalization.
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Why am I saying so much about this? Part of it is simply talking to myself so that I know up front what
our conventions are. But it turns out that understanding this (at least for me) was crucial in understanding
the extension to a Higgs field and the corresponding ansatz for it in spherical symmetry.

In our current case, the gauge connection in a form notation is (Zhou)

A = uτrdt+ vτrdr + (wτθ + w̃τφ)dθ + (cot θτr + wτφ − w̃τθ) sin θdφ.

where the functions u, v, w, and w̃ are all functions of r and t. The τi’s (with i ∈ {r, θ, φ}) are the basis of
the group SU(2). They have communtation relations which we will take to be

[τi, τj ] = β̄εijkτk

where β̄ is essentially a choice of normalization. The trace of the square of these matrices is then1

Tr(τ2
i ) = − β̄

2

2
.

One frequent choice in high energy physics is β̄ = i in which case the τi’s are just one half the spherical
projection of the usual Pauli matrices.2 Several authors that I have read (Ginsparg, Xanthopoulous, Harvey)
use anti-Hermitian generators of SU(2) which would seem to correspond to a choice of β̄ = 1. In this case,
the τi’s are −i/2 times our spherical projection of the Pauli matrices and obey (τi)† = −τi. This is actually
the choice we will make eventually, but we will allow for β̄ to be general for the moment.

In any case, most people make some simplifications to A. Several authors note that we can set the
function v to be zero by gauge invariance. Specifically, the form of A that we have after assuming spherical
symmetry and this particular parameterization still has some gauge freedom. A general gauge transformation
is of the form

A→ A′ = U−1AU + U−1d(U)

where the transformation matrix U is unitary. For a general tranformation, A will change, but physical
quantities will not change. However, a subset of these general transformations will leave the form of A
unchanged. This is, of course, analagous to GR. In spherical symmetry, we can set the shift vector to zero
(a choice of gauge). Likewise in the YM case, a particular gauge choice is v = 0. The gauge freedom still
present in the original connection is described by a U(1) group. More particularly, we have the freedom to
choose U(x) = eψ(t,r)τr and our gauge connection will maintain its current form.3 When one works out the
form of the above gauge transformation the connection becomes

A→ A′ = (u+ ψ,t)τrdt+ (v + ψ,r)τrdr
+ [(w cosψ + w̃ sinψ)τθ + (w̃ cosψ − w sinψ)τφ] dθ
+ [cot θτr + (w cosψ + w̃ sinψ)τφ − (w̃ cosψ − w sinψ)τθ] sin θdφ

1 Note that this helps explain the form the Lagrangian takes in some of the literature:

LYM = − 1
g2
F aµνF

aµν =
2

g2β̄2
Tr(FµνFµν)

If β̄ is imaginary, we have the usual sign, but if it is real, then in the Lagrangian, the ostensible sign seems
naively to be “wrong” since it is actually taken up in the trace over the matrices. We will ultimately be
more interested in a component form of the F ’s in group space so we will not worry about this very minor
technicality.

2 Did you follow that? If we had been using the τ1, etc of say, Witten, then these τ ’s would be one half the
usual Pauli matrices. We are using a parameterization of these matrices appropriate to spherical symmetry,
but the commutation relations and normalization are unchanged.

3 Note here that ψ(t, r) is imaginary if our generators are Hermitian (β̄ is imaginary) and real if our
generators are anti-Hermitian (β̄ is real).
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We can now choose to work in a gauge then such that ψ,r + v = 0. So we simply set v = 0.4

More mysterious perhaps is the claim that u(r, t) can be set to zero as well. Most people just put it to
zero saying they want a purely magnetic connection meaning they are looking only for magnetic monopoles
and are disregarding the possibility of dyons (solutions with magnetic and electric charge). Zhou shows,
however, that in the absence of matter, the requirements of asymptotic flatness and finite energy density
constrain u to be zero. I will not reproduce his argument here although I will mention that we should just
double check it in the context of our more general parameterization of the spherically symmetric metric since
Zhou works only in radial gauge. Zhou also makes a rather enigmatic comment by saying that w̃ can be
set to zero as well since it appears symmetrically in the equations. To be honest, I’m not quite sure what
he means by that. The fact as I understand it is that in the static case, if you keep w̃ as part of the gauge
connection and derive the equations with it, you end up with a simple equation which when solved gives you
w̃ = Cw with C a constant. Now consider a constant gauge transformation:

U = exp(γτr)

where γ is just a constant. This gauge transformation can now be performed to eliminate the proportionality
constant C. This is, of course, the same as setting w̃ to zero. We will see what happens in the non-static
case below.

