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Abstract

Superconducting Radio Frequency (SRF) cavities play a fundamental role in particle

accelerators. Efficient operation depends on expelling magnetic flux from the cavity, and

any residual flux that remains trapped after cooling below the critical temperature can have

a significant impact on performance. Experimental evidence suggests that material defects

as well as cooling protocols can have a strong impact on subsequent performance. To better

understand these phenomena, we use time-dependent Ginzburg-Landau theory implemented

as finite-element simulations. We adapt the theory to allow spatial variation of material-

specific parameters along with realistic temperature dependencies. We report on numerical

experiments for different configurations of defects such as pinning sites and grain boundaries,

finding that grain boundaries have a much larger effect than pinning sites on the ability of

a superconductor to expel magnetic flux. We also report on numerical experiments where

we investigated effects of cooling speeds on magnetic flux expulsion, observing qualitative

changes which occur when we change a parameter which controls the time dynamics of our

simulations. We discuss implications for SRF cavity design and operation as well as future

research.



Chapter 1

Introduction

Accelerated particle beams have a variety of applications for imaging in the engineering and

natural sciences. Biologists use x-ray beams for imaging proteins [1], engineers use them

to develop new semiconductor technologies [2], and physicists use them to study magnetic

materials [3]. These applications all need bright, coherent, tunable beams, however the size

and cost of the accelerators used to produce these beams is prohibitive to many of these

applications.

The first particle accelerators were initially built in the early 1930s, though these ac-

celerators were rather primitive by today’s standards. Modern particle accelerators really

developed in the 1960s and 1970s after the Stanford Linear Accelerator Center (SLAC) was

funded and built by the US federal government. The accelerators built at SLAC were some

of the first to incorporate superconductors which massively boosted their power output [4].

Today, particle accelerator experiments are some of the largest and most expensive scientific

operations, so there is a large push in the scientific accelerator community to improve the

size and efficiency of particle beam acceleration to make this incredible technology available

to even more scientists.

There are many different factors that go into the creation of particle beams, but the

focus of this project is on particle acceleration. Beam acceleration is often handled by

superconducting radio frequency (SRF) cavities [5]. These cavities work by being supplied

an AC current, which then induces internal electromagnetic fields, which can then be tuned

to accelerate clusters of electrons or other particles as they pass through the center of the
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cavities. Figure 1.1 depicts a single SRF cavity; a synchrotron (a type of large particle

accelerator) may have up to hundreds of these cavities in series. The cavities are plated with

Niobium and cooled to around 2 Kelvin so that the Niobium enters a superconducting state,

and the superconducting state results in a very small, but non-negligible, AC resistance.

This allows for the largest and highest frequency electromagnetic fields to be induced, thus

creating the brightest beams. Niobium has a critical temperature of around 9 Kelvin. Some

cavities are made of Nb3Sn, which has a critical temperature of 18 Kelvin [6]. If it were

possible to raise the operating temperature of SRF cavities by improving their stability, they

would require fewer cryogenic facilities and their size and maintenance cost would decrease.

One of the main goals of current research efforts is to explore some of the limiting factors to

SRF cavity stability and performance.

Building and testing SRF cavities is a difficult endeavor. Purchasing and maintaining all

the components of an SRF cavity is currently very expensive, and actually measuring the

physics behind dynamic superconductivity is challenging. As such, numerical simulations of

SRF cavities are incredibly useful for getting an idea of what will happen experimentally.

The predictions of SRF cavity simulations can then be used to guide development efforts [7].

1.1 Superconductivity and Ginzburg-Landau Theory

The phenomenon of superconductivity was first discovered by Kamerlingh Onnes in 1911

[8]. A material which has entered the superconducting state has two key properties at a

macroscopic level: negligible DC resistance (and small but non-negligible AC resistance)

and perfect diamagnetism, i.e., the expulsion of magnetic fields, known as the Meissner

effect. The Meissner effect occurs when surface currents in the superconducting material

form and cancel out any external magnetic field. The material exits the superconducting

state if it goes above some critical temperature, or if there are external fields that are strong

enough to break through the Meissner effect. This work largely focuses on macroscopic

effects of the superconducting state, for more information on microscopic effects and the

superconducting phenomenon in general, see [9]. For SRF cavities, small AC resistance is

2



Figure 1.1: A picture of an SRF cavity. Courtesy of Sam Posen from Fermilab. There are
coils above and below the cavity to control the magnetic field applied on the cavity. When
used for acceleration, an AC current is run through the torroidal region, and the particles are
accelerated by induced electromagnetic fields as they pass through the middle of the cavity

a desirable property, whereas the loss of superconductivity due to the breakdown of the

Meissner effect is a limitation.

There are many potential models for superconductivity that we could choose to use

in order to simulate SRF cavities [10]. Our research uses the Ginzburg-Landau equations

because they capture the macroscopic features we are interested in such as the difference

between type I and type II superconductors and vortex dynamics. These equations also

are valid for large variations in the magnetic field, unlike other similar models that also

capture macroscopic features. There is a large body of work deriving the Ginzburg-Landau

equations; however, doing so here is beyond the scope of this thesis, for this the curious
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reader should refer to [11]. The particular equations we are using for this project are the

time-dependent Ginzburg-Landau (TDGL) equations in dimensionless units:

∂ψ

∂t
+ iκθψ +

(
−i
κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0 in Ω, (1.1.1)

1

u

(
∂A

∂t
−∇θ

)
+∇×∇×A +

i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = ∇×H in Ω, (1.1.2)(

i

κ
∇+ A

)
· n = H× n on Γ, (1.1.3)

(∇× A)× n = H× n on Γ, (1.1.4)

E · n = 0 on Γ, (1.1.5)

where A is the magnetic vector potential, ψ is a complex order parameter which has units

such that its norm represents the fraction of available electrons in the superconducting

state. This means it is a normal metal when |ψ|2 = 0 and is perfectly superconducting

when |ψ|2 = 1. H is the applied magnetic field. Ω is the superconducting region, and the

boundary of the region is Γ. κ is a dimensionless constant which represents the ratio of

the penetration depth and the coherence length. The penetration depth (also known as the

London penetration depth) is the characteristic length scale for the decay of the magnetic

field within the superconducting material, and the coherence length is the characteristic

length scale for variations in the order parameter. n is a vector normal to Γ. θ is the

electric potential, E = −∇θ − ∂A
∂t

is the electric field. It should be noted that the gauge

choice for the equations here is such that −θ = ∇ · A, this will be relevant later. u is

similar to κ, except that while κ is a ratio of characteristic length scales, u is a ratio of

time scales: the characteristic response time of ψ and the characteristic response time of

A. Changing u affects the way in which time dynamics occur within the superconductor

and as such it is typically set to 1, though as we will see in Chapter 3, changing it has

some pretty meaningful implications. Equation 1.1.1 controls the solution for ψ. Note how

it bears many similarities to the Schrodinger equation, with the exception of the final term

with a nonlinear |ψ|2ψ. Equation 1.1.2 controls the solution for A primarily, as well as

other important electromagnetic quantities, note how the ∇ × ∇ × A term is a current.
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The solutions to these equations can then be used to analyze the superconductivity of the

material in the given region under the given initial conditions. It should be noted that the

above equations are dimensionless; appendix A shows how the nondimensionalization process

works.

The superconductors used in SRF cavities are type II superconductors. In GL theory,

type I superconductors have κ < 1√
2

whereas type II superconductors have κ > 1√
2
. The

key difference between type I and II superconductors is that type II have 2 critical magnetic

fields, and an extra phase called the mixed state in which the nucleation of Abrikosov vortices

occurs rather than a complete quenching of the Meissner state. A phase diagram for types

of superconductors is shown in figure 1.2 [7].

Figure 1.2: A phase diagram for different phases of superconductors at a temperature below
the critical temperature, The x axis is κ and the y axis is the applied field. The meta-
stable state is a state where the material is at risk of losing superconductivity, but an energy
barrier is preventing it from doing so, the super-heating field, Hsh, is the field at which there
is enough energy for the transition to either normal metal or mixed state to occur

1.2 Objective

When an SRF cavitiy is prepared, it is first demagnetized, such that the only magnetic fields

existing in it is Earth’s magnetic field and some other small residual fields. The SRF cavity
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is then cooled by pumping liquid helium through reservoirs surrounding it until it reaches

the superconducting phase, and the Meissner effect can push out remaining magnetic fields.

