Our intent is to develop a 2D axisymmetric code for gravitational collapse. Several people have, of
course, done this in the past. One of the most promising approaches was that pioneered by Nakamura and
his collaborators. The theoretical framework they used was one based on work by Geroch and which they
called the (24+1)+1 decomposition. The basic idea is to divide out the symmetry and perform a foliation of
the resulting 3 dimensional manifold a la ADM. In the hopes that this will be a useful introduction to this
formulation and the resulting equations, we will try to develop all of the machinery ab initio.

To begin, let us assume that we have an n + 1 dimensional manifold. (We will be interested of course
in the case that n + 1 = 4, but we can do things somewhat generally at this point.) We also assume the
existence of a Killing vector

0
§= 3—’
2
where we have let the coordinate 2! = (. For definiteness and in anticipation of our (2+1)+1 reduction
in the presence of axisymmetry, one can think of this Killing vector as being spacelike and possessing closed
orbits. For the moment, however, we will consider a slightly more general case, namely that the Killing
vector is only non-null.

We want to divide out the action of the Killing vector. In mathematical parlance (and in the particular

case that the Killing vector is spacelike with closed orbits), we are interested in the quotient space

M/S?

where S' represents the topology of a circle. From a practical point of view we construct this space by
projecting onto an n dimensional manifold. To this end, we define the projection operator (which will
become the metric on the quotient manifold)

1
Guv = Tuv — EX},LXV
where 7, is the metric on the n + 1 dimensional manifold, X* = §¥ is the Killing vector field and
XX, = K5

is the norm of the Killing vector and x = +1 depending on whether it is spacelike or timelike respectively.*
The inverse of this operator is
L g— ,YILV _ LX/LXU.

g -
K52

We want to construct the relevant quantities on the n + 1 manifold in terms of n dimensional quantities.
First, we make the following definitions:

1

K52

A, = Xy, Fu=0,A,-0,A,.

We can write the metric on the n 4+ 1 manifold as

_ [ Yab + Kk52A, A, KE2A,
Tnv K52 A, K52

Using these relations, the connection beomes
(n+)PA _ (n)pA A
FW = FW—&—/QQW

™), + g?g”’ [AyFuo + AuFyo — 0,(I05%) A, A, ]

+ 5 A [0,(62A4,) + 0,(5A,)]

* We will use Greek indices such as p, v, A, ... to run from 1 to n + 1 and lowercase Latin indices such as
a,b,c,... to run from 1 to n. When we apply the ADM formalism to our n dimensional manifold, we will
use uppercase Latin indices such as A, B,C,... to run from 1 to n — 1.
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It is worth mentioning that the metric vy, lowers indices and y*” raises indices. As a result, a useful identity
in deriving the following is

g A, =0.
A few other handy identities are*
A, =1
A”A,, =0
A”9,(log5%) =0
A"F,, =0.

The n + 1 dimensional volume element can be written
V=1 =5V/-g.

This can be got from the relation
(0T, = 3, (In /7).

The Ricci tensor can be written

(DR = MR, + 1MV, — £ MV,LQ0, + Q0,05 (In5) — Q7,90

v

where ("V, is the covariant derivative on the n dimensional manifold and we have used QZ, = 9, (In5). We
now want the components of (”“)RW in terms of the n-dimensional quantities. Expressed in terms of the
n dimensional fields, these become

1
IR, = 1§4F50Fb0 —kgMvey, 5
1
("D Ry = % V(5 Fac) + Aa {13414;,6#6 — ksMve (")Vas}
0 Ry = Ry, — L V9, V5 - TRy
S

1
— S MV (85 Fua] Ap) + Aady [ZS%CF*)C — ks MV (”>Vas] :
The Ricci scalar is found to be
2 _ 1.
(i p_ MR _Zmygay, 5 _ ~g2F Fbe.
3 4

which in the absence of matter is consistent with contracting on ™) R4;, above and using the other equations.

Everything up to now has been relatively general. Let’s now choose n+ 1 = 4 and assume axisymmetry
(k = 1). The theory we want to consider is Einstein gravity coupled to some fundamental matter field.
One example of possible matter fields would be the harmonic map model. However, for the moment, let us
keep a general stress-tensor. The existence of the axisymmetry motivates our use of the Kaluza-Klein like
reduction. The equations of motion for this are

1
Ry, = 8rG (T;w — §gWT>\>‘)

* Note however that A, A, # 0.



and the appropriate equation(s) for the matter fields. Note that we have changed notation slightly and are
now using V, as the covariant derivative on the 4 dimensional manifold with the metric 7,,. Assuming
axisymmetry for the system and that our prior reduction holds, we have

1 1 1
D"D,5 = ~8Fy . F* — 871G~ ( T,y — =5°TH
4 5 2
D*(8°Fy,) = 167G (Thy — ApTpy)

Rab

1 1 1
~D,Dy5 + 5§2Fachc +87G (ngﬂag”b - 2gabT>\)‘)
S

where D, is the covariant derivative on the 3 dimensional manifold which possesses the matric gqp.

We can simplify these equations further provided our choice for the matter fields is such that Tj, —
AyT,, = 0. This turns out to be true for just about any type of scalar field we can dream up. It can be
massive, have multiple components, be self interacting in non-trivial ways, etc. Unfortunately, it will not be
true of an electromagnetic field or a fluid. So the following formalism is realized only for a general scalar
field.