With A in hand we can begin calculating various derived quantities. The field strength tensor is defined
by

F = DA

= dA+ ᾱA ∧A.

where D signifies here the gauge covariant derivative and where I am using the constant ᾱ to cover a range
of coventions. It is worthwhile mentioning that in component notation this becomes

Fµνdx
µdxν =

1
2

(∂µAν − ∂νAµ + ᾱ[Aµ, Aν ])dxµdxν .

Note that this is one half of the “usual” definition from high energy folks for Fµν and is reflected in our
Lagrangian by an extra factor of 4.

For the moment, let us not make any restrictions to the form for A that we previously wrote down. We
may make some in the future, but as we are interested in the general spherically symmetric ansatz for the
spacetime metric, let us consider the equations of motion with a general spherically symmetric ansatz for
the Yang-Mills gauge field. For our A then, we have

F = τr(v̇ − u′)dt ∧ dr
+
[
(ẇ − ᾱβ̄uw̃)dt+ (w′ − ᾱβ̄vw̃)dr

]
∧ Ω1

+
[
( ˙̃w + ᾱβ̄uw)dt+ (w̃′ + ᾱβ̄vw)dr

]
∧ Ω2

+
[
(−1 + ᾱβ̄(w2 + w̃2)) sin θτr + (wτφ − w̃τθ)(1− ᾱβ̄) cos θ

]
dθ ∧ dφ

where we have defined
Ω1 = (τθdθ + τφ sin θdφ)
Ω2 = (τφdθ − τθ sin θdφ)

We can take an additional exterior derivative of our equation for F and get

dF = ddA+ ᾱ(dA ∧A−A ∧ dA)
= ᾱ ((F − ᾱA ∧A) ∧A−A ∧ (F − ᾱA ∧A))
= ᾱ(F ∧A−A ∧ F ).

4 This leaves some residual gauge freedom such that we can perform a gauge transformation where U(x) =
eψ(t)τr . We will come back to this somewhat later and in the problem we will ultimately consider fix the
gauge completely.
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This is an identity (i.e. a constraint equation) and not strictly an equation of motion. However, as in E&M
there is a duality transformation which inverts the equations of motion and the constraints. Likewise in
this case, we can simply make the change F ↔ ∗F everywhere and the resulting equation is our equation
of motion in the absense of matter sources. If we consider this case, and unravel these equations in terms
of their components, we get four equations.4 We give two of these equations later with matter present.
However, there are two that without matter are true only if we have the relation

ᾱβ̄ = 1

which of course constrains our normalization choices. From here on out we will make the simple choice that
ᾱ = β̄ = 1. This corresponds to using anti-Hermitian matrices for the basis of SU(2).

The meat of the matter
Everything up to this point has been somewhat ad hoc. We have yet to refer to a Lagrangian for

instance. Let’s do that now. But let us also generalize from Einstein-Yang-Mills (EYM) to including some
Higgs fields (EYMH). We thus start with a matter Lagrangian of the following form.

L =
1

16πG
R− 1

g2
F aµνF

aµν − 1
2
DµΦaDµΦa − V (Φa).

We are working with the gauge group SU(2). The Higgs fields are in the so-called adjoint representation
of SU(2). This means simply that in general there are three Higgs fields and we denote this by letting the
index a run over 1, 2 and 3.5,6

Again, the fields are defined as

F aµν =
1
2
(
∂µA

a
ν − ∂νAaµ + εabcAbµA

c
ν

)
and the potential for the Higgs field is the “Mexican hat” potential

V (Φ) =
λ

4
(ΦaΦa − η2)2

The form of the gauge covariant derivative can be seen through its action on the Higgs field

DµΦa = ∇µΦa + εabcAbµΦc

where ∇µ is the covariant derivative associated with our metric gµν . On varying the Lagrangian, the
equations of motion for the matter are found to be7

DµF
aµν =

1
2
g2εabcΦbDνΦc

4 Recall that the dual of Fµν is

(∗F )µν =
1
2
εµνσρ

√
−g Fσρ

where εtrθφ = 1.
5, Other ways this is described is that the scalar fields are in the triplet of SU(2) or that they are in the 3

of SU(2). Another possible model to consider would be that of a pair of complex scalar (Higgs) fields in the
fundamental (doublet or 2) representation of SU(2). I believe this has some relation to the Einstein-Skyrme
model, but I haven’t looked at this yet.