In practice, the magnetic field is not perfectly expelled from the cavities, and some magnetic

field may become trapped in spots called pinning sites, which are due to material defects

or impurities [12]. Intuitively, it may seem like slowly cooling the SRF cavity by gradually

pumping the liquid helium through the reservoirs would allow the material more time to

push out the magnetic field as the material is cooled in a ‘wave’, however it turns out that

experimentally, the performance of SRF cavities is actually better when the helium is quickly

blasted through the reservoirs; there is not currently a good theoretical explanation for why

this results in better magnetic flux expulsion. Posen et al. have also determined that cavity

preparation, which can have an effect on the number and types of pinning sites within an

SRF cavity, has large effects on the magnetic flux expulsion as well [13].

The goal of this project is to simulate what happens to different superconductors as they

are cooled, and how these results are affected by different material defects. The results of such

simulations should be able to spur some insights into why the above phenomena occur, as

well as providing some guidance for the direction of future experimental and computational

work. In order to achieve this, we needed to re-factorize existing simulations to consider

time and space varying temperature, as well as to solve the equations with multiple different

materials within the same domain.

1.3 Overview of this Thesis

In Chapter 2 we discuss more of the theory behind our simulations, in particular we discuss

the formulation of the TDGL equations which we have developed to simulate domains with

spatially and temporally varying material parameters.

In Chapter 3 we go over the results of the many simulations we ran throughout the

course of this project. Broadly speaking there are 6 categories of simulations we ran: pushing

vortices with temperature waves, pushing vortices into pinning sites with temperature waves,

pushing vortices into grain boundaries with temperature waves, testing pinning site vortex

6



nucleation ability, testing grain boundary vortex nucleation ability, and investigating the

effects of varying u0 (a parameter we define in Chapter 2).

In Chapter 4 we summarize the key takeaways from our simulations and make some

recommendations for future simulations and research questions.
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Chapter 2

Numerical Formulations

To actually solve the time-dependent GL equations we use a finite element method (FEM).

FEMs work by discretizing a particular domain of interest into many smaller domains (finite

elements), approximating a solution on that finite element, and then putting the solutions

for each finite element together to get an approximation for the whole unknown function.

We use an open source Python library for solving partial differential equations via finite

element called FEniCS. For more info on FEniCS and FEMs, visit https://fenicsproject.org

and refer to [14].

2.1 Single Material Formulation

There are a number of different ways that the TDGL equations can be formulated for FEMs.

We start by using a particular method proposed by Gao which lets us solve them in 2D [15].

We have chosen to do this because the Ginzburg-Landau simulations are quite computation-

ally expensive, and 2D simulations can already take many hours to run. 3D simulations of

similar phenomena can take between 2 and 4 orders of magnitude longer than 2D simulations

to run, which would severely limit the number of simulations we could do. 2D simulations

are very useful for understanding qualitative behaviors of superconductors, which can be

later checked in 3D if the need arises. Under Gao’s formulation, we let θ = −∇ · A (The

TDGL equations are gauge invariant [16], so we can choose our gauge such that this is the

case) and σ = ∇ × A. σ and H are the internal and applied magnetic fields respectively

and in principle can be in any direction, however, since in 2D A is only in the x− y plane,

8
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σ will always be in the z direction only, so we can just represent it as its magnitude, which

is a scalar function. As such, we also chose to define H to be only in the z direction as

well, and we implement it as a scalar function H. With this in mind, we can get two new

equations by taking the curl and divergence of equation 1.1.2. Interestingly, Gao has found

that formulating the equations in this way, with two additional equations to solve ends up

being faster and more stable using a FEM, as previous solutions for σ and θ can be used to

find future timestep solutions of A. The full equations which we solve are:

∂ψ

∂t
− iκθψ +

(
i

κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0, (2.1.1)

1

u

(
∂A

∂t
−∇θ

)
+∇× σ +

i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = ∇×H, (2.1.2)

1

u

∂σ

∂t
−∇2σ +

i

2κ
∇× (ψ∗∇ψ − ψ∇ψ∗) + |ψ|2σ −A · ∇ × |ψ|2 = −∇2H, (2.1.3)

and
1

u

(
∂θ

∂t
−∇2θ

)
+

i

2κ
∇ · (ψ∗∇ψ − ψ∇ψ∗) + |ψ|2θ + A · ∇|ψ|2 = 0, (2.1.4)

with boundary conditions(
i

κ
∇ψ + Aψ

)
· n = 0, σ = H, and

∂θ

∂n
= 0. (2.1.5)

Solving these equations with FEniCS allows us to simulate the superconductor dynamics of

a single material; however, in order to simulate SRF cavity cooling, we required the ability to

simulate different materials at varying temperatures. The above formulation of the TDGL

equations assumed that the material coefficients remain the same in the domain, and said

coefficients were then set to 1. To change this, we had to revisit the nondimensionalization

of the TDGL equations and allow certain material coefficients to vary with time and space.

2.2 Variable Material Formulation

The GL equations (excluding the boundary conditions) look like this before we nondimen-

sionalize them:

Γ

(
∂ψ

∂t
+
iesθ

~
ψ

)
+

1

2ms

(
−i~∇− es

c
A
)2

ψ + αψ + β|ψ|2ψ = 0 and (2.2.1)
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4πσn
c

(
1

c

∂A

∂t
+∇θ

)
+∇×∇×A− 2πies~

msc
(ψ∗∇ψ − ψ∇ψ∗)− 4πe2

s

msc2
|ψ|2A = 0, (2.2.2)

where c is the speed of light, es is the charge of a Cooper pair (or twice the charge of

an electron), and ms is the mass of a Cooper pair. α and β are simply scalar coefficients

that are functions of the penetration depth, the critical field, the critical temperature, and

temperature. Γ is a constant scaling factor on the time relaxation rate of ψ, and σn is the

electrical conductivity [17]. To nondimensionalize these equations we follow the processes

outlined by Du [11] and Kopnin [17], but instead of entirely nondimensionalizing α, β, and Γ

out of the equations, we set each of these coefficients to the product of some reference value

which has units and a unitless function of time and space, i.e. α = α0a(r, t), β = β0b(r, t),

and Γ = Γ0γ(r, t). Making these assumptions and proceeding with the nondimensionalization

as normal, we get the following equations:

γ

(
∂ψ

∂t
− iκ0θψ

)
+

(
i

κ0

∇+ A

)2

ψ − aψ + b|ψ|2ψ = 0, (2.2.3)

1

u0

(
∂A

∂t
−∇θ

)
+∇× σ +

i

2κ0

(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = ∇×H, (2.2.4)

1

u0

∂σ

∂t
−∇2σ +

i

2κ0

∇× (ψ∗∇ψ − ψ∇ψ∗) + |ψ|2σ −A · ∇ × |ψ|2 = −∇2H, (2.2.5)

and
1

u0

(
∂θ

∂t
−∇2θ

)
+

i

2κ0

∇ · (ψ∗∇ψ − ψ∇ψ∗) + |ψ|2θ + A · ∇|ψ|2 = 0. (2.2.6)

The derivation of this result is rather long and not enormously important to understanding

the rest of this thesis; however, the curious reader can refer to Appendix A for the full

derivation. This is the formulation we will be utilizing from this point on. It should be noted

that the only real differences between these equations and the single material formulation

from Section 2.1 is the addition of a, b, and γ (which are functions of r and t) in front of

several of the terms in Equation 2.1.1 and κ and u have now become κ0 and u0. The reason

for these subscripts is because it can be shown that κ and u depend on β and Γ respectively.

κ and u are defined so that they necessarily must be constants, so letting β = β0b(r, t) and

Γ = Γ0γ(r, t) means κ and u are no longer necessarily constant, so we instead define κ0 and
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u0, which depend on β0 and Γ0 respectively. If b and γ are chosen to be constants as well,

then κ = κ0 and u = u0. If b and γ are not constant, there is an effective κ and u which

varies along with b and γ; κ0 and u0 determine what this effective value is when b and γ are

1.