Thus, provided our choice of matter is such that the right hand side of the second equation is zero, we
can define locally a potential field w according to*

$3Fpp = —€ape D0,

We can now make the following simplifications

F,.F,° = (Dalf)Dbu_) - gab(D’J))z)

2
FyF® = fg(Dw)2

Also, the above divergence equation is now replaced with
a, 3 =1b,—
DD = —Dy5D"w.
5

This follows from the identity D, Fp, = 0. Note that we could do this only because of the nature of our
choice of matter fields.

In the remainder of this, we will assume a form for the matter such that we can define a scalar twist.
As a concrete example, consider the harmonic map. The action is now given by

_ R IV f|?
5= /d%\/jg{sﬂc: - (1n|f|2)2}’

* @ is also called the twist potential or the scalar twist of a Killing field. It is defined in Wald 7.4 as the
function such that
V0 = W, = e X' VX

where X* is a Killing vector field. In our case, this reduces to

1
- 4 A
Wy, = 58 €urg AV EF.

Note that even if the matter is not chosen such that the right hand side of the divergence equation is zero,
we can still define w,,, just not the scalar twist, w. For instance, Nakamura et al are unable to make this

simplification because their use of perfect fluids as their matter yields a “source” term on the right hand
side of their divergence equation.



where f is a complex scalar field and the x here parameterizes a family of theories. The x we had been using
previously had been set to 1. The equations of motion for this are

1
R,, = 87G (TW - —gl“,TA/\)

2
VAT, =0
87G X «
G = s (VI + Vil "Vl = /01,
—2K f*
V“V/Lf - 1_K{f|2vpfvﬂf'

We can also write the Einstein equations a bit more succinctly as

81G
(1= &[f[?)?
where D, is the covariant derivative on the 3 dimensional manifold which possesses the matric gqp.

Rewriting our equations now in terms of the potential field w and with our choice of matter fields, we
have

Rm/ = (vufvl/f* +vuf*vz/f)

az 1 —\2
DaD = —ﬁ(Dw)
3
D,D%0 = =Dy5D"w
S
1 B 1 o —\2 8rG " «
Rap = —DaDys + 57 (Daw Dy — gap(Dw)”) + A= rlfP? (DafDof" + Daf" Dy f)
1 2k f*
p.pof =—Lpspep— 2 p ppey
5 1—«&|f]?

Note a couple of things about these equations. One is that the field @ never appears, only its derivatives.
Also, in the case w = 0 (no rotation), we can define a field ¢ such that 5 = e?, and in this case, ¢ does not
appear anywhere, only it’s derivatives. I mention this because I was under the impression that numerically
this property is sometimes a “good thing.” If not, I await being corrected.

Now we want to do the standard ADM reduction of the 3 dimensional space and consider the extra
fields we have as essentially matter fields. Taking our nonlinear sigma model as an example we would then
have in the 3 (or 241) dimensional space a complex scalar field f, and two real scalar fields § and w. These
are coupled to each other in non-trivial ways, but nevertheless, we can think of them as simply matter.

The 2+1 decomposition proceeds as one would expect. We decompose gqp as

do? = gapdz®da® = —aPdt? + hap(dz? + Adt)(de® + BBdt)

where « is the lapse and $4 is the shift vector® The indices A and B now range over 1 and 2. The metric
Jab can be written with the parameterization

_ ([~ +hapBB®  hapB®
Jab hapB hap

where we will use the parameterization

L _ a® + a?b?*c®  a?b3c
AB = a?b?c a?b?

*7 We are using 3 as the shift rather than the usual 3 because we will use 3 later for a regularized version
of . It is the regularized j3, i.e. 3 that goes into the code, so for the sake of consistency and programming
convenience and simplicity, we choose to start here with f.
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There are various gauge choices we could make, but we will try to keep things somewhat general for the
moment. We make the usual definitions. We define a timelike vector n® and the extrinsic curvature Ky, =
Kpo = —Dgny. The usual matter quantities are defined
p= nagny T
Jja = —ngT 4
Sap =Tap

with the 2-metric hap and its inverse lowering and raising indices in the 2 space.
The evolution equations for the 2 dimensional metric h4p and the 2 dimensional extrinsic curvature
K 4p can be written in a form analagous to the usual form, namely

Othap = —20Kap + Aafp + Apfa
0Kap = (B°AcKap + KacApB® + KpcAaBO)
+ a[KKAB + (Q)RAB] — 2aKAcKBC — AjApa — a3RAB
where we have now defined n, = (—,0,0) (and hence n® = 1(1,—3',—3?)) and the covariant derivative
on the 2 dimensional surfaces to be A 4. This derivative, of course, is with respect to the metric hyg. Our
task now is to express the remaining 3 dimensional quantities, such as >R 4p above and D, D3, in terms of

fields on the 2 dimensional slicings. To this end it is useful to quote some useful relations between the two
types of dimensional quantities. One can show

ha®hp®DaDy5 = ApAp5 + (n%0,5) K ap
D,5D%0 = A SAD — (n%0,5)(n0yw)

where (in something of an abuse of notation) we mean what we say in all the above. Namely, the indices A
and B range over 1 and 2 while a and b range over 0, 1, and 2. The point is that those terms which include
the sum over a and b indices include time components.

In addition to the reduction of our s and w fields, we also need to know how the “real” matter goes
from 3 to 2 dimensions. To this end, consider only the matter part of 3R,;. In the slicings, it is given by

1
BRT]? = 8nG [SAB - ihABT:|

where T is the trace of the (4-dimensional!) stress tensor and can be written as
T= ’YQ,BTaﬂ

1
= [haﬁ — NaNg + ?XaXﬁ]Taﬁ
1
= S — p + §—2T4p<p

Note that for the particular choice of the nonlinear sigma model as our matter, the final line above is equal
to 27,,,/5°.