6 On a matter of notation, I use Φa as the Higgs field. I will also use Φ later as an auxiliary variable of
the Yang-Mills equations which has no relation to the Higgs field per se. This is an attempt to have the
equations look as much like Matt’s as possible. To distinguish them, I will always try to add the group index
if I am referring to the Higgs field. The context should also help distinguish the two.

7 You will note that I have started with a differential forms approach and have now somewhat surrepti-
tiously switched to using a coordinate approach. In some way this writeup is something of a chronology of
how I worked on this problem. Once I got to working with the Higgs fields, it just seemed the coordinate
approach was easier if for no other reason than everyone else seems to do the same. In passing, we could
write the equation of motion for the gauge fields as D ∗ F = d ∗ F − ∗F ∧A+A ∧ ∗F = J where D is here
the gauge covariant derivative defined above and J is the appropriate current.
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DµDµΦa =
∂V

∂Φ
= λΦa(ΦbΦb − η2)

Now consider the stress tensor. It is a natural generalization of the E&M stress tensor.

Tµν = − 1√
−g

δL
δgµν

=
1
g2

(2F aµλF
a
ν
λ − 1

2
gµνF

a
αβF

aαβ) +
1
2

(DµΦaDνΦa − 1
2
gµν(DλΦaDλΦa))− 1

2
gµνV (Φ)

We are finally ready to start doing some things closer to GR. We want to consider a general spherically
symmetric metric. So we have as our line element

ds2 = (−α2 + a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2

where the metric functions α, a, β and b are functions of r and t and dΩ2 is the metric on the unit sphere.
“Borrowing” wholesale from the appendix in Robert and Matt’s paper on black hole-scalar field inter-

actions, we know in spherical symmetry that the three-metric hij and the extrinsic curvature tensor Ki
j are

diagonal. We have
hij = diag

(
a2(t, r), r2b2(t, r), r2b2 sin2 θ

)
Ki

j = diag
(
Kr

r(t, r),Kθ
θ(t, r),Kθ

θ

)
The nonzero components of the Christoffel symbols with respect to the 3-metric hij are:

Γrrr =
∂ra

a
Γrθθ = −rb∂r(rb)

a2
Γθrθ =

∂r(rb)
rb

Γrφφ = − sin2 θ
rb∂r(rb)
a2

Γφrφ =
∂r(rb)
rb

Γθφφ = − sin θ cos θ Γφφθ = − cot θ

The two non-zero components of the Ricci tensor are

Rrr = − 2
arb

∂r

(
∂r(rb)
a

)

Rθθ =
1

ar2b2

[
a− ∂r

(
rb

a
∂r (rb)

)]
.

The evolution equations for the metric components are

ȧ = −aαKr
r + (aβ)′

ḃ = −αbKθ
θ +

β

r
(rb)′ .

The evolution equations for the components of the extrinsic curvature are

K̇r
r = βKr ′

r + αKr
rK −

1
a

(
α′

a

)′
− 2α
arb

[
(rb)′

a

]′
+ 4πGα [S − ρ− 2Srr]

K̇θ
θ = βKθ ′

θ + αKθ
θK +

α

(rb)2
− 1
a(rb)2

(
αrb

a
(rb)′

)′
+ 4πGα

[
S − ρ− 2Sθθ

]
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where we define the spatial stress tensor as Sij = Tij and its trace as S = Tijh
ij . We also define the energy

density ρ = nµnνT
µν and the 3-momentum density ji = −nµTµi The Hamiltonian constraint is

− 2
arb

[(
(rb)′

a

)′
+

1
rb

((
rb

a
(rb)′

)′
− a

)]
+ 4Kr

rK
θ
θ + 2Kθ2

θ = 16πGρ

and the momentum constraint is

− (rb)′

rb

(
Kθ

θ −Kr
r

)
−Kθ ′

θ = 4πGjr

Before writing down the Yang-Mills equations, let’s make some convenient definitions:

Π =
a

α
[ẇ − uw̃ − β(w′ − vw̃)]

Φ = w′ − vw̃
P =

a

α

[ ˙̃w + uw − β(w̃′ + vw)
]

Q = w̃′ + vw

where Π,Φ, P and Q are auxiliary variables which are intended to “eliminate” the first space and time
derivatives of w and w̃.8 To see this most easily, we can write(

