
Our intent is to develop a 2D axisymmetric code for gravitational collapse. Several people have, of
course, done this in the past. One of the most promising approaches was that pioneered by Nakamura and
his collaborators. The theoretical framework they used was one based on work by Geroch and which they
called the (2+1)+1 decomposition. The basic idea is to divide out the symmetry and perform a foliation of
the resulting 3 dimensional manifold a la ADM. In the hopes that this will be a useful introduction to this
formulation and the resulting equations, we will try to develop all of the machinery ab initio.

To begin, let us assume that we have an n + 1 dimensional manifold. (We will be interested of course
in the case that n + 1 = 4, but we can do things somewhat generally at this point.) We also assume the
existence of a Killing vector

ξ =
∂

∂ϕ
,

where we have let the coordinate xn+1 = ϕ. For definiteness and in anticipation of our (2+1)+1 reduction
in the presence of axisymmetry, one can think of this Killing vector as being spacelike and possessing closed
orbits. For the moment, however, we will consider a slightly more general case, namely that the Killing
vector is only non-null.

We want to divide out the action of the Killing vector. In mathematical parlance (and in the particular
case that the Killing vector is spacelike with closed orbits), we are interested in the quotient space

M/S1

where S1 represents the topology of a circle. From a practical point of view we construct this space by
projecting onto an n dimensional manifold. To this end, we define the projection operator (which will
become the metric on the quotient manifold)

gµν = γµν −
1
κs̄2

XµXν

where γµν is the metric on the n+ 1 dimensional manifold, Xµ = δµϕ is the Killing vector field and

XµXµ = κs̄2

is the norm of the Killing vector and κ = ±1 depending on whether it is spacelike or timelike respectively.*
The inverse of this operator is

gµν = γµν − 1
κs̄2

XµXν .

We want to construct the relevant quantities on the n + 1 manifold in terms of n dimensional quantities.
First, we make the following definitions:

Aµ =
1
κs̄2

Xµ, Fµν = ∂µAν − ∂νAµ.

We can write the metric on the n+ 1 manifold as

γµν =
(
gab + κs̄2AaAb κs̄2Aa

κs̄2Ab κs̄2

)
Using these relations, the connection beomes

(n+1)Γλµν = (n)Γλµν + κΩλµν

= (n)Γλµν +
κ

2
s̄2gλσ

[
AνFµσ +AµFνσ − ∂σ(ln s̄2)AµAν

]
+
κ

2
Aλ
[
∂µ(s̄2Aν) + ∂ν(s̄2Aµ)

]
.

* We will use Greek indices such as µ, ν, λ, . . . to run from 1 to n+ 1 and lowercase Latin indices such as
a, b, c, . . . to run from 1 to n. When we apply the ADM formalism to our n dimensional manifold, we will
use uppercase Latin indices such as A,B,C, . . . to run from 1 to n− 1.
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It is worth mentioning that the metric γµν lowers indices and γµν raises indices. As a result, a useful identity
in deriving the following is

gµνAµ = 0.

A few other handy identities are*

Aϕ = 1
AνAν,µ = 0

Aν∂ν(log s̄2) = 0
AνFνµ = 0.

The n+ 1 dimensional volume element can be written

√
−γ = s̄

√
−g.

This can be got from the relation
(n+1)Γνµν = ∂µ(ln

√
−γ).

The Ricci tensor can be written

(n+1)Rµν = (n)Rµν + κ (n)∇λΩλµν − κ (n)∇µΩλνλ + Ωλµν∂λ(ln s̄)− ΩσµλΩλνσ

where (n)∇µ is the covariant derivative on the n dimensional manifold and we have used Ωσσλ = ∂λ(ln s̄). We
now want the components of (n+1)Rµν in terms of the n-dimensional quantities. Expressed in terms of the
n dimensional fields, these become

(n+1)Rϕϕ =
1
4
s̄4FbcF

bc − κs̄ (n)∇a (n)∇as̄

(n+1)Rϕa =
κ

2s̄
(n)∇c(s̄3Fac) +Aa

[
1
4
s̄4FbcF

bc − κs̄ (n)∇a (n)∇as̄
]

(n+1)Rab = (n)Rab −
1
s̄

(n)∇a (n)∇bs̄−
κ

2
s̄2FacFb

c

− κ

s̄
(n)∇c

[
s̄3Fc(a

]
Ab) +AaAb

[
1
4
s̄4FbcF

bc − κs̄ (n)∇a (n)∇as̄
]
.

The Ricci scalar is found to be

(n+1)R = (n)R− 2
s̄

(n)∇a (n)∇as̄−
1
4
s̄2FbcF

bc.

which in the absence of matter is consistent with contracting on (n)Rab above and using the other equations.
Everything up to now has been relatively general. Let’s now choose n+ 1 = 4 and assume axisymmetry

(κ = 1). The theory we want to consider is Einstein gravity coupled to some fundamental matter field.
One example of possible matter fields would be the harmonic map model. However, for the moment, let us
keep a general stress-tensor. The existence of the axisymmetry motivates our use of the Kaluza-Klein like
reduction. The equations of motion for this are

Rµν = 8πG
(
Tµν −

1
2
gµνTλ

λ

)

* Note however that AνAν ,µ 6= 0.
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and the appropriate equation(s) for the matter fields. Note that we have changed notation slightly and are
now using ∇µ as the covariant derivative on the 4 dimensional manifold with the metric γµν . Assuming
axisymmetry for the system and that our prior reduction holds, we have

DaDas̄ =
1
4
s̄3FbcF

bc − 8πG
1
s̄

(
Tϕϕ −

1
2
s̄2Tλ

λ

)
Da(s̄3Fba) = 16πGs̄ (Tbϕ −AbTϕϕ)

Rab =
1
s̄
DaDbs̄+

1
2
s̄2FacFb

c + 8πG
(
Tµνg

µ
ag
ν
b −

1
2
gabTλ

λ

)
where Da is the covariant derivative on the 3 dimensional manifold which possesses the matric gab.

We can simplify these equations further provided our choice for the matter fields is such that Tbϕ −
AbTϕϕ = 0. This turns out to be true for just about any type of scalar field we can dream up. It can be
massive, have multiple components, be self interacting in non-trivial ways, etc. Unfortunately, it will not be
true of an electromagnetic field or a fluid. So the following formalism is realized only for a general scalar
field.

Thus, provided our choice of matter is such that the right hand side of the second equation is zero, we
can define locally a potential field w̄ according to*

s3Fab = −εabcDcw̄.

We can now make the following simplifications

FacFb
c =

1
s̄6

(Daw̄Dbw̄ − gab(Dw̄)2)

FabF
ab = − 2

s̄6
(Dw̄)2

Also, the above divergence equation is now replaced with

DaD
aw̄ =

3
s̄
Dbs̄D

bw̄.