Okay, so let’s write out these equations. The wave equations for the fields § and @ can each be
decomposed into two first order equations given as follows

015 — 045 = —asy
Oyx — BAaAX = —%AAAAE + ax(K + x)

+ i(ﬂ2 — A ADAAD) — lhABaAgaBOé
254 5

O — Ao = —ai

Ot — B0t = —aA A A0 + au(K — 3Y)

+ %AAEAAQJ — hABo wdpa
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where we have made the definitions i
X = _jnaaag
s

1 = —n?0,w
The time evolution of the extrinsic curvature is now
0 Kap = (B°AcKap + KacApB® + KpcAaB©)
+alKKap+ P Rap] — 20K4cK5° — AxApa
— gAAAB@—F aKapx — 2;._54 [AAU?AB@} — hAB(Ac’lI}ACﬂ} — ’122)]
3 3
1 1

—8mGa | Sap — EhAB(S —p+ 5_2TLP<P)
Raising one index on the extrinsic curvature and simplifying the shift vector terms, we can write this together
with the evolution of the 2-metric as

Othap = —20Kap + hpc0aB° + hacdpB + B°0chas
WK AP = KcP0aBY — Ka®0cB? + BC0cK 4”
+a[KKAP + @R4P] — ApAPa
- %AAABg +aK 4By — 2;’5‘4 [A 40 APD — ha®(AcwAw — %))

1 1
— 87Ga [S47 — 5hAB(S —r+ 5Tee)

Let us now consider the constraint equations. They stem from the Gauss-Codazzi relations. For the
embedding of a two dimensional surface in a three dimensional space, they are

R—- K%K + K? = 3R+ 23Ryn"n’
A Ky — Ay K = —3Roqn®h®y,
where 2R = 2R ph”®f and K = K 4ph?B. Written out these equations become respectively,

2 1
@R - KARKB, + K% = g(AAAAg —5Kx) + @(AMAA@ + @?) + 167Gp

1 1 U
AAKAB — ApK = Apx + §83§X — §K30805+ %83’@ + 81Gjp

I have tried to follow Nakamura fairly closely in this and now seem to have agreement with his group’s work.
We can write out now some of these quantities in terms of the metric functions

1 1
AAAA v = 2 {81 [b(al’lD — 08271))] + 05 |:—bc((91w — C@Q’lf)) + 3 agw:| }

1
A5A 0 = pe {(als — ¢098) (01w — cOrw) + b%azsaz,w} .

Okay, so let’s write out all the equations in all their scalar and to-be-differenced glory. Before any
coordinate conditions or slicing conditions are imposed, we have 12 evolution equations and 3 constraint
equations. The equations for the “pseudo-matter,” (the scalar fields 5 and w) are

8155 — 31815 — 62825 = 7OZ.§X

_ _ a
dx — Bronx — BPoax = %% (O1ps — cOaps — ps02c + O2gs) + ax (K + x)
o2 Lo a0y 1 i}
+ 954 (u o2 (pw + g )) 502 (paps + QaQS)

Oy — By — B0 = —ati
Oy — 518112 — 6282’11 = —% (61])@ — cOapg — PwOac + 5’2Qw) + O‘ﬂ(K - 3X)
+ 20 popo + 050) — = (Pabs + 0ad0)
5 a2 PzPw T 459w 502 PaDPw T qaldw
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where we have made the convenient definition of the auxiliary variables
py =b(01f — cOaf)
1
=-0
a5 =7y o f

The subscripted f merely denotes what scalar function is being operated on. The equations for the evolution
of the 2-metric functions are

1 _ _
(00— 010~ F*020) = —% (K11 — 2¢K 1 + cKas)
+ 018" — cx8" — V2 c(B Orc + F0:c)
1 5 3 1
g(atb — /Blalb — ﬂQaQb) = % <K11 — 20K12 + CK22 — b2K22>
+ 0ot + 025% — 015 + OB + b2c(B101c + F20a¢)

&gc — 251816 — 2@2820 = 7K12 + CKQQ)

o
a2
_ _ _ _ 1 -
+¢(015" — cOaBY) + 0137 — c025% + 5_282/61

and the equations for the evolution of the extrinsic curvature are

0y — B0y — 320K, ' = K310, 8% — K120,8' + « [Kll(K +x) + 2Ryt — éAIAls]

@ _
2512 [prw —qa” + UQGQ]

1 1
—81Ga {511 - 5(5 —p+ §_2T<p§0):|

— AlAloz -

0y — B0y — 320y K% = K120, — K»'0,3% + « [ng(K +x) + 2Ry% — %AQA%]

2 « 2 _2 2

— 80— o [pa® — cqupn + 5707
8rGa | St 1(S +1T )
— 3G 1—5 —p 5—24‘0@

Let us review what it is that we have done up to this point. We have started with GR coupled to a
general matter field and assumed the presence of axisymmetry. We have divided out the axisymmetry and
considered the resulting 3 dimensional theory. Then we have split time and space according to the ADM
prescription. The resulting equations are 2 first order in time equations describing the scalar field §, 3 first
order in time equations for the 3 dimensional “electromagnetic field,” 3 first order in time equations for the
evolution of the 2-metric, 3 first order in time equations for the evolution of the 2 dimensional extrinsic
curvature and 3 constraint equations (Hamiltonian and 2 momentum constraints). To this point we have not
made any coordinate or slicing conditions. In fact, we have yet to even choose a complete coordinate system.
With regard to the latter point, we have chosen a time coordinate t for the 241 split and a coordinate ¢
(ignorable) adapted to our assumed axisymmetry. This seems to me about as general as we can be at this
point. But in the following section, we will see that we have to start making some choices, particularly with
regard to the choice of coordinate system — the regularity conditions would seem to demand it.