Π
Φ

)
= M

(
ẇ − uw̃
w′ − vw̃

)
(
P
Q

)
= M

( ˙̃w + uw
w̃′ + vw

)
where the matrix M is given by

M =
(

a
α −β aα
0 1

)
The inverse relations are then (

ẇ
w′

)
= M−1

(
Π
Φ

)
+ w̃

(
u
v

)
( ˙̃w
w̃′

)
= M−1

(
P
Q

)
− w

(
u
v

)
The full equations of motion for the Yang-Mills fields with the Higgs field can be written as follows

−Π̇ +
[
βΠ +

α

a
Φ
]′

+ uP − v
(
βP +

α

a
Q
)

+
αa

b2r2
w(1− w2 − w̃2) = g2αawH2

−Ṗ +
[
βP +

α

a
Q
]′
− uΠ + v

(
βΠ +

α

a
Φ
)

+
αa

b2r2
w̃(1− w2 − w̃2) = g2αaw̃H2

(
b2r2

2αa
(v̇ − u′)

)′
= w̃Π− wP(

b2r2

2αa
(v̇ − u′)

).
=
α

a
(w̃Φ− wQ) + β(w̃Π− wP ).

There are two consistency equations which come with our definitions of the auxiliary variables. Namely, the
relations (ẇ)′ = (w′). and ( ˙̃w)′ = (w̃′). imply

Φ̇ =
[α
a

Π + βΦ
]′

+ uQ− v
[α
a
P + βQ

]
− w̃(v̇ − u′)

Q̇ =
[α
a
P + βQ

]′
− uΦ + v

[α
a

Π + βΦ
]

+ w(v̇ − u′).

8 Note that as this progresses, I have tried to generalize the auxiliary variables from those Matt uses in
his Yang-Mills work.
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Turning now to the equation of motion for the Higgs field, we have

DµDµΦa = λΦa(ΦbΦb − η2)

We want to use the following ansatz for the Higgs field compatible with our assumption of spherical symmetry

Φaτa = τrH(t, r)

or that there is only one component to the Higgs field and it points in the “r” direction of the internal space.
The function H is a function of both t and r. Using this ansatz and substituting into the Higgs equation,
we have three components. Two of these components (the θ and φ components) are trivially satisfied while
the r component is the equation

∇µ∇µH =
2H
r2b2

(w2 + w̃2) + λH(H2 − η2)

where ∇µ is the derivative operator on the full spacetime manifold. We introduce the two auxiliary variables

C = H ′

D =
a

α
(Ḣ − βH ′)

in terms of which the Higgs equation becomes

(b2D). =
1
r2

[
b2r2(

α

a
C + βD)

]′
− 2Hαa

r2
(w2 + w̃2)− λHαab2(H2 − η2)

The consistency requirement (Ḣ)′ = (H ′). leads to the equation

Ċ = (
α

a
D + βC)′.
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Special Cases

Let’s now consider these equations in the limit of flat space. In this case, of course α = a = b = 1 and
β = 0. We have also to make a gauge choice for the Yang-Mills field. We choose v = 0. In this case

Π = ẇ − uw̃
Φ = w′

P = ˙̃w + uw

Q = w̃′

The YMH equations now become

−(ẇ − uw̃). + w′′ + u( ˙̃w + uw) +
w

r2
(1− w2 − w̃2) = g2H2w

−( ˙̃w + uw). + w̃′′ − u(ẇ − uw̃) +
w̃

r2
(1− w2 − w̃2) = g2H2w̃

−
[
r2

2
u′
]′

= w̃(ẇ − uw̃)− w( ˙̃w + uw)

−
[
r2

2
u′
].

= w̃w′ − ww̃′.

Note that in the static case, the fourth equation implies w̃ = Cw and as mentioned before a constant gauge
transformation is all that is needed to set C to zero. One can then simplify the equations even further
and reduce the equations to those for the static dyon solution of Julia and Zee. By setting u = 0 in those
equations one gets the equations for the t’Hooft-Polyakov monopole (see for example, Rajaraman p71).

If we consider, however, the time dependant case (even in flat space!), I am no longer convinced that
Zhou’s no dyon argument holds. Zhou is arguing for u = 0 in the absence of the Higgs field. However,
he starts off assuming that w̃ = 0. As we said before in the static case, w̃ can be considered to be pure
gauge. But I don’t see that we can say that in the non-static case. If indeed w̃ = 0 a priori, then u′ is time
independent and Zhou’s argument goes through to the point that u = 0, but in general, I don’t see why w̃
should be zero. In behalf of Zhou, there are several non-existence theorems to the effect that in flat space
and without other matter, there are no everywhere regular solutions of the Yang-Mills equations. However,
I don’t know of any such theorems for the time dependant case (although I can’t say I have looked very hard
nor do I know the literature on time-dependant solutions to the Yang-Mills equations). So it seems there
may well be dynamical configurations which have some sort of charge. The crux of this, though, is that I
think we are safer keeping both u and w̃ until we either come up with a convincing argument to set them
to zero. They may indeed turn out to be pure gauge, but at this point, I don’t see how. It is definitely
something to think about further.