This follows from the identity D[aFbc] = 0. Note that we could do this only because of the nature of our
choice of matter fields.

In the remainder of this, we will assume a form for the matter such that we can define a scalar twist.
As a concrete example, consider the harmonic map. The action is now given by

S =
∫
d4x
√
−g
{

R

8πG
− |∇f |2

(1− κ|f |2)2

}
,

* w̄ is also called the twist potential or the scalar twist of a Killing field. It is defined in Wald 7.4 as the
function such that

∇µw̄ = w̄µ = εµνλσX
ν∇λXσ

where Xµ is a Killing vector field. In our case, this reduces to

w̄µ =
1
2
s4εµνλσA

νFλσ.

Note that even if the matter is not chosen such that the right hand side of the divergence equation is zero,
we can still define w̄µ, just not the scalar twist, w̄. For instance, Nakamura et al are unable to make this
simplification because their use of perfect fluids as their matter yields a “source” term on the right hand
side of their divergence equation.
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where f is a complex scalar field and the κ here parameterizes a family of theories. The κ we had been using
previously had been set to 1. The equations of motion for this are

Rµν = 8πG
(
Tµν −

1
2
gµνTλ

λ

)
∇µTµν = 0

Gµν =
8πG

(1− κ|f |2)2

(
∇µf∇νf∗ +∇µf∗∇νf − gµν |∂f |2

)
,

∇µ∇µf =
−2κf∗

1− κ|f |2
∇µf∇µf.

We can also write the Einstein equations a bit more succinctly as

Rµν =
8πG

(1− κ|f |2)2
(∇µf∇νf∗ +∇µf∗∇νf)

where Da is the covariant derivative on the 3 dimensional manifold which possesses the matric gab.
Rewriting our equations now in terms of the potential field w̄ and with our choice of matter fields, we

have

DaD
as̄ = − 1

2s̄3
(Dw̄)2

DaD
aw̄ =

3
s̄
Dbs̄D

bw̄

Rab =
1
s̄
DaDbs̄+

1
2s̄4

(Daw̄Dbw̄ − gab(Dw̄)2) +
8πG

(1− κ|f |2)2
(DafDbf

∗ +Daf
∗Dbf)

DaD
af = −1

s̄
Das̄D

af − 2κf∗

1− κ|f |2
DafD

af.

Note a couple of things about these equations. One is that the field w̄ never appears, only its derivatives.
Also, in the case w̄ = 0 (no rotation), we can define a field φ such that s̄ = eφ, and in this case, φ does not
appear anywhere, only it’s derivatives. I mention this because I was under the impression that numerically
this property is sometimes a “good thing.” If not, I await being corrected.

Now we want to do the standard ADM reduction of the 3 dimensional space and consider the extra
fields we have as essentially matter fields. Taking our nonlinear sigma model as an example we would then
have in the 3 (or 2+1) dimensional space a complex scalar field f , and two real scalar fields s̄ and w̄. These
are coupled to each other in non-trivial ways, but nevertheless, we can think of them as simply matter.

The 2+1 decomposition proceeds as one would expect. We decompose gab as

dσ2 = gabdx
adxb = −α2dt2 + hAB(dxA + β̄Adt)(dxB + β̄Bdt)

where α is the lapse and β̄A is the shift vector* The indices A and B now range over 1 and 2. The metric
gab can be written with the parameterization

gab =
(
−α2 + hABβ̄

Aβ̄B hABβ̄
B

hABβ̄
A hAB

)
where we will use the parameterization

hAB =
(
a2 + a2b2c2 a2b2c

a2b2c a2b2

)
* We are using β̄ as the shift rather than the usual β because we will use β later for a regularized version

of β̄. It is the regularized β̄, i.e. β that goes into the code, so for the sake of consistency and programming
convenience and simplicity, we choose to start here with β̄.
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There are various gauge choices we could make, but we will try to keep things somewhat general for the
moment. We make the usual definitions. We define a timelike vector na and the extrinsic curvature Kab =
Kba = −Danb. The usual matter quantities are defined

ρ = nanbT
ab

jA = −naT aA
SAB = TAB

with the 2-metric hAB and its inverse lowering and raising indices in the 2 space.
The evolution equations for the 2 dimensional metric hAB and the 2 dimensional extrinsic curvature

KAB can be written in a form analagous to the usual form, namely

∂thAB = −2αKAB + ∆Aβ̄B + ∆Bβ̄A

∂tKAB = (β̄C∆CKAB +KAC∆Bβ̄
C +KBC∆Aβ̄

C)

+ α[KKAB + (2)RAB ]− 2αKACKB
C −∆A∆Bα− α 3RAB

where we have now defined na = (−α, 0, 0) (and hence na = 1
α (1,−β̄1,−β̄2)) and the covariant derivative

on the 2 dimensional surfaces to be ∆A. This derivative, of course, is with respect to the metric hAB . Our
task now is to express the remaining 3 dimensional quantities, such as 3RAB above and DaD

as̄, in terms of
fields on the 2 dimensional slicings. To this end it is useful to quote some useful relations between the two
types of dimensional quantities. One can show

hA
ahB

bDaDbs̄ = ∆A∆B s̄+ (na∂as̄)KAB

Das̄D
aw̄ = ∆As̄∆Aw̄ − (na∂as̄)(nb∂bw̄)

where (in something of an abuse of notation) we mean what we say in all the above. Namely, the indices A
and B range over 1 and 2 while a and b range over 0, 1, and 2. The point is that those terms which include
the sum over a and b indices include time components.

In addition to the reduction of our s̄ and w̄ fields, we also need to know how the “real” matter goes
from 3 to 2 dimensions. To this end, consider only the matter part of 3Rab. In the slicings, it is given by

3RmatAB = 8πG
[
SAB −

1
2
hABT

]
where T is the trace of the (4-dimensional!) stress tensor and can be written as

T = γαβT
αβ

= [hαβ − nαnβ +
1
s̄2
XαXβ ]Tαβ

= S − ρ+
1
s̄2
Tϕϕ

Note that for the particular choice of the nonlinear sigma model as our matter, the final line above is equal
to 2Tϕϕ/s̄2.