2.3 Specifying Materials

To solve the TDGL equations, we then just need to provide values for a, b, and γ. a and

b are not inherent material parameters, but they do depend on real material parameters as

well as the temperature such that

a(Hc, λ, Tc, T ) = H2
cλ

2
1−

(
T
Tc

)2

1 +
(
T
Tc

)2 (2.3.1)

and b(Hc, λ, Tc, T ) = H2
cλ

4 1(
1 +

(
T
Tc

)2
)2 , (2.3.2)

where Hc is the critical magnetic field, λ is the London penetration depth, Tc is the critical

temperature, and T is the temperature. Note that when a is positive, the material is su-

perconducting, and is a normal metal when a is negative. With these formulas, all we have

to do is specify Hc, λ, Tc, and T and our code will generate a and b as seen in Figure 2.1.

Varying the temperature profile over the domain will modify our a plot to reflect this, as

shown by Figure 2.2. Giving the temperature a time dependence is how we simulate cooling

processes. It should be noted that in our simulations, we assume we have full control over

the temperature, and do not take into account any small effects that various superconductor

dynamics have on the temperature. From here it is a simple matter of submitting a job to a

supercomputer to find a finite element solution for ψ, A, σ, and θ at each time step, and then

plotting observable values from these solutions. The code used in running our simulations

can be found at https://git.physics.byu.edu/rfsc/tdgl.

11

https://git.physics.byu.edu/rfsc/tdgl


(a) Temperature profile (b) Plot of a under this temperature profile

Figure 2.1: Plots of temperature and a within a 10x10 domain at this temperature. The
temperature is shown in (a). In (b), each region (or in this case, color) represents a different
material with different Hc, λ, and Tc, the value is then calculated with Equation 2.3.1. The
values in this particular graph were chosen arbitrarily, so disregard the specific values of a,
this just shows what a multi-material domain could look like. There are two main structures
we can input: layers, which are the larger regions separated by a boundary, and islands
which are the ellipses. Small islands can be used as pinning sites.

(a) Temperature profile (b) Plot of a under this temperature profile

Figure 2.2: A plot of a temperature profile and a under this profile within a 10x10 domain
for this temperature profile. The Hc, λ, and Tc are the same as they are in Figure 2.1, but
now the sinusoidal temperature dependence shown in (a) is altering the value of a, shown in
(b), within any given region of the material.

2.4 Simulation Unit Conversions

The simulations in this thesis are mostly intended to be treated qualitatively, allowing us

to explore relevant phenomena while keeping simple numerical values for non-relevant pa-
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rameters, however it should certainly be documented that our code is capable of using very

specific material values if they are known, and these values can be converted to and from

simulation units. Since everything in the simulation is dimensionless, every variable is scaled

in some way (the details of which can be found in appendix A); however, in particular it is

interesting to discuss the scaling of position and time. The spatial dimensions are scaled by

the penetration depth λ0 such that x → λ0x and y → λ0y. This means that in our simula-

tion a 10x10 domain is actually a 10λ0x10λ0 domain. Table 2.1 shows some common spatial

material parameters for materials used in SRF cavities. Here we see that the penetration

depth for Niobium is 50 nm, which means a 10x10 simulation would correspond to an area of

0.25µm2. Similarly, time is scaled by t→ τ∆t where τ∆ is the characteristic timescale of the

order parameter; this means a time of 10 in simulation units is actually 10τ∆ seconds in real

time. There is significantly less documentation of values for the characteristic timescales of

TDGL theory; however, Oripov [18] calculates that for Niobium at least, τ∆ is on the order

of 10−12 seconds, which means the time dynamics we are looking at are actually quite fast.

Material λ(T = 0) [nm] ξ(T = 0) [nm] µ0Hsh [mT] Tc [K]
Nb 50 22 219 9.2
Nb3Sn 111 4.2 425 18
MgB2 185 4.9 170 37
NbN 375 2.9 214 16

Table 2.1: Table of material parameters for superconductors used in SRF cavities. λ is the
London penetration depth, ξ is the coherence length, Hsh is the superheating field, and Tc
is the critical temperature. These values were taken from [6].
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Chapter 3

Numerical Simulation Results

This chapter contains plots and diagrams of the many simulations we ran over the course of

this project. There is a lot of information to process in these plots, but there are a few things

which are particularly important to keep in mind. Firstly, when solving the TDGL equations,

we have to provide an applied magnetic field, Ha. Since we are solving the equations in 2D,

all magnetic field is in the z direction and Ha is applied along the top and bottom edges

of the domain. Our domains are periodic in the x direction. Because of this we often use

periodic functions as our temperature profiles, since we can simulate cooling fronts travelling

as far as necessary by simply translating the temperature profile in time; we use triangle

waves most commonly because of their linear temperature gradients. Additionally, all of

these simulations have κ0 = 4. This is of course a parameter we could change, however, it

controls the length scales in the simulation and we are more interested in time-dependent

dynamics so we have left κ0 constant through all of our simulations.

3.1 Temperature Profile

The function which we choose to use as temperature is important as it is the primary

method by which we will simulate superconductor cooling. The function we have chosen to

use throughout this thesis is given by

T (x, y, t) =
2

π
arcsin

(
cos
(
π
( x

25
+ v(t− t0)

)))
+ 1, (3.1.1)
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(a)

(b)

Figure 3.1: A plot of the temperature profile used in the rest of this thesis. The function
here is given by Equation 3.1.1. Note that this function is periodic in x, as is necessarily
the case since our domain is periodic in x. (a) shows the wave for t = 0. The temperature
reaches a value of 2 at x = 0 and is 0 at x = ±25. (b) shows the wave after it has moved a
short distance after some time t at a velocity v.

where v is the speed of the wave (if we want it to be moving) and t0 is the starting time of

the simulation run. A plot of this function for t = 0, t0 = 0 is shown in Figure 3.1 (a). We

wanted to choose a function which is periodic, as our domain is periodic in x, and this gives

us the advantage of being able to move the wave for as long as desired, not being bounded

by a finite domain. We have chosen this periodic function in particular because, as a triangle

wave, it has linear temperature gradients and so we do not need to worry about effects due

to changes in the slope of the temperature function in something like a sine or cosine. Figure

3.1 (b) shows the same wave after a brief time moving at a v > 0. The wave has simply

translated to the left, given that it is a periodic function, the edge of another wave appears

to the right. The direction it moves is arbitrary, but we have chosen to use left moving waves

throughout this thesis.
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3.2 Two Key Stationary Solutions

There are two situations in which we are particularly interested in looking at the effect

of material defects on superconductor magnetic flux expulsion: situations in which existing

vortices encounter a defect as they are being pushed out of the superconductor, and situations

where new vortices may be formed because of said pinning sites. In order to simulate these

two cases, we simply find a steady state solution for a non-moving temperature wave which

has vortices and one which does not, and then we use these solutions as initial conditions

for simulations with a moving temperature wave.

Figure 3.2 shows the steady state solution which contains vortices. The material pa-

rameters here are all constant throughout the domain with Hc, λ, γ = 1 and Tc = 1.5. We

chose this Tc simply because it means more of the domain will be superconducting since

our temperature varies between 0 and 2, and the most interesting dynamics happen in the

superconducting or mixed states. The steady state depicted in plot (d) is notable for several

reasons. Firstly, we are able to see all three different states of a superconductor: normal

metal, mixed state, and superconducting. Plots of |ψ|2 show information about the super-

conductivity. When |ψ|2 = 0, the material is in the normal metal state, when |ψ|2 = 1 the

material is perfectly superconducting, and when 0 < |ψ|2 < 1 the material is imperfectly

superconducting. a (calculated from Equation 2.3.1) and Ha are what primarily determine

whether a material will be in the mixed state. If Ha is too low, no vortex will be able to

nucleate and there will be no mixed state. When Ha gets large enough, vortices will be able

to enter the superconductor and there will be a mixed state. a controls where this threshold

is; when a is higher, Ha must be higher, and similarly a lower a means Ha can be lower.