Another limit to consider is radial gauge (β = 0 and b = 1) together with the static case. Again, make
the choice of gauge v = 0. The auxiliary variables then become

Π = − a
α
uw̃

Φ = w′

P =
a

α
uw

Q = w̃′

As a result of assuming time independance we have the exact same argument as in the last paragraph and
we can again set w̃ = 0. We now have Q = Π = B = 0 and P = q

αuw and φ = w′. The equations reduce
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after some algebra to (α
a
w′
)′

= − a
α
wu2 − αa

r2
w(1− w2) + g2αawH2(

r2

αa
u′
)′

=
2a
α
uw2

(α
a
r2H ′

)′
= 2αaHw2 + λαar2H(H2 − η2)

a′

a
=

1− a2

2r
+ 4πGra2ρ

α′

α
=
a2 − 1

2r
+ 4πGra2Srr

where ρ and Srr are given in the final section. These equations reduce to those of Breitenlohner et al for the
purely magnetic monopole case u = 0 and to the equations of Bartnik and McKinnon for the no Higgs case
u = H = λ = 0. We also recover the prior equations for the flat space dyon or magnetic monopole when
a = α = 1.

One final case to consider is that considered by Choptuik et al as well as Straumann and Zhou and
others. This is the time dependent case in radial gauge with no Higgs field (H = λ = 0) and the assumption
of u = v = w̃ = 0. We then have Kθ

θ = β = P = Q = 0 and b = 1. Using the auxiliary variables now, the
equations are

Π̇ =
(α
a

Φ
)′

+
αa

r2
w(1− w2)

Φ̇ =
(α
a

Π
)′

ȧ =
4πG
g2

α

r
ΠΦ

a′

a
=

1− a2

2r
+ 4πGra2ρ

α′

α
=
a2 − 1

2r
+ 4πGra2Srr

where

ρ =
1

2g2r2a2

[
Φ2 + Π2 +

a2

2r2
(1− w2)2

]
.

Srr =
1

2g2r2a2

[
Φ2 + Π2 − a2

2r2
(1− w2)2

]
.
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Altogether now ...

Okay, so let’s summarize all this in a hopefully cogent way. We start with the gauge connection

A = uτrdt+ vτrdr + (wτθ + w̃τφ)dθ + (cot θτr + wτφ − w̃τθ) sin θdφ.

where [τi, τj ] = εijkτk with i, j, k ∈ {r, θ, φ}. This is invariant under a gauge transformation of the form
U = eψ(t,r)τr . The field strength derived from this connection is

F = τr(v̇ − u′)dt ∧ dr
+ [(ẇ − uw̃)dt+ (w′ − vw̃)dr] ∧ (τθdθ + τφ sin θdφ)

+
[
( ˙̃w + uw)dt+ (w̃′ + vw)dr

]
∧ (τφdθ − τθ sin θdφ)

− (1− w2 − w̃2)τrdθ ∧ sin θdφ

The full Lagrangian for EYMH is

L =
√
−g
[

R

16πG
− 1
g2
F aµνF

aµν − 1
2
DµΦaDµΦa − V (Φ)

]
.

where
V (Φa) =

λ

4
(ΦaΦa − η2)2

The equations of motion are found by varying the action with respect to the fields. Varying with respect to
the metric gives

1
16πG

Gµν = Tµν

=
1
g2

(2F aµλF
a
ν
λ − 1

2
gµνF

a
αβF

aαβ)

+
1
2

(DµΦaDνΦa − 1
2
gµν(DλΦaDλΦa))− 1

2
gµνV (Φa).

Varying with respect to the connection Aaµ yields

DµF
aµν =

g2

2
εabcΦbDνΦc

or in a form which reveals its general covariance

∇µF aµν + εabcAbµF
cµν = g2εabcΦb

[
∇νΦc + εcdeAdνΦe

]
Finally, varying with respect to the Higgs fields gives us

DµDµΦa =
∂V

∂Φ
= λΦa(ΦbΦb − η2)

or again in a generally covariant form

gµν
[
∇µ∇νΦa + εabcAbµ∇νΦc + εabc∇µ(AbνΦc) + εadeAdµ(εebcAbνΦc)

]
=

λΦa(ΦbΦb − η2)

The metric with which we work is

ds2 = (−α2 + a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2
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Working in the reverse order of the equations we have presented, with the ansatz of

Φa = δarH(t, r)

for the Higgs field, the only non-trivial component of the Higgs equation is

∇µ∇µH =
2H
r2b2

(w2 + w̃2) + λH(H2 − η2).