Okay, so let’s write out these equations. The wave equations for the fields s̄ and w̄ can each be
decomposed into two first order equations given as follows

∂ts̄− β̄A∂As̄ = −αs̄χ

∂tχ− β̄A∂Aχ = −α
s̄

∆A∆As̄+ αχ(K + χ)

+
α

2s̄4
(ū2 −∆Aw̄∆Aw̄)− 1

s̄
hAB∂As̄∂Bα

∂tw̄ − β̄A∂Aw̄ = −αū
∂tū− β̄A∂Aū = −α∆A∆Aw̄ + αū(K − 3χ)

+
3α
s̄

∆As̄∆Aw̄ − hAB∂Aw̄∂Bα
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where we have made the definitions
χ = −1

s̄
na∂as̄

ū = −na∂aw̄
The time evolution of the extrinsic curvature is now

∂tKAB = (β̄C∆CKAB +KAC∆Bβ̄
C +KBC∆Aβ̄

C)

+ α[KKAB + (2)RAB ]− 2αKACKB
C −∆A∆Bα

− α

s̄
∆A∆B s̄+ αKABχ−

α

2s̄4

[
∆Aw̄∆Bw̄ − hAB(∆Cw̄∆Cw̄ − ū2)

]
− 8πGα

[
SAB −

1
2
hAB(S − ρ+

1
s̄2
Tϕϕ)

]
Raising one index on the extrinsic curvature and simplifying the shift vector terms, we can write this together
with the evolution of the 2-metric as

∂thAB = −2αKAB + hBC∂Aβ̄
C + hAC∂Bβ̄

C + β̄C∂ChAB

∂tKA
B = KC

B∂Aβ̄
C −KA

C∂C β̄
B + β̄C∂CKA

B

+ α[KKA
B + (2)RA

B ]−∆A∆Bα

− α

s̄
∆A∆B s̄+ αKA

Bχ− α

2s̄4

[
∆Aw̄∆Bw̄ − hAB(∆Cw̄∆Cw̄ − ū2)

]
− 8πGα

[
SA

B − 1
2
hA

B(S − ρ+
1
s̄2
Tϕϕ)

]
Let us now consider the constraint equations. They stem from the Gauss-Codazzi relations. For the

embedding of a two dimensional surface in a three dimensional space, they are
2R−Ka

bK
b
a +K2 = 3R+ 2 3Rabn

anb

∆aKb
a −∆bK = − 3Rcdn

dhcb

where 2R = 2RABh
AB and K = KABh

AB . Written out these equations become respectively,

(2)R−KA
BK

B
A +K2 =

2
s̄

(∆A∆As̄− s̄Kχ) +
1

2s̄4
(∆Aw̄∆Aw̄ + ū2) + 16πGρ

∆AK
A
B −∆BK = ∆Bχ+

1
s̄
∂B s̄ χ−

1
s̄
KB

C∂C s̄+
ū

2s̄4
∂Bw̄ + 8πGjB

I have tried to follow Nakamura fairly closely in this and now seem to have agreement with his group’s work.
We can write out now some of these quantities in terms of the metric functions

∆A∆Aw̄ =
1
a2b

{
∂1 [b(∂1w̄ − c∂2w̄)] + ∂2

[
−bc(∂1w̄ − c∂2w̄) +

1
b
∂2w̄

]}
∆As̄∆Aw̄ =

1
a2

{
(∂1s̄− c∂2s̄) (∂1w̄ − c∂2w̄) +

1
b2
∂2s̄ ∂2w̄

}
.

Okay, so let’s write out all the equations in all their scalar and to-be-differenced glory. Before any
coordinate conditions or slicing conditions are imposed, we have 12 evolution equations and 3 constraint
equations. The equations for the “pseudo-matter,” (the scalar fields s̄ and w̄) are

∂ts̄− β̄1∂1s̄− β2∂2s̄ = −αs̄χ

∂tχ− β̄1∂1χ− β̄2∂2χ = − α

s̄a2b
(∂1ps̄ − c∂2ps̄ − ps̄∂2c+ ∂2qs̄) + αχ(K + χ)

+
α

2s̄4

(
ū2 − 1

a2
(pw2 + qw̄

2)
)
− 1
s̄a2

(pαps̄ + qαqs̄)

∂tw̄ − β̄1∂1w̄ − β̄2∂2w̄ = −αū

∂tū− β̄1∂1ū− β̄2∂2ū = − α

a2b
(∂1pw̄ − c∂2pw̄ − pw̄∂2c+ ∂2qw̄) + αū(K − 3χ)

+
3α
s̄

1
a2

(ps̄pw̄ + qs̄qw̄)− 1
s̄a2

(pαpw̄ + qαqw̄)
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where we have made the convenient definition of the auxiliary variables

pf = b(∂1f − c∂2f)

qf =
1
b
∂2f

The subscripted f merely denotes what scalar function is being operated on. The equations for the evolution
of the 2-metric functions are

1
a

(∂ta− β̄1∂1a− β̄2∂2a) = − α

a2
(K11 − 2cK12 + cK22)

+ ∂1β̄
1 − c∂2β̄

1 − b2c(β̄1∂1c+ β̄2∂2c)
1
b

(∂tb− β̄1∂1b− β̄2∂2b) =
α

a2

(
K11 − 2cK12 + cK22 −

1
b2
K22

)
+ c∂2β̄

1 + ∂2β̄
2 − ∂1β̄

1 + c∂2β̄
1 + b2c(β̄1∂1c+ β̄2∂2c)

∂tc− 2β̄1∂1c− 2β̄2∂2c =
2α
a2b2

(−K12 + cK22)

+ c(∂1β̄
1 − c∂2β̄

1) + ∂1β̄
2 − c∂2β̄

2 +
1
b2
∂2β̄

1

and the equations for the evolution of the extrinsic curvature are

(∂t − β̄1∂1 − β̄2∂2)K1
1 = K2

1∂1β̄
2 −K1

2∂2β̄
1 + α

[
K1

1(K + χ) + 2R1
1 − 1

s̄
∆1∆1s̄

]
−∆1∆1α− α

2s̄4a2

[
pw̄qw̄ − qw̄2 + ū2a2

]
− 8πGα

[
S1

1 − 1
2

(S − ρ+
1
s̄2
Tϕϕ)

]
(∂t − β̄1∂1 − β̄2∂2)K2

2 = K1
2∂2β̄

1 −K2
1∂1β̄

2 + α

[
K2

2(K + χ) + 2R2
2 − 1

s̄
∆2∆2s̄

]
−∆2∆2α− α

2s̄4a2

[
pw̄

2 − cqw̄pw̄ + ū2a2
]

− 8πGα
[
S1

1 − 1
2

(S − ρ+
1
s̄2
Tϕϕ)

]
Let us review what it is that we have done up to this point. We have started with GR coupled to a

general matter field and assumed the presence of axisymmetry. We have divided out the axisymmetry and
considered the resulting 3 dimensional theory. Then we have split time and space according to the ADM
prescription. The resulting equations are 2 first order in time equations describing the scalar field s̄, 3 first
order in time equations for the 3 dimensional “electromagnetic field,” 3 first order in time equations for the
evolution of the 2-metric, 3 first order in time equations for the evolution of the 2 dimensional extrinsic
curvature and 3 constraint equations (Hamiltonian and 2 momentum constraints). To this point we have not
made any coordinate or slicing conditions. In fact, we have yet to even choose a complete coordinate system.
With regard to the latter point, we have chosen a time coordinate t for the 2+1 split and a coordinate ϕ
(ignorable) adapted to our assumed axisymmetry. This seems to me about as general as we can be at this
point. But in the following section, we will see that we have to start making some choices, particularly with
regard to the choice of coordinate system – the regularity conditions would seem to demand it.
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Regularity Conditions