Regularity Conditions

I think I finally have something of a handle on the regularity conditions. The basic idea follows the
review article by Bardeen and Piran and looks to adapt the Nakamura method to it. Bardeen and Piran argue
that regularity can be enforced by demanding that locally, near the axis (r & 0), the Cartesian components
of any tensor or vector can be expanded in non-negative powers of the Cartesian coordinates x,y, z. After
finding the behavior near the axis, we transform back to our adapted coordinates and the near axis behavior
can then be expressed in terms of our chosen coordinate system. Since we are enforcing what is in some
sense a physical condition, we must work with the quantities on the full four dimensional manifold. The
invariant way to define this is

LY =0

where ¢ is the Killing vector in Cartesian coordinates near the axis and Y is any tensor quantity. We can
write the Killing vector as

fz—y% +x8_y

Taking the Lie derivative of a scalar quantity ¢(t, z,y, 2)
o¢  0¢

—y%—kxa—y—o

shows us that ¢ = ¢(t, 2% + y2,2). This is of course no surprise as we would expect no dependance on .
As another example of this method, consider a vector n® with the Lie derivative acting on it along the
Killing vector. The equation for this is

£’ o=’ a=0
which written out in components yields four equations

—yn' z +an' y =0

—yn* e +an’y = -’

=y’ +an’y =n"

—yn°z+an’y =0.

The solution to these equations yields

ﬂt =01
N =xg2 — ygs
nY = g3+ yg2
n° = g4

where the g; are functions of ¢, 22 + y?, and 2. Transforming back to cylindrical coordinates (for example)
using
6x/ll,

T oV

v

n

n'*

we find
77t = gl(t,’l’2,2')

T

n" = rga(t,r?, 2)
77z = 94(t7 727 Z)
77%0 = gS(tv 727 Z)
where the g;’s are expandable in non-negative powers of the arguments.
We can do the same thing for a general tensor Y),,,. For simplicity, we will assume that Y),, is symmetric.
The equation for the Lie derivative on this tensor along the Killing vector is given in Bardeen and Piran as

8



well as the resulting spatial equations written out in the Cartesian coordinate system. Let’s go ahead and
reproduce these equations together with those for the time components. The covariant equation is

Ypu,AgA + fA,pY)\v + gA,UY)\,U, =0
where in terms of components we get
yY;ﬁt,m - xY’tt,y =0

erz,m - mez,y = Qme szz,az - x}/;z,y =0

YWiee — Yy =Y,
Yyya —xYyyy = —2Yay YWewg — Yoz =Yy o o J

yY;fy,a; - x}/ty,y = _}/ta:

way,aj - way,y = qu - Ya:;r y}/;y,w - x}/zy,y = _Yzw vatZ,a; _ l’Y}Z’y —0

The solution can now be found in terms of ten independent, regular functions f; (with ¢ = 1...10)
which depend only on ¢, 22 + 32 and z.

Yiu = f7
Yie =2fs — yfo
Yiy =yfs +zfo
Yi. = f1o

sz:f1—2ffyf2+y2f3 Yzz:f4
Yyy:f1+2xyf2+$2f3 Yo =afs —yfe
Yoy = (2% =) fo — 2y fs Y.y =yfs +afs

We now want to transform to the coordinates we would like to use. However, we can still keep things
a bit general. We want to make a coordinate transformation from (t,z,v,2) to (¢, z', 2%, ¢) with 2! and
22 being “arbitrary” curvilinear coordinates near the axis. The general coordinate transformation can be
written in a suggestive notation as
x=7(z', 2%) cosp
y = (2!, 2?) sing
z = 2zt x?)

with the inverse transformation, of course, assumed to exist. The problem with any coordinate system
involving the cyclic coordinate ¢ is now fairly clear. At any points where the function #(z!, 2?) goes to zero,
the transformation becomes multi-valued since ¢ can take on any value between 0 and 2xw. This occurs, of
course, on the axis of symmetry and is the reason for our interest in the regularity conditions.

Using the usual transformation law,

v oz 0z°
= o o

we find after expanding that

Yie = fr
thap = 7:2]09
Yapap = 7:2]01 +7:4f3
_or 0z
Yiga = Tawﬁfs + Wflo
5 02 o OF
ngmA = T28.’17Af6 +T38.I'7Af2
or or 0z 0z
Y, a8 =
vl OxA 0xB hi+ OxA OxB fa

or 0z or 0z

OrA 0B~ 0xB 9zA |’

At this point, we have to make a choice in the coordinate system which we will use. We will choose to use
cylindrical coordinates from here on out: z' = r = 7 and 22 = z = Z. Another curvilinear coordinate system

+7f5
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that might be interesting to consider would be spherical polar coordinates: (z!,2?) = (r,6) and ¥ = rsin 6,
Z = rcosf. This is what Bardeen and Piran use, for example. Their transformations follow from our above
equations. Given this general form of the transformation, though, we could also consider oblate or prolate
spheroidal coordinates if we were ever crazy enough to do such a thing.