We write this as

(b2D). =
1
r2

[
b2r2(

α

a
A+ βD)

]′
− 2Hαa

r2
(w2 + w̃2)− λHαab2(H2 − η2)

together with
Ċ = (

α

a
D + βC)′

where we have used the variables
C = H ′

D =
a

α
(Ḣ − βH ′).

The equations of motion for the Yang-Mills fields are now

−Π̇ +
[
βΠ +

α

a
Φ
]′

+ uP − v
(
βP +

α

a
Q
)

+
αa

b2r2
w(1− w2 − w̃2) = g2αawH2

−Ṗ +
[
βP +

α

a
Q
]′
− uΠ + v

(
βΠ +

α

a
Φ
)

+
αa

b2r2
w̃(1− w2 − w̃2) = g2αaw̃H2

Y ′ = w̃Π− wP

Ẏ =
α

a
(w̃Φ− wQ) + β(w̃Π− wP )

with the definitions

Π =
a

α
[ẇ − uw̃ − β(w′ − vw̃)]

Φ = w′ − vw̃
P =

a

α

[ ˙̃w + uw − β(w̃′ + vw)
]

Q = w̃′ + vw

Y =
b2r2

2αa
(v̇ − u′)

and the consistency equations

Φ̇ =
[α
a

Π + βΦ
]′

+ uQ− v
[α
a
P + βQ

]
− w̃ 2αa

b2r2
Y

Q̇ =
[α
a
P + βQ

]′
− uΦ + v

[α
a

Π + βΦ
]

+ w
2αa
b2r2

Y.

Finally, the relevant Einstein equations are the evolution equations for the metric components and the
components of the extrinsic curvature together with the Hamiltonian and momentum constraints as follows:

ȧ = −aαKr
r + (aβ)′

ḃ = −αbKθ
θ +

β

r
(rb)′

11



K̇r
r = βKr ′

r + αKr
rK −

1
a

(
α′

a

)′
− 2α
arb

[
(rb)′

a

]′
+ 4πGα [S − ρ− 2Srr]

K̇θ
θ = βKθ ′

θ + αKθ
θK +

α

(rb)2
− 1
a(rb)2

(
αrb

a
(rb)′

)′
+ 4πGα

[
S − ρ− 2Sθθ

]

− 2
arb

[(
(rb)′

a

)′
+

1
rb

((
rb

a
(rb)′

)′
− a

)]
+ 4Kr

rK
θ
θ + 2Kθ2

θ = 16πGρ

− (rb)′

rb

(
Kθ

θ −Kr
r

)
−Kθ ′

θ = 4πGjr

After some calculation (okay, lots of it), I find the following useful quantities:

F aµνF
aµν = −2Y 2

b4r4
+

(1− w2 − w̃2)2

2b4r4
+

1
b2r2a2

[
Q2 + Φ2 − P 2 −Π2

]

DµΦaDµΦa =
1
a2

(C2 −D2) +
2H2

b2r2
(w2 + w̃2)

ρ =
1

4g2

{
4Y 2

b4r4
+

(1− w2 − w̃2)2

b4r4
+

2
b2r2a2

[
Q2 + Φ2 + P 2 + Π2

]}
+

1
4

{
1
a2

(
C2 +D2

)
+

2H2

b2r2
(w2 + w̃2)

}
+

1
2
V (Φa)

Srr =
1

4g2

{
−4Y 2

b4r4
− (1− w2 − w̃2)2

b4r4
+

2
b2r2a2

[
Q2 + Φ2 + P 2 + Π2

]}
+

1
4

{
1
a2

(
C2 +D2

)
− 2H2

b2r2
(w2 + w̃2)

}
− 1

2
V (Φa)

Sθθ =
1

4g2

{
4Y 2

b4r4
+

(1− w2 − w̃2)2

b4r4

}
+

1
4

1
a2

(
−C2 +D2

)
− 1

2
V (Φa)

Sφφ = Sθθ

jr = − 1
g2ab2r2

(ΠΦ + PQ)− 1
2a

(CD)
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The problem at hand

We are now in a position to solve these equations in a particular coordinate system and with a particular
choice of gauge. Although, we gave some special cases before, we will use this section to write out our
equations as we want to solve them. We choose maximal slicing (the trace of the extrinsic curvature, K,
vanishes) and radial coordinates, b = 1. For the gauge, we pick v = 0. This does not completely specify the
gauge since a gauge transformation of the form U = eψ(t)τr would leave the connection form invariant. We
will fix this later when we discuss boundary conditions on the Yang-Mills fields.