I think I finally have something of a handle on the regularity conditions. The basic idea follows the
review article by Bardeen and Piran and looks to adapt the Nakamura method to it. Bardeen and Piran argue
that regularity can be enforced by demanding that locally, near the axis (r ≈ 0), the Cartesian components
of any tensor or vector can be expanded in non-negative powers of the Cartesian coordinates x, y, z. After
finding the behavior near the axis, we transform back to our adapted coordinates and the near axis behavior
can then be expressed in terms of our chosen coordinate system. Since we are enforcing what is in some
sense a physical condition, we must work with the quantities on the full four dimensional manifold. The
invariant way to define this is

LξY = 0

where ξ is the Killing vector in Cartesian coordinates near the axis and Y is any tensor quantity. We can
write the Killing vector as

ξ = −y ∂
∂x

+ x
∂

∂y

Taking the Lie derivative of a scalar quantity φ(t, x, y, z)

−y ∂φ
∂x

+ x
∂φ

∂y
= 0

shows us that φ = φ(t, x2 + y2, z). This is of course no surprise as we would expect no dependance on ϕ.
As another example of this method, consider a vector ηα with the Lie derivative acting on it along the

Killing vector. The equation for this is
ξαηβ,α − ηαξβ,α = 0

which written out in components yields four equations

−yηt,x + xηt,y = 0
−yηx,x + xηx,y = −ηy

−yηy,x + xηy,y = ηx

−yηz,x + xηz,y = 0.

The solution to these equations yields
ηt = g1

ηx = xg2 − yg3

ηy = xg3 + yg2

ηz = g4

where the gi are functions of t, x2 + y2, and z. Transforming back to cylindrical coordinates (for example)
using

η′µ =
∂x′µ

∂xν
ην

we find
ηt = g1(t, r2, z)

ηr = rg2(t, r2, z)

ηz = g4(t, r2, z)

ηϕ = g3(t, r2, z)

where the gi’s are expandable in non-negative powers of the arguments.
We can do the same thing for a general tensor Yµν . For simplicity, we will assume that Yµν is symmetric.

The equation for the Lie derivative on this tensor along the Killing vector is given in Bardeen and Piran as
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well as the resulting spatial equations written out in the Cartesian coordinate system. Let’s go ahead and
reproduce these equations together with those for the time components. The covariant equation is

Yµν,λξ
λ + ξλ,µYλν + ξλ,νYλµ = 0

where in terms of components we get

yYxx,x − xYxx,y = 2Yxy
yYyy,x − xYyy,y = −2Yxy
yYxy,x − xYxy,y = Yyy − Yxx

yYzz,x − xYzz,y = 0
yYzx,x − xYzx,y = Yzy

yYzy,x − xYzy,y = −Yzx

yYtt,x − xYtt,y = 0
yYtx,x − xYtx,y = Yty

yYty,x − xYty,y = −Ytx
yYtz,x − xYtz,y = 0

The solution can now be found in terms of ten independent, regular functions fi (with i = 1 . . . 10)
which depend only on t, x2 + y2 and z.

Yxx = f1 − 2xyf2 + y2f3

Yyy = f1 + 2xyf2 + x2f3

Yxy = (x2 − y2)f2 − xyf3

Yzz = f4

Yzx = xf5 − yf6

Yzy = yf5 + xf6

Ytt = f7

Ytx = xf8 − yf9

Yty = yf8 + xf9

Ytz = f10

We now want to transform to the coordinates we would like to use. However, we can still keep things
a bit general. We want to make a coordinate transformation from (t, x, y, z) to (t, x1, x2, φ) with x1 and
x2 being “arbitrary” curvilinear coordinates near the axis. The general coordinate transformation can be
written in a suggestive notation as

x = r̄(x1, x2) cosϕ

y = r̄(x1, x2) sinϕ

z = z̄(x1, x2)

with the inverse transformation, of course, assumed to exist. The problem with any coordinate system
involving the cyclic coordinate ϕ is now fairly clear. At any points where the function r̄(x1, x2) goes to zero,
the transformation becomes multi-valued since ϕ can take on any value between 0 and 2π. This occurs, of
course, on the axis of symmetry and is the reason for our interest in the regularity conditions.

Using the usual transformation law,

Y ′µν =
∂xλ

∂x′µ
∂xσ

∂x′ν
Yλσ

we find after expanding that
Ytt = f7

Ytϕ = r̄2f9

Yϕϕ = r̄2f1 + r̄4f3

YtxA = r̄
∂r̄

∂xA
f8 +

∂z̄

∂xA
f10

YϕxA = r̄2 ∂z̄

∂xA
f6 + r̄3 ∂r̄

∂xA
f2

YxAxB =
∂r̄

∂xA
∂r̄

∂xB
f1 +

∂z̄

∂xA
∂z̄

∂xB
f4

+ r̄f5

[
∂r̄

∂xA
∂z̄

∂xB
+

∂r̄

∂xB
∂z̄

∂xA

]
.

At this point, we have to make a choice in the coordinate system which we will use. We will choose to use
cylindrical coordinates from here on out: x1 = r = r̄ and x2 = z = z̄. Another curvilinear coordinate system
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that might be interesting to consider would be spherical polar coordinates: (x1, x2) = (r, θ) and r̄ = r sin θ,
z̄ = r cos θ. This is what Bardeen and Piran use, for example. Their transformations follow from our above
equations. Given this general form of the transformation, though, we could also consider oblate or prolate
spheroidal coordinates if we were ever crazy enough to do such a thing.

So, transforming the Cartesian spatial components to cylindrical coordinates and equating this tensor
with γµν allows us to determine the small r behavior of the full 4-metric. The transformation allows us to
equate

γrr = grr + s̄2ArAr = f1 ,
γrz = grz + s̄2ArAz = rf5 ,
γrϕ = s̄2Ar = r3f2 ,
γzz = gzz + s̄2AzAz = f4 ,
γzϕ = s̄2Az = r2f6 ,

γϕϕ = s̄2 = r2f1 + r4f3

γtt = gtt + s̄2AtAt = f7

γtr = gtr + s̄2AtAr = rf8

γtz = gtz + s̄2AtAz = f10

γtϕ = s̄2At = r2f9

We can now untangle all of these and determine the behavior of the relevant quantities for small r

s̄2 ≈ r2

Az ≈ C0

gzz ≈ C1

Ar ≈ r
grz ≈ r

grr ≈ C2

At ≈ C3

gtz ≈ C4

gtr ≈ r
gtt ≈ C5

where the Ci’s are “constant” with respect to r but will in general have t and z dependance. Using these
relations, we can find the small r behavior for our particular parameterization of gab

a2 ≈ C6

b2 ≈ C7

c ≈ r
β̄r ≈ r
β̄z ≈ C8

where again the Ci’s are arbitrary functions of t and z.
We must also consider our potential function w. It is effectively a replacement for our Aa. Using the

definition
∂aw̄ =

1
2
s̄3εabcg

bdgce(∂dAe − ∂eAd)

we find that near r = 0
w̄ ≈ c0 + r4F1(t, r, z)

with c0 a constant real number independent of t and z and F1 a regular function of its arguments. Without
any loss of generality, we can set c0 = 0 since only the derivatives of w̄ appear anywhere in our equations.