So, transforming the Cartesian spatial components to cylindrical coordinates and equating this tensor
with 7., allows us to determine the small r behavior of the full 4-metric. The transformation allows us to
equate

Yrr = Grr + 2A.A, = fi s Yop = 5 = 7"2f1 + T4f3
Yrz = GrzTt §2ArAz = 7AfE) ’ Vit = gu+ §2AtAt = f7

TYro = §2A7’ = 7"3f2 ; VYtr = G+ §2AtAr = rfS

Yz = Gzzt §2A2Az = f4 ) Ytz = Gtz T §2AtAz = flO

Yz = 52A. = TQfG ) Tt = 52 A, = TQfQ

We can now untangle all of these and determine the behavior of the relevant quantities for small r

52 ~ T2 Grr = CQ
A, ~Cy A~ Cs
9zz = Cl Otz =~ C(4
Ar ~Tr Jtr =T

Grz =T gie = Cs

where the C;’s are “constant” with respect to r but will in general have ¢ and z dependance. Using these
relations, we can find the small r behavior for our particular parameterization of g

a2%C’6

b2%C7
cCrrT

BT

p* ~ Cs

where again the C;’s are arbitrary functions of ¢ and z.
We must also consider our potential function w. It is effectively a replacement for our A,. Using the
definition

1.
0,0 = §§d€abcgbdgce (8(1Ae - 6eAd)

we find that near r =0
W~ co+riF(t, T, 2)

with ¢y a constant real number independent of ¢ and z and F} a regular function of its arguments. Without
any loss of generality, we can set ¢y = 0 since only the derivatives of @ appear anywhere in our equations.

We must also consider the small r» behavior of the components of the extrinsic curvature. To do this,
we first need the relation between the “usual” extrinsic curvature 3K uv Which comes from the ADM 3+1
prescription and the extrinsic curvature we have defined here 2K, in the (2+1)+1 formulation. One way to
examine this is to reverse the order of our decomposition. We first divided out the Killing vector X* and
then split space and time. We could instead do the usual thing and perform the ADM split first and then
consider the presence of the axisymmetry. In terms of the metric we would have

1
Yuv = Guv + ?X,U.XV
1
= hu —nuny, + g_zXﬂXV
=Huw — npny
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where we have defined the unit normal n,, and a new purely spatial 3-metric H,,. The relevant relation can
then be found as decomposing 3K,“,in terms of 2K

K = —Vun,
= M, "M, Vang
=2K,, +8°AFan® + 5 A, A, x.

This can be found in Nakamura’s review article. The easiest way to verify the last line is to work backwards
from it using the definitions we have made earlier.
Using our prototype tensor Y, the behavior of the spatial components can now be associated with

3K uv from which we can deduce the he small r behavior for the components of 2K ., which we evolve

3Krr - dl - 2Krr + §2ATFTQTL(X + §2ATATX
BKrga = 7”3d2 = §2F7~a7’la + §2ATX

Ky, = rds = 2K, +32A,Fyan® + 52A, A x
SKzz = d4 = 2Kzz + §2Azeo¢na + §2A2AZX
K., = r2dg = 52F,on® + 824,

3K¢<p = 7r2dy+ridy = 52y

where the d; with ¢ = 1...6 are independent, regular functions of ¢,r and z. Using these we find the small
r behavior to be
x ~ Co
2Kr7‘ ~ C11
K. ~r
2I(zz ~ C2
where the C;’s are different from before, but are again independent of r but have ¢ and z dependance. In

addition, we note that the “extra” conditions agree with the earlier behavior we found. Raising indices, we
find finally

20T o O
K’r‘ NC]_
210 % o

K,”~r

2Kzz ~ CQ.
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The Initial Value Problem

Okay, we have to face up to the complexity of the IVP (initial value problem) in GR. Fortunately, we have
some things in our favor. Perhaps the most important is the observation that in our chosen coordinates
(p, z) the 2-metric hap is conformally flat. This becomes crucial in simplifying the usual York-Lichnerowicz
decomposition.

To begin our review of this decomposition, let us state that in this section, we will do things fairly
generally. We start by conformally transforming a general spatial metric, ;; of dimension n as follows (in
contrast with what we did before, 4, j, k will run from 1 to n in this section)

Yij = v* 4, N = ap TP

where all hatted quantities are in the conformally transformed manifold. The constant p is an integer which
we are free to specify. It would seem fairly obvious that in our particular problem, we should equate the
conformal factor with a? and we will do this eventually, but for the moment let’s keep things somewhat
general (so this can serve as a reminder for myself of the whole York procedure).

The Christoffel symbols now become with the conformal transformation

Ff] = ffj +p [ﬁ@' log ) + (55@- log 1) — 'Aykl%jﬁl log 1/)]
and the Ricci tensor can now be written using the usual formula
Rij = Rij +p(2 —n)ViV,logy — p3:; ViV log
+p%(n—2) [Vilog ¥V, log s — 45 (V og )?]
from which we can get the Ricci scalar
VPR = R+ 2p(1 —n)V;Vilogy + p>(n — 2)(1 — n)(Viog )2

Where again, in this section, we are using V; as the covariant derivative constructed from ~;; and V; as
the covariant derivative constructed from the conformal metric 4;;. In the usual formulation, we look at the
trace free part of the extrinsic curvature i.e. we subtract off the trace and give it a new name:

1
Ay = Kij — —vi K

The momentum constraints Ny B _
ViKY —~yYK) = 5"

where S is the matter can now be written in terms of the symmetric and trace-free quantity A;;:
i n—1 ij i
VAV = —Y V,;K + S
n

The burning question is how does the extrinsic curvature transform under the conformal transformation and
by extension, how then do the constraints transform? The whole idea is one of simplification. We perform
the conformal transformation in order that we can somehow simplify the constraints so that they are easier
to solve. To this end, allow the extrinsic curvature to transform as

K — P K

where ¢ is another constant integer which we can choose and where one should note the upper indices (for
some reason, working with the upper indices seems fairly standard). Using this, the fact that the trace of
K;; transforms as

K =K' =¢*TK
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and that A% had better transform the same as does K%, we can rewrite the momentum constraints as

—1 . A A ~ A .
n- e 40 |20+ R Vjlogw + VK| + 27,

v, [ Aij¢q+p(n+2)} -
The easiest way to get this is simply to write out the constraints in terms of the tansformed quantities
and transformed Christoffel symbols. A simple choice for the transformation properties of K% is that the
covariant derivative be an invariant. In that case, we choose ¢ = —p(n + 2). This is what we will do.
(Another possible choice [that Evans uses| is that tr(K) be a conformal invariant. For that, we would have
q=—2p.)
Now, to solve the momentum constraints we decompose A% into transverse, A7, and longitudinal, A,
parts where by definition o
VA =0
Both parts are separately traceless and symmetric. We can further introduce a “vector potential” W* for
the longitudinal part

. N B
A} =V'WI + VIW' — E&”WW’“

Note that now we can write the conformally transformed covariant derivative of the conformally transformed
trace-free part of the extrinsic curvature as (how’s that for a mouthful?)

A a A A ) Ao 2 A A
VidY =V, V'W7 + V; VW' — —wvivkw’f
=V, VW + R, Wk 4 %wv ViWwk
Putting all of this together gives us the momentum constraints as a vector elliptic equation for W*
& Sivrri | P P N2 e e gp_n—1; & & P (n+2) qi
V;VIW*' + R ;W7 + —7 IV VWP = — J [_anVj logy + V; K| +¢? S

Note the simplification that results when the maximal slicing condition, K = 0, is used. Further simplification
occurs when the spatial metric is 2 dimensional.
The Hamiltonian constraint is somewhat simpler fortunately. It is

R+K2 —K”KU = 2pH

Substituting in for our various quantities, we get

2p(n — 1)V;Vilogt + p(n — 1)(n — 2)(Vieg ) = R+ _ - w2<q+3p>K2
_ Aijjlijw*%(n*l) — 0%y,

This is the general York scheme generalized to n dimensions. As it must, it reproduces the usual results for
n=3.

Now, however, let’s consider n = 2 and our 2-metric is now h4p and is conformally flat by our choice of
coordinates. We had originally thought that we would choose K = 0. This corresponds to maximal slicing
in the 2-manifold but something akin to what we’ll call “axial” slicing in the 3-manifold since the usual
extrinsic curvature now satisfies

3 2 3
O =04 ( )va
3
=® K,
This is in analogy to polar slicing where ®) K = K,”. However, some testing of this slicing condition in
spherical symmetry show that the resulting elliptic equation and boundary conditions may well be an ill-

posed problem. The easiest way to see that is that the resulting differential operator in axial slicing becomes
essentially a 2-d Laplacian rather than a 3-d Laplacian as in maximal slicing. This has a logarithm in its

13



Green function which we should consider as its fundamental solution. What we want, though, is a solution
to the lapse equation which should be asymptotically flat. Trying to impose such a boundary condition
results in an ill-posed problem. So, we must choose a different slicing condition, and the most natural (or
traditional) is thus maximal slicing.

With our conformally transformed 2-metric (which is flat) and our choice of cartesian coordinates (p, z),
we have the following simplifications, namely that R = 0, I‘fj =0, V; = 9;. Our above equations then reduce
to

A A PN 1 N A
ViVilogp? = —p P K;; K — 2% pyr + iw*QPKQ — A AUy
A A . . 1 .. ~ A A A
ViVIW7 = * 87 + 577 | ~KV; log ? + V,; K
R — K+ K

After all of that, this will probably be maddening, but this is not quite what we will do. The problem
with the above is that in the usual formulation (i.e. n = 3), A7 = K is freely specifiable initial data (e.g.
let it be a gaussian). In n = 2, it is not. We have to find it from the constraints. But that is okay. We will
not decompose K% as we have done. Instead, let us consider the evolution equation for the metric (again in

n dimensions) B B
O0vij = —20K;5 + V65 + V5

from which we can get B
dr(logy'?) = —aK + V,; 3

where (this is a bit confusing) the quantity v (without indices) is the determinant of 7;; and K (without
indices) is the trace of K;;. This can be derived by contracting on the first equation and using the identity

1 g
— 0y = 7" Ovij-
~
Now, making a non-obvious combination of these (actually it’s the trace-free thing again), we can write
1 = = 2 =k 2 o
Ovij = —20(Kij — E'Yin) + Vi + V; 08 + E’Yij(_aK + Vif") — ﬁ%’jvkﬁ
which, on rearrangement yields
1/n —1/n 1 7 5 2 Ak
"0 [’Y %‘;} = —2a(Kij = —7iK) + Vil + Vi = —7i; Vi

The point of all this is that the quantity in brackets is conformally invariant:

Yy = A7

and will be a constant because of our choice of coordinates and since our conformal metric is flat. Thus
the time derivative and hence the left hand side above is zero. Note that this is exactly what Wilson and
Matthews do in their “conformal flatness approximation” scheme. There they assume that the conformal
metric is always flat (which they argue is good provided gravitational radiation is negligible) and solve a
simplified set of equations for the inspiral of two neutron stars. Here however (in 2 spatial dimensions), the
flatness of the conformal metric is exact.