When a < 0, it means the material is unable to superconduct, and therefore also cannot

enter the mixed state either. For these steady state solutions we are using constant material

parameters, so the only thing causing a to vary is the temperature. a = 0 when T = 1.5,

and the Ha of 0.2 is able to create a mixed state up until about T = 1, where a = 0.36.

Increasing Ha would allow the vortices to penetrate further into the superconducting region,
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(a) (b)

(c) (d)

Figure 3.2: A steady state solution with vortices. For each subplot, the top plots show the
temperature profile, which is given by Equation 3.1.1 with v = 0, the middle plots show
|ψ|2, and the bottom plots show the magnetic field magnitude. Above all the subplots is
shown the applied magnetic field magnitude and the time of the simulation. There is only
one material in this simulation with material coefficients Hc, λ, γ = 1 and Tc = 1.5. In (a),
we start with initial conditions of |ψ|2 = 1 and the magnetic field σ = 0. After a short
time, shown in (b), the middle of the domain where the temperature is above Tc enters the
normal state. In (c), some vortices have begun to enter the domain, and by (d) they have
fully entered. The |ψ|2 plot in (d) shows there are three different material states in this
simulation: the blue region is the normal state, the red regions are the superconducting
states, and the mixed states are between these two where there are color gradients. Note
that the mixed states first begin where the temperature drops just below Tc. Two vortices
have nucleated in each mixed state, and the magnetic field plot shows that magnetic field is
penetrating the material in the location of each vortex.

whereas decreasing it would push them back towards the normal metal region.

Figure 3.3 shows our steady state solution with no vortices. As we mentioned, a lower
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(a) (b)

(c)

Figure 3.3: A steady state solution with no vortices. In (a) we start with the solution from
Figure 3.2 as our initial condition. The difference is we have lowered Ha from 0.2 to 0.1 and
so the vortices begin to be pushed out in (b) and are fully pushed out and the system again
reaches a steady state but with no vortices at (c).

applied field may not allow vortices to enter the superconducting region, and so to get this

solution we simply used our steady state solution which contains vortices, and lowered the

applied magnetic field so that the vortices are no longer able to stably remain in a mixed

state.

3.3 Pushing Vortices

While a vortex can be pushed into a superconducting region by a sufficiently high Ha, it also

feels effective ’forces’ due to temperature gradients and from being pushed out by stronger
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superconducting regions [19]. When the temperature wave is then moved, the force from both

the superconducting region and the temperature gradient cause the vortices to be pushed

along, a behavior seen in Figure 3.4. Again, the function we use for a moving triangle wave

is given by Equation 3.1.1 and is depicted in Figure 3.1. To push vortices, we simply use

the steady state solution we found in Figure 3.2 as initial conditions for our simulation, and

then we move the temperature wave at some velocity. When we refer to a velocity from this

point on we are referring to the velocity v in Equation 3.1.1 unless otherwise specified.

Moving the wave in Figure 3.4 25% faster results in another interesting behavior, as

shown in Figure 3.5. In this simulation, the temperature wave moves faster than the vortex

is able to move, and it instead lags behind the portion of |ψ|2 which has a steep slope and

gets stuck in the superconducting region instead. This is a promising result, as our objective

is to investigate cases in which changing the way cooling occurs changes the resulting amount

of vortices left in the material. Here, a slower wave meant vortices were carried along with

the wave where a faster wave caused them to lag behind and get caught in the material.

This behavior makes sense, as there are several characteristic timescales which give the order

parameter and other physical quantities some response time to changes such as temperature

changes. When the temperature wave moves fast enough, the temperature is changing faster

than the vortices have time to respond to, and therefore they are unable to keep up with the

wave. We explore this kind of phenomenon more in Section 3.8.

3.4 Vortices Encountering Pinning Sites

Next, we wanted to see what happens when vortices are pushed towards pinning sites. The

way we simulate a pinning site is by making a small island with different material parameters,

like a smaller version of the islands pictured in Figure 2.1. To make the small island a pinning

site, we give it the same Hc, λ, and γ as the rest of the material and a smaller Tc to ensure

it has a harder time superconducting and therefore can trap or ’pin’ magnetic field within

it. In principle, we could choose to give the pinning site the parameters of a known material

but as we are trying to get more of a qualitative sense of how superconductors behave under
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(a) (b)

(c)

Figure 3.4: Vortices pushed by moving the temperature wave. In this case, the velocity of
the wave is 0.0004. In (a) the vortices on the right start at x = 10, are pushed to about
x = 0 in (b), and finally reach about x = −10 in (c). The vortices that were on the left at
the start are absorbed into the normal region. This simulation was done at Ha = 0.15 to
prevent new vortices from forming as the wave moves, which would push the existing vortices
into the superconducting region. Since the simulation is periodic, running for a longer time
would mean the vortices would keep getting pushed indefinitely, simply wrapping around to
the other side of the domain.

different conditions, it is sufficient and much simpler to only vary Tc. A pinning site is

stronger the closer Tc gets to 0.

Figure 3.6 shows a simulation where a pinning site with radius 0.25 and Tc = 0.25 is at

(0, -7.5). When a vortex directly encounters the pinning site, it merges into it and becomes

pinned to that site while the other vortex is pushed out of the superconducting region. In

Figure 3.7, we run this simulation again except this time the pinning site has a Tc of 1.
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(a) (b)

(c)

Figure 3.5: Vortices pushed too fast by a moving temperature wave. The speed of the wave
in this simulation is 0.0005. In (a), the vortices on the right start at x = 10, are pushed to
about x = 2 in (b), but then lag behind, get stuck in the superconducting region, and only
reach about x = −2 in (c). Notice how the vortices get smaller in terms of their size on
the |ψ|2 plot as they get stuck in the superconducting region, but the magnetic flux remains
the same if you look at the magnetic field plot, because the magnetic flux of a vortex is
quantized [9].

Initially the vortex again merges into the pinning site, however, this time the pinning site is

not strong enough to keep the vortex pinned in the superconducting region, so as the wave

proceeds, the vortex is pulled off the site and pushed along with the wave.

We then checked what would happen if the pinning site did not lie directly in the path

of either vortex. In Figure 3.8, we placed a pinning site with radius 0.25, Tc = 0.25 at (0,

-5), so that it would be directly between both vortices. This time, neither vortex was pulled

21



(a) (b)

(c) (d)

Figure 3.6: A vortex hitting a strong pinning site directly. (a) depicts the vortices being
pushed towards x = 0, a circular pinning site of radius 0.25, Tc = 0.25, marked by a white
dot is at (0, -7.5). In (b), the bottom vortex is pulled into the pinning site. In (c) and (d)
the bottom vortex remains trapped in the pinning site as the other vortex is pushed out of
the superconducting region.

into the pinning site and it passed between the two of them. It appears that the reason

this happened is because, in addition to the aforementioned ’forces’ vortices can experience,

vortices repel one another. Due to this repelling, neither vortex was able to enter the pinning

site and both vortices were successfully pushed out.

Finally, in Figure 3.9, we put another pinning site of radius 0.25, Tc = 0.25 at (0, -1).

This was to see what happens if a pinning site does not directly encounter a vortex and

also doesn’t pass between two vortices. Here the vortex was pulled towards the pinning site,
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(a) (b)

(c) (d)

Figure 3.7: A vortex hitting a weak pinning site directly. (a) depicts the vortices being
pushed towards x = 0, a circular pinning site of radius 0.25, Tc = 1.0, marked by a white
dot is at (0, -7.5). In (b), the bottom vortex is pulled into the pinning site. In (c) and (d)
the vortex fails to be trapped by the site and is swept away with the wave.

however since the pinning site was not close enough for the vortex to fall into it, it just pulled

the vortex out of line with the lower vortex. The upper vortex still got pushed out with the

wave. This resultant misalignment is significant because it is possible, that there could be

another pinning site which would have passed through the vortices like the one in Figure 3.8,

but since an earlier pinning site like the one in Figure 3.9 misaligned the two vortices, one

of them could get stuck in the pinning site that otherwise might have passed through them.