We must also consider the small r behavior of the components of the extrinsic curvature. To do this,
we first need the relation between the “usual” extrinsic curvature 3Kµν which comes from the ADM 3+1
prescription and the extrinsic curvature we have defined here 2Kab in the (2+1)+1 formulation. One way to
examine this is to reverse the order of our decomposition. We first divided out the Killing vector Xµ and
then split space and time. We could instead do the usual thing and perform the ADM split first and then
consider the presence of the axisymmetry. In terms of the metric we would have

γµν = gµν +
1
s̄2
XµXν

= hµν − nµnν +
1
s̄2
XµXν

= Hµν − nµnν

10



where we have defined the unit normal nµ and a new purely spatial 3-metric Hµν . The relevant relation can
then be found as decomposing 3Kµν in terms of 2Kab

3Kµν = −∇µnν
= −HµαHνβ∇αnβ
= 2Kµν + s̄2A(µFν)αn

α + s̄2AµAνχ.

This can be found in Nakamura’s review article. The easiest way to verify the last line is to work backwards
from it using the definitions we have made earlier.

Using our prototype tensor Yµν , the behavior of the spatial components can now be associated with
3Kµν from which we can deduce the he small r behavior for the components of 2Kab which we evolve

3Krr = d1 = 2Krr + s̄2ArFrαn
α + s̄2ArArχ

3Krϕ = r3d2 = s̄2Frαn
α + s̄2Arχ

3Krz = rd5 = 2Krz + s̄2A(rFz)αn
α + s̄2ArAzχ

3Kzz = d4 = 2Kzz + s̄2AzFzαn
α + s̄2AzAzχ

3Kzϕ = r2d6 = s̄2Fzαn
α + s̄2Azχ

3Kϕϕ = r2d1 + r4d3 = s̄2χ

where the di with i = 1 . . . 6 are independent, regular functions of t, r and z. Using these we find the small
r behavior to be

χ ≈ C0

2Krr ≈ C1

2Krz ≈ r
2Kzz ≈ C2

where the Ci’s are different from before, but are again independent of r but have t and z dependance. In
addition, we note that the “extra” conditions agree with the earlier behavior we found. Raising indices, we
find finally

2Kr
r ≈ C̃1

2Kr
z ≈ r

2Kz
z ≈ C̃2.
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The Initial Value Problem

Okay, we have to face up to the complexity of the IVP (initial value problem) in GR. Fortunately, we have
some things in our favor. Perhaps the most important is the observation that in our chosen coordinates
(ρ, z) the 2-metric hAB is conformally flat. This becomes crucial in simplifying the usual York-Lichnerowicz
decomposition.

To begin our review of this decomposition, let us state that in this section, we will do things fairly
generally. We start by conformally transforming a general spatial metric, γij of dimension n as follows (in
contrast with what we did before, i, j, k will run from 1 to n in this section)

γij = ψ2pγ̂ij , γij = ψ−2pγ̂ij

where all hatted quantities are in the conformally transformed manifold. The constant p is an integer which
we are free to specify. It would seem fairly obvious that in our particular problem, we should equate the
conformal factor with a2 and we will do this eventually, but for the moment let’s keep things somewhat
general (so this can serve as a reminder for myself of the whole York procedure).

The Christoffel symbols now become with the conformal transformation

Γkij = Γ̂kij + p
[
δkj ∂i logψ + δki ∂j logψ − γ̂klγ̂ij∂l logψ

]
and the Ricci tensor can now be written using the usual formula

Rij = R̂ij + p(2− n)∇̂i∇̂j logψ − pγ̂ij∇̂i∇̂i logψ

+ p2(n− 2)
[
∇̂i logψ∇̂j logψ − γ̂ij(∇̂ logψ)2

]
from which we can get the Ricci scalar

ψ2pR = R̂+ 2p(1− n)∇̂i∇̂i logψ + p2(n− 2)(1− n)(∇̂ logψ)2.

Where again, in this section, we are using ∇i as the covariant derivative constructed from γij and ∇̂i as
the covariant derivative constructed from the conformal metric γ̂ij . In the usual formulation, we look at the
trace free part of the extrinsic curvature i.e. we subtract off the trace and give it a new name:

Aij = Kij −
1
n
γijK

The momentum constraints
∇j(Kij − γijK) = Si

where Si is the matter can now be written in terms of the symmetric and trace-free quantity Aij :

∇jAij =
n− 1
n

γij ∇jK + Si

The burning question is how does the extrinsic curvature transform under the conformal transformation and
by extension, how then do the constraints transform? The whole idea is one of simplification. We perform
the conformal transformation in order that we can somehow simplify the constraints so that they are easier
to solve. To this end, allow the extrinsic curvature to transform as

Kij = ψqK̂ij

where q is another constant integer which we can choose and where one should note the upper indices (for
some reason, working with the upper indices seems fairly standard). Using this, the fact that the trace of
Kij transforms as

K = Ki
i = ψ2p+qK̂

12



and that Aij had better transform the same as does Kij , we can rewrite the momentum constraints as

∇̂j
[
Âijψq+p(n+2)

]
=
n− 1
n

ψq+p(n+2)γ̂ij
[
(2p+ q)K̂ ∇̂j logψ + ∇̂jK̂

]
+ ψp(n+2)Si.

The easiest way to get this is simply to write out the constraints in terms of the tansformed quantities
and transformed Christoffel symbols. A simple choice for the transformation properties of Kij is that the
covariant derivative be an invariant. In that case, we choose q = −p(n + 2). This is what we will do.
(Another possible choice [that Evans uses] is that tr(K) be a conformal invariant. For that, we would have
q = −2p.)

Now, to solve the momentum constraints we decompose Âij into transverse, ÂijT , and longitudinal, ÂijL ,
parts where by definition

∇̂ÂijT = 0.