Let us now revert to our previous notation and work with our two dimensional metric h4p. The basic
idea is to use the covariant derivative operators associated with the conformal metric h AB but not to use
other conformally transformed quantities. This may seem a bit mixed up, but it is effectively what is done
in the usual initial value formulation. One transforms to the conformal metric to simplify the equations
and then at the end of the day transforms back to the “physical” quantities associated with the physical
metric. If we can take advantage of the simplifications inherent in the conformal metric without transforming
everything to their conformal equivalents, why not?
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In addition, it seems to me that by doing this, we get the added bonus (actually it is more by virtue
again of our 2 dimensional spatial metric) that there is no gravitational radiation in the initial data but
what we explicitly give. Note that earlier I made mention of the fact that in the York scheme, A7 = K is
freely specifiable initial data. One choice of initial data of course would be no initial gravitational radiation.
However, how does one specify that? A natural choice would seem to be flat initial data with 4;; = 0
and K = 0, but it turns out that the conformal transformation back to the physical metric mixes the
components of the decomposition of K% such that the longitudinal part of it will pick up some radiative
parts and will still contain preexisting gravitational radiation. This does not seem to be true in our scheme
and it seems that if we want preexisting radiation or not we can say so simply by our conditions on the
radiative variables s, x, % and w.

Anyway, continuing on we will use maximal slicing in the 3-manifold, 3K = 0. The extrinsic curvature
is now be given by

1 1 _ _ _
KAB _ ghABK_i_% [AAﬁB+ABﬂA—hABACﬁC]

1 oL, A RB= - A =
:_hABK+1/’ [AA53+ABBA_hABACﬁC}
2 2a

The momentum constraints, Ay K48 — ABK = S8 can now be written in terms of the shift vector
A AA3E — 2092758 B4 (log awy=2) {AABB +ABgA ;LABACBC}
+ %(BABK + KAB log )
where the “matter” part is

1 1
S =90gx + —x9B5 — jKBCac§+ Q%C()B'LD + 81Gjp
S S S

Again, we note that the covariant derivative operator A 4 1s built out of the conformal metric h ap. In
general, this metric will be our earlier version of hp with the a? factors divided out. In the particular case
of cylindrical or spherical polar coordinates, the conformal metric will be

s = (3 b(x01>2>

with b(x!) = 1 for cylindrical coordinates and b(z') = b(r) = r for spherical polar coordinates.
The Hamiltonian constraint is now

AsAM g = —2p9* — PP Ko p K48

where

KAB_lhABK p—2P AA3B 4 ABjA _ JABA . 3C
=ty (AT AT S ACP

and the slicing condition becomes

A A% = —(log §),Aa,A + ap?? {(K + X)2 —n*(K + X),a}

PO PO 2p
A A% — A A% log P — ;% u? — 8tG P (p — 12TW)}
S S

—

w | N
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The Equations to be Differenced (Finally)

The following are now the axisymmetric Einstein equations coupled to a general matter field that obeys the
conditions we stated earlier. There are four evolution equations for the two radiative parts of the metric,
two (complex) evolution equations for the complex scalar field and four constraint equations determining the
kinematic variables. The slicing equation for the lapse is written suggestively for the imposition of maximal
slicing, though in principle, a different slicing could be used.

§— 31045 = —asy

_ 1 . .
— BY0ax = ——5AA(aA"5) + ax(K + X)

Jr2(1254
W — [Aosw = —au
i B 0ai = — 2 Ay (LA + o
u—f3 Au——g A(gi?) w)+ozu(K—3x)

I 2 . 2 or . . o .
AaA%(loga?) = —EAAAAg - 2“— [AAﬁB ApfA + hpoAapE AAC — (AAﬁA)Q}

+
|

ha
=
+
W~
a¥
|

§
[>>

w + a*u?®) — 167Ga*T),,n*n”
A AABE = a5AP E(K T x)] 1A, ( ) {AAﬁB L ABA EABACBC}

+ QABX + 3axAB(log 5)+ _—4ABw - 16wGaTbAnbszB
3

A A0 = aa (K +x)* - a(K+x)7a}—aAAAAloga2
200 4 1. " 2 1
— fAAAA_ — jAAEAAoz — % % — 81Gaa? Tntn? — - Oy
35 5 254 2

where these have to be supplemented by equations of motion for the matter. Note that we could have also
written pg = T, n#n” and jB = —Tyan using our earlier definitions.

Let’s now consider the particular example of a nonlinear sigma model. The action for the complete
theory is then given by

/d4x\/_ { 167G (1 lv;l“;PP - V(/, f*)} :

The corresponding equations are now

§— 32045 = —asy
— BA0ax = *%AA(OAAE) + ax(K +x)
%(azfﬂ — A ywAtw) — 8nGaV
W — fAoaw = —au

— _3 ~ ~
i — 3100 = *%AA (%AAE) + au(K — 3x)

f=BYaf = —aF
— BAOAF = —%AA (aEAAf> +aF (K +x)
2raf*

2wl OV
a?(1 — k| f[?)