These simulations have made it clear that the question of what happens when existing

vortices encounter pinning sites is quite complex. If there are many more vortices, many
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(a) (b)

(c) (d)

Figure 3.8: A pinning site between the path of 2 vortices. (a) depicts the vortices being
pushed towards x = 0, a circular pinning site of radius 0.25, Tc = 0.25, marked by a white
dot is at (0, -5). In (b), the wave first encounters the pinning site. In (c) and (d) the vortices
repel each other so neither is able to be pulled into the pinning site and they pass through
it. Notice how while |ψ|2 is lower in (d) where the pinning site is, there is no magnetic field
trapped there.

more pinning sites, or both, there quickly becomes a multitude of possible outcomes, as

whether or not the vortices are pinned can depend on very small differences in the positions

of vortices and pinning sites.

3.5 Vortices Encountering Grain Boundaries

Point-like defects such as pinning sites are not the only kind of defects in superconductors,

there are also line defects realized by grain boundaries. These grain boundaries cause a
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(a) (b)

(c) (d)

Figure 3.9: A vortex missing hitting a pinning site directly. (a) depicts the vortices being
pushed towards x = 0, a circular pinning site of radius 0.25, Tc = 0.25, marked by a white
dot is at (0, -1). In (b), the wave first encounters the pinning site and the upper vortex is
slitghly pulled towards it. In (c) and (d) the upper vortex is attracted towards the pinning
site, but not strongly enough to overwhelm the wave’s push so the vortex is pushed out.

change in the effective material parameters of a superconductor due to inhomogeneities

between different grains of a superconducting material [20]. Experimental studies [13] have

determined that the grain structure of SRF cavities has a large impact on the amount of

flux expulsion that occurs. Grain boundary simulations can allow us to explore the partial

cause of this result.

We first started by looking at horizontal grain boundaries, Figure 3.10 such a simulation.

Here we have a horizontal grain which we implement by creating an island in the shape of

25



an ellipse with a semi-major axis of 5 and a semi-minor axis of 0.3 centered at (0, -7.5).

This particular grain has a Tc of 1, with all the other material parameters unchanged, as has

been standard throughout this work. We see that, just like for a similar pinning site at the

same y value such as in Figure 3.7, the vortex is pulled into the grain boundary; however, in

this situation the vortex has some freedom to move along the grain boundary, so unlike the

pinning site, the vortex remains in the grain boundary after the wave passes. In this case

the grain boundary was able to trap magnetic flux where a pinning site was not.

This effect is also seen if we move the grain boundary to have it’s center at (0, -5.0),

shown in Figure 3.11. Here the grain boundary is between the two vortices, yet both of

them get pulled into it and spread apart. This is in stark contrast to Figure 3.8, where the

pinning site only has space for a single vortex and so they both repel and the pinning site

passes between the two. Yet again, the grain boundaries seem to have a much easier time

trapping vortices.

We also looked at a vertical grain boundary, to see if the orientation of the grain had an

effect, shown in Figure 3.12. In this case we used a boundary which entirely split our domain

across x = 0 and had a width of 0.6 and a Tc of 1. As the vortices are pushed towards the

vertical grain boundary, they fall into the grain and are stuck there. It should be noted that

this vertical grain boundary is somewhat different from the horizontal grain boundary, as

not only is it perpendicular to the movement of the vortices, but it also extends to the top

and bottom of the domain, which means the magnetic field can enter it easily, since this is

where the magnetic field is applied.

All the grain boundaries in this section had Tc = 1. We also ran all these simulations for

Tc = 0.25; however, we have not to included these plots as they show qualitatively similar

results, with the vortices getting pinned anywhere they came in close contact with a grain

boundary. These simulations have shown that grain boundaries seem to have a much larger

potential for trapping vortices than pinning sites.
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(a) (b)

(c) (d)

Figure 3.10: A vortex pushed into a horizontal grain boundary. (a) is the starting position
of the vortices. There is a horizontal grain boundary in the shape of an ellipse with a semi-
major axis of 5 and a semi-minor axis of 0.3 centered at (0, -7.5) with Tc = 1. This grain is
marked by a white ellipse of the same shape. In (b), the lower vortex first encounters the
grain. The vortex is then pulled into the grain, shown in (c). In (d), the lower vortex has
been pushed along the grain by the temperature wave but remains pinned while the other
vortex is pushed out.

3.6 Vortex Nucleation in Pinning Sites

Up to this point, we’ve been looking at what happens when existing vortices encounter

material defects such as pinning sites or grain boundaries. Next we look at the ability of

defects to nucleate new vortices. To answer this, we first lower Ha to 0.1, which forces any

vortices out of the superconducting regions. Then we put a pinning site at (0, -5) and move

the wave at a speed of 0.0003. There are two important parameters we decided are relevant
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(a) (b)

(c) (d)

Figure 3.11: A pair of vortices pushed into a central horizontal grain boundary. (a) is the
starting position of the vortices. There is a horizontal grain boundary in the shape of an
ellipse with a semi-major axis of 5 and a semi-minor axis of 0.3 centered at (0, -5) with
Tc = 1. This grain is marked by a white ellipse of the same shape. In (b), the vortices have
encountered the grain and it appears that it could go between them, such as the pinning site
in Figure 3.8. By (c), the vortices seem to be pulled into the grain instead. At (d), both
vortices have become pinned to the grain boundary.

for determining whether a pinning site will nucleate a new vortex: pinning site size and

pinning strength. We ran simulations for several different pinning site radii and pinning

strengths. Figure 3.13 shows a simulation for a pinning site with radius 0.4 and Tc = 1. In

this simulation the pinning site does slightly impact the wave, but it ultimately does not

manage to pin a vortex.

Figure 3.14 depicts a simulation similar to the previous one, except the pinning is twice
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(a) (b)

(c) (d)

Figure 3.12: A pair of vortices being pushed into a vertical grain boundary. (a) is the starting
position of the vortices. There is a vertical grain boundary of width 0.6 centered at x = 0
with Tc = 0.25. This is marked by a white rectangle of the same shape. In (b) the wave has
reached the grain boundary, and the vortices are pulled toward it. In (c) the vortices are
pinned to the grain boundary, and they remain pinned as the wave moves on in (d).

as strong with a Tc of 0.5. In this simulation, the pinning site is able to successfully nucleate

a vortex. We ran 20 simulations, all of which look more or less like Figure 3.13 or Figure

3.14, so rather than including all of them, Table 3.1 shows the results of these simulations in

terms of whether or not a vortex was nucleated. Notably, it seems the size of the pinning site

is much more impactful than the strength of the pinning site; a site with radius 0.3 failed to

pin a vortex for any pinning strength, whereas a pinning site of radius 0.4 or 0.5 pinned a

vortex for all Tc ≤ 0.5, and a radius of 0.6 pinned some magnetic field every time.
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(a) (b)

(c)

Figure 3.13: A weak pinning site fails to nucleate a vortex. (a) depicts a pinning site of radius
0.4, Tc = 1 marked by a white dot. In (b), the temperature wave (moving at v = 0.0003)
moves to where the superconducting transition region is above the pinning site and some
magnetic field enters that region. Ultimately in (c), the site is not strong enough to pin a
vortex and no magnetic field is trapped despite a lower |ψ|2 where the pinning site is.

Tc
r

1 0.5 0.25 0.1 0.01

0.3 No No No No No
0.4 No Y es Y es Y es Y es
0.5 No Y es Y es Y es Y es
0.6 Y es Y es Y es Y es Y es

Table 3.1: Magnetic flux pinning ability with respect to pinning site radius and strength.
The left column shows the values of the radius r of a circular pinning site centered at (0,
-5). The top row is the Tc of the pinning site, smaller values means stronger pinning. A No
indicates that a vortex was not pinned, a Yes indicates that a vortex was pinned.
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(a) (b)

(c)

Figure 3.14: A strong pinning site nucleates a vortex. (a) depicts a temperature wave in the
process of moving towards a pinning site of radius 0.4, Tc = 0.5 marked by a white dot. (b)
shows the wave encountering the pinning site, and the magnetic field entering that region
more substantially than in Figure 3.13. Ultimately in (c), the site is strong enough to pin a
vortex.