Both parts are separately traceless and symmetric. We can further introduce a “vector potential” W i for
the longitudinal part

ÂijL = ∇̂iW j + ∇̂jW i − 2
n
γ̂ij∇̂kW k

Note that now we can write the conformally transformed covariant derivative of the conformally transformed
trace-free part of the extrinsic curvature as (how’s that for a mouthful?)

∇̂iÂij = ∇̂i∇̂iW j + ∇̂i∇̂jW i − 2
n
γ̂ij∇̂i∇̂kW k

= ∇̂i∇̂iW j + R̂jkW
k +

n− 2
n

γ̂ij∇̂i∇̂kW k

Putting all of this together gives us the momentum constraints as a vector elliptic equation for W i

∇̂j∇̂jW i + R̂ijW
j +

n− 2
n

γ̂ij∇̂j∇̂kW k =
n− 1
n

γ̂ij
[
−pnK̂ ∇̂j logψ + ∇̂jK̂

]
+ ψp(n+2)Si.

Note the simplification that results when the maximal slicing condition, K = 0, is used. Further simplification
occurs when the spatial metric is 2 dimensional.

The Hamiltonian constraint is somewhat simpler fortunately. It is

R+K2 −KijK
ij = 2ρH

Substituting in for our various quantities, we get

2p(n− 1)∇̂i∇̂i logψ + p2(n− 1)(n− 2)(∇̂ logψ)2 = R̂+
n− 1
n

ψ2(q+3p)K̂2

− ÂijÂijψ−2p(n−1) − 2ψ2pρH .

This is the general York scheme generalized to n dimensions. As it must, it reproduces the usual results for
n = 3.

Now, however, let’s consider n = 2 and our 2-metric is now hAB and is conformally flat by our choice of
coordinates. We had originally thought that we would choose K = 0. This corresponds to maximal slicing
in the 2-manifold but something akin to what we’ll call “axial” slicing in the 3-manifold since the usual
extrinsic curvature now satisfies

(3)K = (2)K + (3)Kϕ
ϕ

= (3)Kϕ
ϕ

This is in analogy to polar slicing where (3)K = Kr
r. However, some testing of this slicing condition in

spherical symmetry show that the resulting elliptic equation and boundary conditions may well be an ill-
posed problem. The easiest way to see that is that the resulting differential operator in axial slicing becomes
essentially a 2-d Laplacian rather than a 3-d Laplacian as in maximal slicing. This has a logarithm in its
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Green function which we should consider as its fundamental solution. What we want, though, is a solution
to the lapse equation which should be asymptotically flat. Trying to impose such a boundary condition
results in an ill-posed problem. So, we must choose a different slicing condition, and the most natural (or
traditional) is thus maximal slicing.

With our conformally transformed 2-metric (which is flat) and our choice of cartesian coordinates (ρ, z),
we have the following simplifications, namely that R̂ = 0, Γ̂kij = 0, ∇̂i = ∂i. Our above equations then reduce
to

∇̂i∇̂i logψ2p = −ψ−2pK̂ijK̂
ij − 2ψ2pρH +

1
2
ψ−2pK̂2 − ÂijÂijψ−2p

∇̂i∇̂iW j = ψ4pSj +
1
2
γ̂ij
[
−K̂ ∇̂j logψ2p + ∇̂jK̂

]
K̂ij = K̂ij

T + K̂ij
L

After all of that, this will probably be maddening, but this is not quite what we will do. The problem
with the above is that in the usual formulation (i.e. n = 3), ÂijT = K̂ij

T is freely specifiable initial data (e.g.
let it be a gaussian). In n = 2, it is not. We have to find it from the constraints. But that is okay. We will
not decompose Kij as we have done. Instead, let us consider the evolution equation for the metric (again in
n dimensions)

∂tγij = −2αKij +∇iβ̄j +∇j β̄i

from which we can get
∂t(log γ1/2) = −αK +∇iβ̄i

where (this is a bit confusing) the quantity γ (without indices) is the determinant of γij and K (without
indices) is the trace of Kij . This can be derived by contracting on the first equation and using the identity

1
γ
∂tγ = γij∂tγij .

Now, making a non-obvious combination of these (actually it’s the trace-free thing again), we can write

∂tγij = −2α(Kij −
1
n
γijK) +∇iβ̄j +∇j β̄i +

2
n
γij(−αK +∇kβ̄k)− 2

n
γij∇kβ̄k

which, on rearrangement yields

γ1/n∂t

[
γ−1/nγij

]
= −2α(Kij −

1
n
γijK) +∇iβ̄j +∇j β̄i −

2
n
γij∇kβ̄k

The point of all this is that the quantity in brackets is conformally invariant:

γ−1/nγij = γ̂−1/nγ̂ij

and will be a constant because of our choice of coordinates and since our conformal metric is flat. Thus
the time derivative and hence the left hand side above is zero. Note that this is exactly what Wilson and
Matthews do in their “conformal flatness approximation” scheme. There they assume that the conformal
metric is always flat (which they argue is good provided gravitational radiation is negligible) and solve a
simplified set of equations for the inspiral of two neutron stars. Here however (in 2 spatial dimensions), the
flatness of the conformal metric is exact.

Let us now revert to our previous notation and work with our two dimensional metric hAB . The basic
idea is to use the covariant derivative operators associated with the conformal metric ĥAB but not to use
other conformally transformed quantities. This may seem a bit mixed up, but it is effectively what is done
in the usual initial value formulation. One transforms to the conformal metric to simplify the equations
and then at the end of the day transforms back to the “physical” quantities associated with the physical
metric. If we can take advantage of the simplifications inherent in the conformal metric without transforming
everything to their conformal equivalents, why not?
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In addition, it seems to me that by doing this, we get the added bonus (actually it is more by virtue
again of our 2 dimensional spatial metric) that there is no gravitational radiation in the initial data but
what we explicitly give. Note that earlier I made mention of the fact that in the York scheme, ÂijT = K̂ij

T is
freely specifiable initial data. One choice of initial data of course would be no initial gravitational radiation.
However, how does one specify that? A natural choice would seem to be flat initial data with γ̂ij = 0
and K̂ij

T = 0, but it turns out that the conformal transformation back to the physical metric mixes the
components of the decomposition of Kij such that the longitudinal part of it will pick up some radiative
parts and will still contain preexisting gravitational radiation. This does not seem to be true in our scheme
and it seems that if we want preexisting radiation or not we can say so simply by our conditions on the
radiative variables s, χ, ū and w̄.