(@2F2 — Ao fAAF) + a1 — k[ f) I
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PO 2 ~ a? N e oA = ~ N e A 4= A~
AaA%(loga?) = —EAAAAg — 5 [AAﬁB ApB* + hpoAadP AAFC — (AABA)Q}

1 - o
+ % K(K +4y) — ﬁ(AAwAAu’) + u%a?)
(12|F|2+AAfAAf* )
-1 v
G”G{ (T

AAAABB = asAP i(K +x)| + AA log _i) {AABB + ABBA — EABACBC}
5 5a?

R R TN FAB * F*AB
+aABX+3axAB(log8)+gABw—l—l&rGa{ (1f—:|f2)2 f}

A A 0 = aa® {(K+x)?—n"(K+X)a}— aA  A* oga®

2 A AA fx
A AA. oAt o5 ApfALf 35
Ap5A a0 — — 1 1677Ga{7(1_nf|2)2 + 2(1 V

254
where the derivative operator A 4 is built out of h ap = diag (1, b(xl)), K is the extrinsic curvature of the
2-manifold, |V f|? = V,fVf*, the indices A and B run over 1 and 2, and the indices a and b run over 0, 1,
and 2.
We now take these equations and impose maximal slicing: 3K = K + x = 0 and use cylindrical
coordinates b = 1. The resulting equations are

200 ~
— LALAAs -
S

Wl | =

§—p3s,— B*5, = —asx

o _ 1 ~ ~ a _ _ _

X—Bxp =X,z = T34 [(@8,),p + (a52) 2] + W(azuz - w,p2 - w,zz) —8rGaV
w— B, — Fo,. =—at

&3

. = = S « [0

R A e o .

u—pBu, - p*u, = 2 {(§3w7p)7p+ (gdwz)z] 4oty

f - Bpf,p - Bzf,z = —al
. = p 1
F—=BPF, = BF.=——5asfy),+(asfs).:]

2raf*
T A=A

0
(@F>— f,2— £.2) +a(l - nIfIZ)Qa—JZ

a® 2z \2 Az a0 \2 3 5 9
B) [(5{/)*5 ,z) Jr(/g ,erﬁp,z) ] - éa X

202
2F2 2 z2
PP ULEITSE | )
(1= wlfP)

2, _ _
(log a2)7p,, + (log a2)7zz = —g(smp +5.,,) —

1
- g(11‘;,,,2 + w2 + @%a?) — 167G {

Bp,pp + Bp,zz = (IOg %) » (Bp,p - Bz,z) + (IOg %) - (Bz,p + Bp,z)

Ffro+Ff,
(1—&[f*)?

Bz,pp =+ Bz,zz = (10g %) , (sz + Bp,z) =+ (log %) B (Bz,z - Bp,p)

Ff* . +Ff.
(1—&[f[*)?

+ax,+ 304)(5%’) + Oj—gw,p + 167Ga
5 5

S au
+ax,; +3ax—= + — W, + 167Ga
S S
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2ce _
Qpp T Oz = —Q [(log a2),pp + (log a2),zz] - ?(Smﬂ +35.22)

1, _ oza2 {|f PEEy e }
— =80, +5.a,)— —u® - 167Ga 7—%—2‘/
S( PP 5 ) 23 4 (1—I<L|f| )

Knowing that as p — 0, we have 5 ~ p, ? ~ p, & ~ p*, and w ~ p?, we can now use regularized

variables via the substitutions: 5 = ps, 8 = p@?, 4 = p*u, and w = p*w.

5= ppPs, — Fs. = —asx + s

. i 1
X—PB°X,p—B°Xx,z = oz ((asp),p+ (asz) ] — W(QSQ)M’
p2a 2 2 2 2
T 90244 [(4w +pw,)° + (ﬂw,z) —pTau ] — 8rGaV

w— pprw, — fFw,, = —au+48°w
3
. 211 f« o}
u—=pffu,—pu.=——3 [_ (—spw,p) * (—sw,z) ]
S N2 S ,Z

as 1p
4s3 /aw
(o), s o
P

f‘ —pB°f,—B°f.=—aF
) 1
F— PﬂpF,p - BZF,Z = ) [(asf’p)’p + (a5f72)7Z] a p;::zf,p

2K f*
NP OETEE

(@F? = 1,2 = £.2) +all = PP 5

a2

(08.) 108 %) e = =2 [+ 20, 8] = o (), = 572 4 (5 + 90,00

3 2
=20 = L [+ g + (o) + (pua)?]

|FP?+f >+
_1 5P 32 2
6”G{ TosfPr " V}

(s 35) 8+ 0 =)+ (e 52) (A", +07.)

)

2 1
ﬁp,pp + ;ﬂp,p + ﬂp,zz = ;
1
2

1 1 S
— =B, + B° = B7.) + —ax,, + 3ax <—+i>
p . <) p " p* - ps

au 1FEf*p+F"f,
+ —p (4w +pw ) + 161Ga— ————=5~
s °) p (1=rlf[*)?

1
B pp+ B% 2 = [(log %) L ;} (8%, +pB° ) + (log %))z (B% 2 = (pB”),p)

Fr.+Ff:
3ax—= 167Gaa? —=—2 %
e ax + AT (1= ~lf?)?

1 2« 2
Qpp + ;a’p t Qe = s { S,pp T+ S’p +s 22] -« [(log a2)7pp + (IOga2),z2]

2 ) )
20 gt L P11 3
964 uTpT — E(S,pa,p + s .0,)— 161G {W + 5(1 174
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