In our simulations, κ0 is inversely proportional to the size of a vortex, and since we use

κ0 = 4, this means the radius of a vortex will be approximately 1
4
. Thus Table 3.1 seems to

indicate that a pinning site radius of 0.3 is too small for a vortex to be able to fully form

inside it. Pinning sites of this size can only trap existing vortices, this behavior is seen in

the simulations discussed in Section 3.4. Conversely, if a pinning site is large enough to fit a

vortex inside it (which seems to be the case for an r of at least 0.4), a vortex will nucleate

unless the pinning is very weak. For r = 0.6, a vortex was pinned regardless of the pinning
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strength.

3.7 Vortex Nucleation in Grain Boundaries

We also looked at the ability of grain boundaries to nucleate new vortices. In Figure 3.15,

our temperature wave passes through a horizontal grain boundary with Tc = 0.25. It ends up

nucleating two vortices with ease, suggesting that it is likely quite easy for grain boundaries

to form vortices when cooling fronts go by them in a perpendicular direction. This is further

confirmed when looking at Figure 3.16. In these plots, the horizontal grain boundary has

a Tc of 1, the same strength as the pinning site in Figure 3.13, where a vortex was not

successfully pinned. With a horizontal grain boundary of the same strength, the extra time

and resistance the order parameter faces as the temperature wave passes over a weak but

much longer defect allows a vortex to nucleate and sit in the weak grain boundary.

Similarly, for a vertical grain boundary with Tc = 0.25, as shown in Figure 3.17, two

vortices end up in the grain after the cooling front passes, though this could partially be due

to the fact that the applied magnetic field is able to directly enter the grain boundary at

the top and bottom of the domain. The same thing happens for a vertical grain boundary

of Tc = 1, except only one vortex ends up in the grain instead of two,

Overall, grain boundaries seem like prime candidates for trapping vortices and decreasing

SRF cavity performance. While pinning sites only really have the ability to pin vortices if

they are larger defects, grain boundaries seem to easily trap vortices, even if they are a rather

weak defect to begin with. Larger defects are uncommon in well made SRF cavities, whereas

even the most well made cavities can contain many grain boundaries. Experimental data

from [13] seems to agree with this result, as SRF cavities exhibited stronger flux expulsion

when they were given a heat treatment which increases grain size, therefore decreasing the

number of grain boundaries.
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(a) (b)

(c) (d)

Figure 3.15: A temperature passing a horizontal grain boundary with Tc = 0.25. (a) is the
starting position of the wave. There is a horizontal grain boundary in the shape of an ellipse
with a semi-major axis of 5 and a semi-minor axis of 0.3 centered at (0, -5) with Tc = 0.25.
This grain is marked by a white ellipse of the same shape. In (b), the wave passes through
the grain boundary and magnetic field is pulled into this part of the domain. By (c), at least
one vortex seems to have formed fully in the grain, according the the magnetic field plot.
At (d), the temperature wave has passed the grain and there are two vortices left behind in
the grain. Note that since the grain is very anisotropic, the vortices are ellipses rather than
the usual circles.

3.8 Effect of Varying u0 on Vortex Speed

The time dynamics of materials are very important in the simulations we have discussed thus

far, so it makes sense to explore what happens when we vary u0 and therefore change the time

dynamics. As a reminder, u0 is a ratio of two timescales which control the response times of
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(a) (b)

(c) (d)

Figure 3.16: A temperature wave passing a weak horizontal grain boundary. (a) is the
starting position of the wave. There is a horizontal grain boundary in the shape of an ellipse
with a semi-major axis of 5 and a semi-minor axis of 0.3 centered at (0, -5) with Tc = 1.
This grain is marked by a white ellipse of the same shape. In (b), the wave passes through
the grain boundary and a small magnetic field is pulled into this part of the domain. By
(c), one vortex has been pulled off and the wave has moved on. At (d), the single vortex
has settled into place on the left side of the grain. Note that in contrast to Figure 3.15, this
vortex is circular since the grain is not strong enough to alter the vortex shape.

ψ and A. We initially looked at the speed of a vortex under a linear temperature gradient

with the same slope as our triangle waves. Doing so, we generated the plots in Figure 3.18,

where vvort is the speed at which the vortex is pushed by the temperature gradient. We

varied u0 between 0.5 and 10 and seem to be observing a logarithmic relationship between

u0 and vvort, this is confirmed by the exponential-like relationship between ln(u0) and vvort,

which suggests that continuing to raise u0 will continue to increase vvort. It should be noted
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(a) (b)

(c)

Figure 3.17: A cooling wave passing a vertical grain boundary. (a) is the starting position of
the wave. There is a vertical grain boundary of width 0.6 centered at x = 0 with Tc = 0.25.
This grain is marked by a white rectangle of the same shape. In (b) the wave has reached the
grain boundary and stops moving. After a little time passes, in (c) the material on the other
side of the grain begins superconducting and the wave moves on. Note how there are two
anisotropic vortices in the grain boundary, but the whole boundary is filled with magnetic
field. This is because the magnetic field is applied at the top and bottom of the domain so
it can easily enter into the grain here.

that while this is the case, higher values of u0 require much smaller simulation time steps

which can make the calculations considerably more computationally expensive. Additionally,

the superconductors used in SRF cavities can have a u0 of up to 5.79 [17]; other materials

could theoretically have larger values, but there is not much value in investigating higher

than u0 = 10 unless it can be shown that there are different qualitative behaviors above that

threshold.
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(a) (b)

Figure 3.18: Plot of u0 and ln(u0) versus vvort. These plots were generated by putting a vortex
under a constant temperature gradient and measuring the speed at which it is pushed. u0

impacts the time dynamics of our simulations, as shown in (a). Increases in u0 allows for
a faster vortex speed within our simulations. (b) shows a log-linear plot of the same data,
which appears exponential.

3.9 Varying u0 and Temperature Wave Speed

In another set of simulations we considered temperature waves with no vortices or pinning

sites moving at different speeds vwave, once again using Equation 3.1.1 as our temperature

function. At a high enough vwave, the temperature wave moves faster than the supercon-

ducting region can easily keep up with and vortices end up getting ’peeled’ off the normal

region of the domain, getting stuck in the superconducting region. Figure 3.19 depicts this

phenomenon. We initially used a u0 of 1, but we then decided to run simulations for many

different combinations of u0 and vwave to map out where this phenomenon happens. The

results of these simulations are summarized in Figure 3.20.

Once again we see that a higher u0 allows for faster dynamics. In this case it allows the

superconducting region to respond faster to the change in temperature so that new vortices

are not ’peeled’ off the normal region. The threshold at which vortices start to nucleate

seems to have a roughly linear relationship with respect to u0. The equation this threshold

follows is approximately vthreshold = 0.00147u0 + 0.00069.
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(a) (b)

(c) (d)

Figure 3.19: A set of vortices peeling off a fast temperature wave. Here u0 = 1 and the wave
is moving at vwave = 0.003. The wave begins where it is pictured in (a). Shown in (b), a
bulge begins to form in the normal region as the superconducting region is unable to keep up
with the temperature changes. By (c) two smaller, vortex-sized circular bulges have formed.
In (d) these bulges have become vortices which get stuck in the superconducting region since
the wave is moving too fast, similar to what happens in Figure 3.5.
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Figure 3.20: Vortex nucleation at different u0 and vwave. The red triangles represent simula-
tions in which vortices were ’peeled’ off the normal region. The blue circles are simulations
in which this did not happen and the superconducting region moved through the domain
uneventfully.
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Chapter 4

Conclusions and Future Work

We showed many results and simulations in Chapter 3. The purpose of this chapter is to

summarize the important takeaways from these simulations, discuss their potential implica-

tions for SRF cavity construction and operation, and suggest some future simulations and

code adaptations.

4.1 Conclusions

Broadly speaking, there are 6 categories of simulations we ran: pushing vortices with tem-

perature waves, pushing vortices into pinning sites with temperature waves, pushing vortices

into grain boundaries with temperature waves, testing pinning site vortex nucleation abil-

ity, testing grain boundary vortex nucleation ability, and investigating the effects of varying

u0. From these simulations we found that vortices can be pushed by moving temperature

gradients; however, moving them too fast means the vortices will lag behind and get stuck

in the superconducting region, potentially allowing new vortices to enter the mixed state

region. If these vortices encounter pinning sites, the end result gets even more complicated.