Anyway, continuing on we will use maximal slicing in the 3-manifold, 3K = 0. The extrinsic curvature
is now be given by

KAB =
1
2
hABK +

1
2α
[
∆Aβ̄B + ∆Bβ̄A − hAB∆C β̄

C
]

=
1
2
hABK +

ψ−2p

2α

[
∆̂Aβ̄B + ∆̂Bβ̄A − ĥAB∆̂C β̄

C
]

The momentum constraints, ∆AK
AB −∆BK = SB , can now be written in terms of the shift vector

∆̂A∆̂Aβ̄B = 2αψ2pSB + ∂A(logαψ−2p)
{

∆̂Aβ̄B + ∆̂Bβ̄A − ĥAB∆̂C β̄
C
}

+
1
2

(3∆̂BK +K∆̂B logψ2p)

where the “matter” part is

SB = ∂Bχ+
1
s̄
χ∂B s̄−

1
s̄
KB

C∂C s̄+
u

2s̄4
∂Bw̄ + 8πGjB

Again, we note that the covariant derivative operator ∆̂A is built out of the conformal metric ĥAB . In
general, this metric will be our earlier version of hAB with the a2 factors divided out. In the particular case
of cylindrical or spherical polar coordinates, the conformal metric will be

ĥAB =
(

1 0
0 b(x1)2

)
with b(x1) = 1 for cylindrical coordinates and b(x1) = b(r) = r for spherical polar coordinates.

The Hamiltonian constraint is now

∆̂A∆̂A logψ2p = −2ρHψ2p − ψ2pKABK
AB

where

KAB =
1
2
hABK +

ψ−2p

2α

(
∆̂Aβ̄B + ∆̂Bβ̄A − ĥAB∆̂C β̄

C
)

and the slicing condition becomes

∆̂A∆̂Aα = −(log s̄),Aα,A + αψ2p
{

(K + χ)2 − na(K + χ),a
}

− α
[

2
s̄

∆̂A∆̂As̄− ∆̂A∆̂A logψ2p − ψ2p

2s̄4
ū2 − 8πGψ2p(ρ− 1

s̄2
Tϕϕ)

]
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The Equations to be Differenced (Finally)
The following are now the axisymmetric Einstein equations coupled to a general matter field that obeys the
conditions we stated earlier. There are four evolution equations for the two radiative parts of the metric,
two (complex) evolution equations for the complex scalar field and four constraint equations determining the
kinematic variables. The slicing equation for the lapse is written suggestively for the imposition of maximal
slicing, though in principle, a different slicing could be used.

˙̄s− β̄A∂As̄ = −αs̄χ

χ̇− β̄A∂Aχ = − 1
s̄a2

∆̂A(α∆̂As̄) + αχ(K + χ)

+
α

2a2s̄4
(a2ū2 − ∆̂Aw̄∆̂Aw̄)− 8πG

α

s̄2

(
Tϕϕ −

1
2
s̄2 (4)T

)
˙̄w − β̄A∂Aw̄ = −αū

˙̄u− β̄A∂Aū = − s̄
3

a2
∆̂A

( α
s̄3

∆̂Aw̄
)

+ αū(K − 3χ)

∆̂A∆̂A(log a2) = −2
s̄

∆̂A∆̂As̄− a2

2α2

[
∆̂Aβ̄

B ∆̂Bβ̄
A + ĥBC∆̂Aβ̄

B ∆̂Aβ̄C − (∆̂Aβ̄
A)2
]

+
a2

2
K(K + 4χ)− 1

2s̄4
(∆̂Aw̄∆̂Aw̄ + a2ū2)− 16πGa2Tµνn

µnν

∆̂A∆̂Aβ̄B = αs̄∆̂B

[
1
s̄

(K + χ)
]

+ ∆̂A

(
log

α

s̄a2

){
∆̂Aβ̄B + ∆̂Bβ̄A − ĥAB∆̂C β̄

C
}

+ α∆̂Bχ+ 3αχ∆̂B(log s̄) +
αū

s̄4
∆̂Bw̄ − 16πGαTbAnbĥAB

∆̂A∆̂Aα = αa2
{

(K + χ)2 − na(K + χ),a
}
− α∆̂A∆̂A log a2

− 2α
s̄

∆̂A∆̂As̄− 1
s̄

∆̂As̄∆̂Aα− αa2

2s̄4
ū2 − 8πGαa2

(
Tµνn

µnν − 1
2

(4)T

)
where these have to be supplemented by equations of motion for the matter. Note that we could have also
written ρH = Tµνn

µnν and jB = −TbAnbĥAB using our earlier definitions.
Let’s now consider the particular example of a nonlinear sigma model. The action for the complete

theory is then given by

S =
∫
d4x
√
−g
{

R

16πG
− |∇f |2

(1− κ|f |2)2
− V (f, f∗)

}
,

The corresponding equations are now

˙̄s− β̄A∂As̄ = −αs̄χ

χ̇− β̄A∂Aχ = − 1
s̄a2

∆̂A(α∆̂As̄) + αχ(K + χ)

+
α

2a2s̄4
(a2ū2 − ∆̂Aw̄∆̂Aw̄)− 8πGαV

˙̄w − β̄A∂Aw̄ = −αū

˙̄u− β̄A∂Aū = − s̄
3

a2
∆̂A

( α
s̄3

∆̂Aw̄
)

+ αū(K − 3χ)

ḟ − β̄A∂Af = −αF

Ḟ − β̄A∂AF = − 1
s̄a2

∆̂A

(
αs̄∆̂Af

)
+ αF (K + χ)

+
2καf∗

a2(1− κ|f |2)
(a2F 2 − ∆̂Af∆̂Af) + α(1− κ|f |2)2 ∂V

∂f∗
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∆̂A∆̂A(log a2) = −2
s̄

∆̂A∆̂As̄− a2

2α2

[
∆̂Aβ̄

B ∆̂Bβ̄
A + ĥBC∆̂Aβ̄

B ∆̂Aβ̄C − (∆̂Aβ̄
A)2
]

+
a2

2
K(K + 4χ)− 1

2s̄4
(∆̂Aw̄∆̂Aw̄ + ū2a2)

− 16πG

{
a2|F |2 + ∆̂Af∆̂Af∗

(1− κ|f |2)2
+ a2V

}

∆̂A∆̂Aβ̄B = αs̄∆̂B

[
1
s̄

(K + χ)
]

+ ∆̂A

(
log

α

s̄a2

){
∆̂Aβ̄B + ∆̂Bβ̄A − ĥAB∆̂C β̄

C
}

+ α∆̂Bχ+ 3αχ∆̂B(log s̄) +
αū

s̄4
∆̂Bw̄ + 16πGα

{
F ∆̂Bf∗ + F ∗∆̂Bf

(1− κ|f |2)2

}

∆̂A∆̂Aα = αa2
{

(K + χ)2 − na(K + χ),a
}
− α∆̂A∆̂A log a2

− 2α
s̄

∆̂A∆̂As̄− 1
s̄

∆̂As̄∆̂Aα− αa2

2s̄4
ū2 − 16πGα

{
∆̂Af∆̂Af∗

(1− κ|f |2)2
+

3
2
a2V

}

where the derivative operator ∆̂A is built out of ĥAB = diag
(
1, b(x1)

)
, K is the extrinsic curvature of the

2-manifold, |∇f |2 = ∇af∇af∗, the indices A and B run over 1 and 2, and the indices a and b run over 0, 1,
and 2.