Given these conditions, the evolution equations are

Π̇ =
[
βΠ +

α

a
Φ
]′

+ uP +
αa

r2
w(1− w2 − w̃2)− g2αawH2

Ṗ =
[
βP +

α

a
Q
]′
− uΠ +

αa

r2
w̃(1− w2 − w̃2)− g2αaw̃H2

Φ̇ =
[α
a

Π + βΦ
]′

+ uQ− w̃ 2αa
r2

Y

Q̇ =
[α
a
P + βQ

]′
− uΦ + w

2αa
r2

Y

Ċ = (
α

a
D + βC)′

Ḋ =
1
r2

[
r2(

α

a
C + βD)

]′
− 2Hαa

r2
(w2 + w̃2)− λHαa(H2 − η2)

ẇ =
α

a
Π + uw̃ + βw′

˙̃w =
α

a
P − uw + βw̃′

Ḣ =
α

a
D + βC

Ẏ =
α

a
(w̃Φ− wQ) + β(w̃Π− wP )

while the constraints are

w′ = Φ
w̃′ = Q

u′ = −2αa
r2

Y

Y ′ = w̃Π− wP

α′′ = α′
(
a′

a
− 2
r

)
+

2α
r2

(
a2 − 1 +

2ra′

a

)
+ 4πGα (S − 3ρ)

a′ = a
1− a2

2r
+

3
2
ra3Kθ

θ2 + 4πGraρ

Kθ
θ ′ = −3

r
Kθ

θ + 4πG
{

1
g2ar2

(ΠΦ + PQ) +
CD

2a

}
where

S − 3ρ =
2Y 2

g2r4
+

(1− w2 − w̃2)2

2g2r4
+

1
g2r2a2

(
Q2 + Φ2 + P 2 + Π2

)
+
C2

a2

+
2H2

r2
(w2 + w̃2) +

3λ
4

(H2 − η2)

ρ =
Y 2

g2r4
+

(1− w2 − w̃2)2

4g2r4
+

1
2g2r2a2

(
Q2 + Φ2 + P 2 + Π2

)
+

1
4a2

(
C2 +D2

)
+
H2

2r2
(w2 + w̃2) +

λ

8
(H2 − η2)2
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and we have the algebraic relation
β = αrKθ

θ.

Now we need to consider the boundary conditions for these equations. As is usual, we demand regularity
at the origin, r = 0. We can deduce from the α and a equations that α′(t, 0) = a′(t, 0) = 0 as well as
a(t, 0) = 1. In addition, β(t, 0) = Kθ

θ(t, 0) = 0.
As for the matter fields, a little analysis reveals that we must satisfy either

w(t, 0)2 + w̃(t, 0)2 = 1 and H(t, 0) = 0

or
w(t, 0) = w̃(t, 0) = 0 and H ′(t, 0) = 0

The second case forces the Yang-Mills fields to be identically zero (i.e. all the derivatives are zero as well).
So if we want to have in general a nontrivial Yang-Mills field and at the same time include a Higgs field, our
boundary conditions must consist of the first case.

The curiosity, perhaps, is that nothing in the equations fixes both ẇ(t, 0) and ˙̃w(t, 0). We may param-
eterize them as

w(t, 0) = cos ξ(t) and w̃(t, 0) = sin ξ(t)

where ξ(t) is an arbitrary function. Some more work shows that with this parameterization, we have the
additional boundary conditions:

u(t, 0) = −ξ̇(t, 0), w′(t, 0) = k sin ξ(t), and w̃′(t, 0) = −k cos ξ(t)

The solution, of course, is that we still have residual gauge freedom under which u(t, r)→ u(t, r) + ψ̇(t). We
now fix some of this additional gauge freedom by setting ψ̇ = −ξ̇. This is equivalent to choosing u(t, 0) = 0
or letting ξ be a constant. There is still the freedom to perform a constant gauge transformation U = eψτr

where ψ is now a constant. But this has the effect of sending w and w̃ into linear combinations of each other.
So we fix this last bit of gauge freedom by setting ξ = 0.