Direct encounters with pinning sites can cause vortices to become pinned as long as the site

is sufficiently strong. Pinning sites can also pass through two repelling vortices unaffected,

or slightly pull on a single nearby vortex without actually pinning it. Overall, pinning sites

are more often than not unable to trap existing vortices, assuming these pinning sites are not

large. Grain boundaries, on the other hand, have a large affect on existing vortices, trapping

a vortex in almost any situation where it gets near a grain boundary. Even the weakest
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grain boundaries we simulated still ended up pinning magnetic flux. When looking at de-

fects’ ability to pin magnetic field without encountering existing vortices, pinning sites again

have little to no effect unless the pinning sites are larger than a vortex, in which case they

will almost always pin some magnetic field regardless of pinning strength. Grain boundaries

again also have a large impact, consistently pinning magnetic field even for low strength

grain boundaries. Finally, we found that increasing u0 allows vortices to move faster, and

allows us to move temperature waves faster without any vortices nucleating due to the wave

moving too fast.

In terms of SRF cavity construction, our results seem to confirm existing hypotheses

that keeping any material defects small and getting the average grain size to be as large as

possible to reduce grain boundaries is the easiest way to improve the efficiency of magnetic

flux expulsion from SRF cavities [13]. As for SRF cavity cooling and operation, our results

are slightly less conclusive. While we have found that faster changes in the order parameter

tend to result in extra vortices entering the superconducting regions, the time frames for

even the slowest simulations here are on the scale of microseconds. As discussed in Section

1.2, macroscopic changes in cooling protocols (which take much longer than microseconds)

are what seem to be having an effect on magnetic flux expulsion experimentally. Revisiting

some of our simulations, when a wave is moving fast the mixed state region where the

order parameter is transitioning from a normal metal to superconducting becomes slightly

compressed, such as in Figure 3.19 (b), more than it is when a wave moves slowly, such as in

Figure 3.17 (a). It could be the case that a slower injection of liquid helium means the width

of this mixed region ends up being smaller than quickly blasting the cavity with helium and

creating a more ’smeared out’ mixed region. The simulations in which the mixed region is

compressed are the simulations where more vortices tend to get stuck in the superconducting

regions, so perhaps this is why a slower macroscopic cooling process ends up with worse flux

expulsion. This is, of course, only a hypothesis and would need more experimental and

theoretical evidence to back it up, so for now this question is still unanswered. Despite this,

it is also clear that different values of u0 have large effects on the amount of magnetic flux
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which occurs in a superconductor, so it may also be valuable to explore making SRF cavities

out of a material which has a different u0 than Nb or Nb3Sn.

4.2 Future Work

There are nearly unlimited degrees of freedom in these simulations, especially with this

new material specific formulation we have derived for this project. It would not be hard

to aimlessly and endlessly tweak parameters, but there are a few simulations which can

be investigated with the current code that we suggest for future projects. Firstly, more

simulations could be run to investigate this ’smearing’ hypothesis we made at the end of

Section 4.1. These simulations could involve using steeper and less steep triangle waves to

get more or less gradual slopes in |ψ|2, or they could also involve using different periodic

functions which do not just have a single linear slope. It may also be interesting to orient our

temperature gradient in the y direction so that we can try different gradient magnitudes and

forms that don’t necessarily have to be periodic. Additionally, we only looked at vortices

interacting with a single pinning site at a time. A fuller understanding of the effect of pinning

sites could be reached by running simulations with more pinning sites, perhaps randomly

spreading them throughout the domain, and determining if there is some critical mass of

pinning sites where vortices are no longer able to be pushed out without being pinned. Along

these lines, simulations with multiple grain boundaries or even ’webs’ of grain boundaries

could give a clearer picture of how these defects behave when there is more than just a single

grain boundary in either vertical or horizontal orientation. This thesis mostly focused on

phenomena which occurred when temperature waves move very fast. It may be worth it to

determine whether there are qualitative differences in very slow moving waves. For example,

in Figure 3.13 there is a small bulge where the pinning site is, but it does not actually become

a vortex, perhaps a very slow moving wave would allow a vortex more time to nucleate.

As for more major questions to investigate, there are a few natural places to go from

this point. Firstly, while 2D simulations are useful for simulating important qualitative

phenomena in superconductors, one of the main limitations is that defects are always parallel
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with the magnetic field in 2D, whereas this is not necessarily the case in 3D [21]. As such,

a natural extension of this project would be to investigate cooling and material defects

in 3D. Additionally, in all of our simulations in this project we had full control over the

temperature, but in reality, vortex movement can also dissipate some heat which would

affect the temperature, so a future extension of our formulation may be to couple it to the

heat diffusion equation to allow for these effects on our solutions. Finally, another extension

which could be made to our simulations would be to allow portions of our domain to not

be superconductors at all, with which we could simulate a small vacuum between grains

or the interface between the surface of the superconductor and the space outside it. We

would need to solve the Maxwell equations rather than the TDGL equations in these non-

superconductor regions and enforce the appropriate boundary conditions. Overall, there are

a lot of interesting remaining questions yet to be answered in this promising area of research.
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Appendix A

Nondimensionalizing the
Ginzburg-Landau Equations

A.1 Initial Equations and Useful Values

We will first nondimensionalize the time independent Ginzburg-Landau equations, listed

below (it should be noted that Appendix A is closely related to work done in [11] and [17]):

1

2ms

(
−i~∇− es

c
A
)2

ψ + αψ + β|ψ|2ψ = 0 in the domain, (A.1.1)

∇×∇×A− 2πies~
msc

(ψ∗∇ψ − ψ∇ψ∗)− 4πe2
s

msc2
|ψ|2A = 0 in the domain, (A.1.2)(

i~∇ψ +
es
c

Aψ
)
· n = 0 on the boundary, (A.1.3)

and (∇×A)× n = H× n on the boundary. (A.1.4)

To nondimensionalize these equations, we first start by getting a few useful constants from

these equations. The coherence length, ξ, can be found by looking at equation A.1.1, and

letting A = 0,

∇2ψ +
1

ξ2

(
ψ +

β

α
ψ3

)
= 0, (A.1.5)

where ξ2 = −~2

2msα
. The coherence length is the length scale for the variance of ψ. The

penetration depth, λ, can be found by looking at equation A.1.2 and considering the material

to be perfectly superconducting, i.e. ψ = ψ0 =
(
−α
β

) 1
2
, this makes the second term in the

equation go to 0 and we get

∇×∇×A +
1

λ2
A = 0, (A.1.6)
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where λ2 = msc2

4πe2s|ψ0|2 = −βmsc2

4πe2sα
. The penetration depth is a length scale for how deep magnetic

field is able to penetrate into a superconducting material. We now have the well known

Ginzburg-Landau parameter, κ = λ
ξ

=
√

β
2π

msc
es~ . The material’s critical field, Hc = 4πα2

β
, also

becomes a useful constant later.

A.2 Nondimensionalization

To nondimensionalize the GL equations, we make a number of coordinate transformations:

x = λx′ (and therefore ∇ = 1
λ
∇′), A =

√
2HcλA′, and ψ =

√
−α
β
ψ′. Doing this to equation

A.1.1 yeilds

1

2ms

(
−i~
λ
∇′ −

√
2Hcλes
c

A′

)2√
−α
β
ψ′ + α

√
−α
β
ψ′ + β

√
−α
β

3

|ψ′|2ψ′ = 0. (A.2.1)

Dropping the primes and dividing by α
√
−α
β

results in

1

2msα

(
−i~
λ
∇−

√
2Hcλes
c

A

)2

ψ + ψ − |ψ|2ψ = 0. (A.2.2)

If we bring the 1
2msα

into the parentheses of the first term (square rooting it of course), and

expand out the λs and Hc, you will see that the term in front of A goes to 1, and the term

in front of the ∇ goes to −i
κ

, so the final equation is(
−i
κ
∇−A

)2

ψ + ψ − |ψ|2ψ = 0. (A.2.3)

If we make the same transformations for equation A.1.2, we get

√
2Hc

λ
∇×∇×A′ +

2πies~α
mscλβ

(ψ′∗∇′ψ′ − ψ′∇′ψ′∗) +
4πe2

sα

msc2β
|ψ′|2
√

2HcλA′ = 0. (A.2.4)