We now take these equations and impose maximal slicing: 3K = K + χ = 0 and use cylindrical
coordinates b = 1. The resulting equations are

˙̄s− β̄ρs̄,ρ − β̄z s̄,z = −αs̄χ

χ̇− β̄ρχ,ρ − β̄zχ,z = − 1
s̄a2

[(αs̄,ρ),ρ + (αs̄,z),z] +
α

2a2s̄4
(a2ū2 − w̄,ρ2 − w̄,z2)− 8πGαV

˙̄w − β̄ρw̄,ρ − β̄zw̄,z = −αū

˙̄u− β̄ρū,ρ − β̄zū,z = − s̄
3

a2

[( α
s̄3
w̄,ρ

)
,ρ

+
( α
s̄3
w̄,z

)
,z

]
− 4αūχ

ḟ − β̄ρf,ρ − β̄zf,z = −αF

Ḟ − β̄ρF,ρ − β̄zF,z = − 1
s̄a2

[(αs̄f,ρ),ρ + (αs̄f,z),z]

+
2καf∗

a2(1− κ|f |2)
(a2F 2 − f,ρ2 − f,z2) + α(1− κ|f |2)2 ∂V

∂f∗

(log a2),ρρ + (log a2),zz = −2
s̄

(s̄,ρρ + s̄,zz)−
a2

2α2

[
(β̄ρ,ρ − β̄z,z)2 + (β̄z,ρ + β̄ρ,z)2

]
− 3

2
a2χ2

− 1
2s̄4

(w̄,ρ2 + w̄,z
2 + ū2a2)− 16πG

{
a2|F |2 + |f,ρ|2 + |f,z|2

(1− κ|f |2)2
+ a2V

}

β̄ρ,ρρ + β̄ρ,zz =
(

log
α

a2s̄

)
,ρ

(β̄ρ,ρ − β̄z,z) +
(

log
α

a2s̄

)
,z

(β̄z,ρ + β̄ρ,z)

+ αχ,ρ + 3αχ
s̄,ρ
s̄

+
αū

s̄4
w̄,ρ + 16πGα

Ff∗,ρ + F ∗f,ρ
(1− κ|f |2)2

β̄z,ρρ + β̄z,zz =
(

log
α

a2s̄

)
,ρ

(β̄z,ρ + β̄ρ,z) +
(

log
α

a2s̄

)
,z

(β̄z,z − β̄ρ,ρ)

+ αχ,z + 3αχ
s̄,z
s̄

+
αū

s̄4
w̄,z + 16πGα

Ff∗,z + F ∗f,z
(1− κ|f |2)2
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α,ρρ + α,zz = −α
[
(log a2),ρρ + (log a2),zz

]
− 2α

s̄
(s̄,ρρ + s̄,zz)

− 1
s̄

(s̄,ρα,ρ + s̄,zα,z)−
αa2

2s̄4
ū2 − 16πGα

{
|f,ρ|2 + |f,z|2

(1− κ|f |2)2
+

3
2
a2V

}
Knowing that as ρ → 0, we have s̄ ∼ ρ, β̄ρ ∼ ρ, ū ∼ ρ4, and w̄ ∼ ρ4, we can now use regularized

variables via the substitutions: s̄ = ρs, β̄ρ = ρβρ, ū = ρ4u, and w̄ = ρ4w.

ṡ− ρβρs,ρ − βzs,z = −αsχ+ βρs

χ̇− ρβρχ,ρ − βzχ,z = − 1
sa2

[(αs,ρ),ρ + (αs,z),z]−
1

ρs2a2
(αs2),ρ

− ρ2α

2a2s4

[
(4w + ρw,ρ)2 + (ρw,z)2 − ρ2a2u2

]
− 8πGαV

ẇ − ρβρw,ρ − βzw,z = −αu+ 4βρw

u̇− ρβρu,ρ − βzu,z = − s
3

a2

[
1
ρ

( α
s3
ρw,ρ

)
,ρ

+
( α
s3
w,z

)
,z

]
− 4s3

ρa2

(αw
s3

)
,ρ
− 4αuχ+ 4βρu

ḟ − ρβρf,ρ − βzf,z = −αF

Ḟ − ρβρF,ρ − βzF,z = − 1
sa2

[(αsf,ρ),ρ + (αsf,z),z]−
α

ρa2
f,ρ

+
2κf∗

a2(1− κ|f |2)2
(a2F 2 − f,ρ2 − f,z2) + α(1− κ|f |2)2 ∂V

∂f∗

(log a2),ρρ + (log a2),zz = −2
s

[
s,ρρ +

2
ρ
s,ρ + s,zz

]
− a2

2α2

[
((ρβρ),ρ − βz,z)2 + (βz,ρ + ρβρ,z)2

]
− 3

2
a2χ2 − ρ2

2s4

[
(4w + ρw,ρ)2 + (ρw,z)2 + (ρua)2

]
− 16πG

{
a2|F |2 + |f,ρ|2 + |f,z|2

(1− κ|f |2)2
+ a2V

}

βρ,ρρ +
2
ρ
βρ,ρ + βρ,zz =

1
ρ

(
log

α

a2s

)
,ρ

(ρβρ,ρ + βρ − βz,z) +
(

log
α

a2s

)
,z

(
1
ρ
βz,ρ + βρ,z)

− 1
ρ2

(ρβρ,ρ + βρ − βz,z) +
1
ρ
αχ,ρ + 3αχ

(
1
ρ2

+
s,ρ
ρs

)
+
αu

s4
ρ2(4w + ρw,ρ) + 16πGα

1
ρ

Ff∗,ρ + F ∗f,ρ
(1− κ|f |2)2

βz,ρρ + βz,zz =
[(

log
α

a2s

)
,ρ
− 1
ρ

]
(βz,ρ + ρβρ,z) +

(
log

α

a2s

)
,z

(βz,z − (ρβρ),ρ)

+ αχ,z + 3αχ
s,z
s

+
αu

s4
ρ4w,z + 16πGαa2Ff

∗
,z + F ∗f,z

(1− κ|f |2)2

α,ρρ +
1
ρ
α,ρ + α,zz = −2α

s

[
s,ρρ +

2
ρ
s,ρ + s,zz

]
− α

[
(log a2),ρρ + (log a2),zz

]
− αa2

2s4
u2ρ4 − 1

s
(s,ρα,ρ + s,zα,z)− 16πGα

{
|f,ρ|2 + |f,z|2

(1− κ|f |2)2
+

3
2
a2V

}
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