With these choices of gauge, we now have the following boundary conditions: w(t, 0) = 1, w̃(t, 0) =
u(t, 0) = 0, w′(t, 0) = 0, and w̃′(t, 0) = −k. The constant, k, can be shown to be zero from regularity or
if we demand that the energy density is finite. This results then in the following quantities being zero at
r = 0: Π,Φ, P,Q, and Y .

At the outer boundaries, we impose an outgoing condition. This simply assumes that there is no radia-
tion coming in from outside our mesh. This is not completely true as in general there will be backscattering
of the propagating fields off regions of high curvature, but if our domain of integration is large enough, the
contributions from this scattering would hopefully be negligible.

We will show the method for a representative field ψ(t, r) which has an outgoing form together with
some fall-off given by

ψ(t, r) ∼ ψ∞ +
f(r − vct)

rp

where the characteristic speed is vc = ±α/a− β and we have allowed for the possibility that the field takes
a constant nonzero value at infinity ψ∞ (such as the Higgs field). Taking the positive sign for outgoing
radiation, we substitute into the relation

ḟ + vcf
′ = 0

and rearrange to get
ψ̇ +

(α
a
− β

)(
ψ′ +

p

r
(ψ − ψ∞)

)
= 0

If we define the usual sort of variables:

Φ = ψ′ and Π =
a

α

(
ψ̇ − βψ′

)
we can rewrite this as

Φ + Π +
(

1− β a
α

) p
r

(ψ − ψ∞) = 0
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Taking an extra spatial derivative allows us to write an outgoing condition for Φ:

Φ̇ +
[(α
a
− β

)(
Φ +

p

r
(ψ − ψ∞)

)]′
= 0

In terms of the radiative variables we have been using, for the Higgs field H, C and D take the place
of the above Φ and Π respectively with p = 1. For the Yang-Mills potential, w, our previous Φ and Π obey
the above equations with p = 0 and for w̃, Q and P obey the above equations for Φ and Π respectively with
p = 0.11

Another problem
We would also like to consider the generalization of Choptiuik et al namely by moving away from the magnetic
ansatz and considering a more general spherically symmetric Yang-Mills system. For this problem then, we
set the Higgs field to zero and consider the Einstein equations in polar/radial coordinates (b = 1, Kθ

θ = 0,
and β = 0). The equations are very similar to before with, albeit, some important modifications.

Given these conditions, the evolution equations are

Π̇ =
[α
a

Φ
]′

+ uP +
αa

r2
w(1− w2 − w̃2)

Ṗ =
[α
a
Q
]′
− uΠ +

αa

r2
w̃(1− w2 − w̃2)

Φ̇ =
[α
a

Π
]′

+ uQ− w̃ 2αa
r2

Y

Q̇ =
[α
a
P
]′
− uΦ + w

2αa
r2

Y

ẇ =
α

a
Π + uw̃

˙̃w =
α

a
P − uw

Ẏ =
α

a
(w̃Φ− wQ)

while the constraints are
w′ = Φ
w̃′ = Q

u′ = −2αa
r2

Y

Y ′ = w̃Π− wP
α′

α
=
a2 − 1

2r
+ 4πGra2Sr

r

a′

a
=

1− a2

2r
+ 4πGra2ρ

where

Sr
r = − Y 2

g2r4
− (1− w2 − w̃2)2

4g2r4
+

1
2g2r2a2

(
Q2 + Φ2 + P 2 + Π2

)
ρ =

Y 2

g2r4
+

(1− w2 − w̃2)2

4g2r4
+

1
2g2r2a2

(
Q2 + Φ2 + P 2 + Π2

)
We can also include the evolution equation for a

ȧ = −αaKr
r

=
4πGα
g2r

(ΠΦ + PQ) .

11 We note that in the far filed regime, w2 + w̃2 can be 0 or 1 depending on the nature of the solution. In
the former case the field u(t, r) should fall off as 1/r while for the case that the fields go to 1, the falloff of
u(t, r) should be 1/r2. At least I think so ...
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The boundary conditions for these equations are the same as before. As usual, we demand regularity
at the origin, r = 0. We can deduce from the α and a equations that α′(t, 0) = a′(t, 0) = 0 as well as
a(t, 0) = 1. For the matter fields, we choose (gauge choice and consequences of regularity and finite energy
density) w(t, 0) = 1, w̃(t, 0) = u(t, 0) = 0, w′(t, 0) = 0, and w̃′(t, 0) = 0. This results then in the following
quantities being zero at r = 0: Π,Φ, P,Q, and Y . We also impose outgoing boundary conditions as described
before.
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