Once again dropping the primes and then multiplying by λ√
2Hc

gives

∇×∇×A +
2πies~α

msc
√

2Hcβ
(ψ∗∇ψ − ψ∇ψ∗) +

4πe2
sαλ

2

msc2β
|ψ|2A = 0. (A.2.5)

Expanding Hc and λ again makes the coefficients in front of the second term reduce to i
2κ

,

and the terms in front of |ψ|2A reduce to 1 so we get

∇×∇×A +
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = 0. (A.2.6)
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For the first boundary condition, it follows the same process as for the first term in equation

A.2.3, and doing the transformations for the last boundary equation, there will be
√

2Hc in

front of both terms, which cancel, so the final nondimensionalized equations are(
−i
κ
∇−A

)2

ψ + ψ − |ψ|2ψ = 0, (A.2.7)

∇×∇×A +
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = 0, (A.2.8)(

i

κ
∇ψ + Aψ

)
· n = 0, (A.2.9)

and (∇×A)× n = H× n. (A.2.10)

A.3 α and β Spacial Dependence

Now we want to let α and β vary with space, this can represent different materials, or

material defects. To do this, we make the transformations α = α0a(r) and β = β0b(r),

where α0 and β0 are constant reference values with the same units as α and β, and a and b

are dimentionless functions of position. Returning to our definitions of ξ and λ, we see that

setting A = 0 in equation A.1.1 and collecting terms gives

∇2ψ +
1

ξ2
0

(
aψ +

β0

α0

bψ3

)
= 0. (A.3.1)

Where ξ2
0 = −~2

2msα0
. To find the other length scale we once again let the material be perfectly

superconducting, but this time in terms of the reference α and β; ψ = ψ0 =
(
−α0

β0

) 1
2
, this

makes equation A.1.2 become

∇×∇×A +
1

λ2
0

A = 0, (A.3.2)

where λ2
0 = msc2

4πe2s|ψ0|2 = −β0msc2

4πe2sα0
. Similarly, Hc becomes Hc0 =

4πα2
0

β0
, and κ0 = λ0

ξ0
=
√

β0

2π
msc
es~ .

We then do the same process as we did before, but replacing any λ, ξ, κ, or Hc with λ0, ξ0,

κ0, or Hc0. This will result in almost the same equations, but with an a and a b in front of
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the ψ and |ψ|2ψ terms: (
−i
κ0

∇−A

)2

ψ + aψ − b|ψ|2ψ = 0, (A.3.3)

∇×∇×A +
i

2κ0

(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = 0, (A.3.4)(
i

κ0

∇ψ + Aψ

)
· n = 0, (A.3.5)

and (∇×A)× n = H× n. (A.3.6)

A.4 Time Dependent Ginzburg-Landau Equations

The Time Dependent Ginzburg-Landau equations are

1

2ms

(
−i~∇− es

c
A
)2

ψ + αψ + β|ψ|2ψ + Γ

(
∂ψ

∂t
+
iesθ

~
ψ

)
= 0 in the domain, (A.4.1)

∇×∇×A− 2πies~
msc

(ψ∗∇ψ − ψ∇ψ∗)− 4πe2
s

msc2
|ψ|2A+

4πσn
c

(
1

c

∂A

∂t
+∇θ

)
= 0 in the domain,

(A.4.2)(
i~∇ψ +

es
c

Aψ
)
· n = 0 on the boundary, (A.4.3)

(∇×A)× n = H× n on the boundary, (A.4.4)

and −
(
∇θ +

∂A

∂t

)
· n = 0 on the boundary. (A.4.5)

We will start with α and β constant in time and space. To nondimensionalize these equations,

we first use the same definitions for λ, ξ, κ, and Hc as we defined in section A.1. We also

make the same change of variables as in section A.2 in addition to letting t = τ∆t
′ and

θ = κθ0θ
′; For equation A.4.1, this gives us

1

2ms

(
−i~
λ
∇′ −

√
2Hcλes
c

A′

)2√
−α
β
ψ′ + α

√
−α
β
ψ′ + β

√
−α
β

3

|ψ′|2ψ′

+Γ

√
−α
β

(
1

τ∆

∂ψ′

∂t′
+
iesκθ0θ

′

~
ψ′
)

= 0,

(A.4.6)

and dropping the primes and dividing by α
√
−α
β

gives

1

2msα

(
−i~
λ
∇−

√
2Hcλes
c

A

)2

ψ + ψ − |ψ|2ψ +
Γ

|α|

(
1

τ∆

∂ψ

∂t
+
iesκθ0θ

~
ψ

)
= 0. (A.4.7)
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The first three terms reduce down to the same terms as in equation A.2.7. We then let

τ∆ = Γ
|α| and θ0 = ~

esτ∆
to get the final equation:(
−i
κ
∇−A

)2

ψ + ψ − |ψ|2ψ +
∂ψ

∂t
+ iκθψ = 0. (A.4.8)

Making the same coordinate transformations for equation A.4.2 we get

√
2Hc

λ
∇×∇×A′ +

2πies~α
mscλβ

(ψ′∗∇′ψ′ − ψ′∇′ψ′∗) +
4πe2

sα

msc2β
|ψ′|2
√

2HcλA′

+
4πσn
c

(√
2Hcλ

cτ∆

∂A′

∂t′
+
κθ0

λ
∇′θ′

)
= 0,

(A.4.9)

and dropping the primes and then multiplying by λ√
2Hc

gives

∇×∇×A+
2πies~α

msc
√

2Hcβ
(ψ∗∇ψ − ψ∇ψ∗)+4πe2

sαλ
2

msc2β
|ψ|2A+

4πσn
c

(
λ2

cτ∆

∂A

∂t
+

κθ0√
2Hc

∇θ
)

= 0.

(A.4.10)

Once again the first 3 terms go the the same as equation A.2.8. We then define τj = σnβms

e2s|α|
,

which gives

∇×∇×A +
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A +

τj
τ∆

∂A

∂t
+

4πσnκθ0√
2Hcc

∇θ = 0. (A.4.11)

If we define u = τ∆
τj

, then the coefficents in front of the time derivative go to 1
u
, and it turns

out that if we substitute in the value for θ0 we found earlier, the coefficients in front of the

∇θ also go to 1
u

and we get

∇×∇×A +
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A +

1

u

(
∂A

∂t
+∇θ

)
= 0. (A.4.12)

Thus, the final equations are(
−i
κ
∇−A

)2

ψ + ψ − |ψ|2ψ +
∂ψ

∂t
+ iκθψ = 0, (A.4.13)

∇×∇×A +
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A +

1

u

(
∂A

∂t
+∇θ

)
= 0, (A.4.14)(

i

κ
∇ψ + Aψ

)
· n = 0 (A.4.15)

(∇×A)× n = H× n, (A.4.16)

and −
(
∇θ +

∂A

∂t

)
· n = 0. (A.4.17)
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A.5 α, β, and Γ vary with time and space

If we now let α = α0a(r, t), β = β0b(r, t), and Γ = Γ0γ(r, t), we can do the same thing

as we did in section A.3, and let ξ2
0 = −~2

2msα0
, λ2

0 = msc2

4πe2s|ψ0|2 = −β0msc2

4πe2sα0
, Hc0 =

4πα2
0

β0
, and

κ0 = λ0

ξ0
=
√

β0

2π
msc
es~ . Additionally we also let τ∆0 = Γ0

|α0| , τj0 = σnβ0ms

e2s|α0| , u0 = τ∆0

τj0
, and

θ0 = ~
esτ∆0

. We can then follow the same steps as above with these new values and we get(
−i
κ0

∇−A

)2

ψ + aψ − b|ψ|2ψ + γ

(
∂ψ

∂t
+ iκ0θψ

)
= 0, (A.5.1)

∇×∇×A +
i

2κ0

(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A +
1

u0

(
∂A

∂t
+∇θ

)
= 0, (A.5.2)(

i

κ0

∇ψ + Aψ

)
· n = 0 (A.5.3)

(∇×A)× n = H× n, (A.5.4)

and −
(
∇θ +

∂A

∂t

)
· n = 0. (A.5.5)
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