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ABSTRACT
K-Means Clustering Analysis of Geospatial Features: Optimizing the Acquisition of Training Data

Brooks Butler
Department of Physics and Astronomy, BYU
Bachelor of Science

Data acquisition for machine learning training data sets can be an expensive and time consuming
process. For the BYU Acoustics Research Group and the Blue Ridge Research Company, the
acquisition of outdoor ambient acoustic data for a single location can take up to a week to measure
accurately. Since the purpose of our research is to create an accurate model for predicting ambient
acoustic noise levels across the continental United States area, we would like to maximize the
benefit of new data added to our existing training data set while minimizing the amount of new data
needed. A joint K-means Clustering analysis was used to measure the statistical similarity between
the geospatial feature values of our training and input data set for the North Carolina region. Using
this analysis we were able to identify which kinds of geographic locations are under-sampled in the
NC area. We can conclude from our analysis that our current training set does not fully represent
the geographical area over which we are trying to make predictions. Additionally, targeted sampling
of locations based on cluster assignment will improve the statistical similarity of our training and
input data sets.

Keywords: Machine learning, K-means clustering, Geographical information systems (GIS), Acous-
tics, Community Noise



ACKNOWLEDGMENTS

EDITS MADE:

Most of the changes that I made to this thesis since my submission of the final draft were in my
results section. I received valuable feedback on how to make the significance of my results more
clear to the reader by assigning interpretive labels to the cluster maps where I could definitively say
what kinds of factors were influencing the assignment of that cluster label. Although in other cases
it seemed like there were cluster assignments that were simply just fillers for those not assigned to
the other prominent features so I left those unlabeled since those required further analysis.

I also made small polishing edits throughout where I have made some simple grammar mistakes

and clarified one point in my overview discussing what predictive power meant.



Contents

Table of Contents

List of Figures

1

Introduction

1.1 Motivation . . . . . . . . . .o e e e e e e
1.2 Previous Work . . . . . . . .. e e
1.3 OVEIVIEW . . . o o e e e e

Geospatial and Ambient Acoustic Data

2.1 The nature of geospatial featuredata . . . . . . .. ... ... ... ... ...
2.2 Ambient acoustic noise level measurements . . . . . . ... ...
2.3 Applications through machine learning . . . . . . . . ... .. ... .. ......

Clustering Methods

3.1 Unsupervised Machine Learning . . . . . . . ... ... ... ... ........
3.2 K-Means Clustering Analysis . . . . . . . . . . .. o
3.3 Scalingof Input Feature Data . . . . . . .. ... ... ... ... ... .. ...
3.4 Calculation of Cross-entropy . . . . . . . . .« . . v it vt
3.5 FeatureRanking . . . . . . . . . ..

Results and Analysis

4.1 Cluster Maps . . . . . . . . e e
4.2 Feature Importance . . . . . . . . .. L
43 InputMapvsTrainingData . . . . . . .. .. ... ..

Colnclusions
5.1 Optimization of Training Data Acquistition . . . . . . .. ... .. ... .....

5.2 Future Work . . . . . . . e e
Bibliography
Index

v

iv

11
11
11
14
15
15

19
19
20
21

28
28
29

30

31



List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
33
34
3.5

4.1
4.2
43
4.4
45
4.6
4.7
4.8

A map of several geospatial features. . . . . . . ... ... Lo 6
Example of how L10, L50, and L90 acoustic metrics are calculated. . . . . . . .. 8
Example of ambient acoustic L50 spectral data. . . . . . . . ... ... .. .... 9
Flow chart of supervised machine learning model. . . . . . . ... ... ... ... 10
A global view of machine learning practices. . . . . . . . . .. ... ... ... .. 12
An example of two dimensional cluster group . . . . . . . . ... 12
A flow chart of the K-means clustering algorithm . . . . ... ... .. ... ... 13
A plot of average centriod density over number of clusters . . . . .. . ... ... 14
Feature maps of higher importance in determining cluster assignment. . . . . . . . 17
A cluster map of North Carolina with magnified portion of Ashville, NC. . . . .. 20
A map of the NC area as shown by Google . . . . . . ... ... ... .. ..... 21
A visualization of NC clusters 1-3 separated from each other. . . . . . . .. .. .. 22
A visualization of NC clusters 4-6 separated from each other. . . . . . . .. .. .. 23
A visualization of NC clusters 7-9 separated from each other. . . . . . . . ... .. 24
A visualization of NC clusters 10-12 separated from each other. . . . . . .. . .. 25
Urban gradient at Ashiville, NC. . . . . .. .. .. ... ... ... ... ..... 26
Map of the Ashiville city limits and surrounding area. . . . . . . . ... ... ... 26



LIST OF FIGURES vi
4.9 A comparison of cluster representation between the NC input map and our Training
SEL. . o e 27



Chapter 1

Introduction

Data acquisition and processing are both essential steps in every field of the physical sciences.
Specifically in the field of machine learning, the primary goal of data acquisition is to make
predictions on large sets of input data using relatively small sets of training data. There is, however,
a cost related to the acquisition of training data, and in some cases the amount of time and effort
needed to obtain a single point of training data can be substantial. This leads us to an important
question: How can we maximize the benefits gained from adding new training data to an existing

training data set while simultaneously minimizing the number of additional data points needed?

1.1 Motivation

In recent work done at BYU, in conjunction with the Blue Ridge Research Company (BBRC)
based in Ashville, NC, efforts have been made to develop a machine learning model that uses
geospatial features from the continental United States (CONUS) region to predict ambient acoustic
sound levels at any given location in the United States. This model relies on finding obvious and
non-obvious connections between CONUS geospatial data as inputs and given training points of

measured sound level data at various locations across the CONUS region as outputs; then make

1
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sound level predictions across the entire area itself. As would be expected, the more training data
that you can give to the model, the more likely it will be able to predict an accurate sound level at
the more numerous unmeasured locations.

Unfortunately, the acquisition process of ambient acoustic sound level data is relatively expensive
and time consuming. In order to obtain a measurement of high enough fidelity, a weeks worth
of recorded data is required for each individual location. When taken into the context that robust
machine learning models can require sets of training data in the range of up to 10* to 10° data
points[reference here], it becomes evident that obtaining measurements in these amounts would
take considerably more time and resources than would be realistically available.

This raises a new question: With the amount of time commitment needed for a single data point,
how do we choose which new locations to sample from? Choosing where to acquire new data can
be an ambiguous process, especially since the effects on model improvement and diversification can
be difficult to quantify. In a scenario where obtaining training data is relatively cheap, the answer
would be to continuously sample the input population at random and eventually the training data and
input population should look statistically similar. However, due to the high cost of acquisition, high
dimensional, and diverse nature of geospatial data, the challenge arises in choosing new locations
that are not already represented statistically in the current training data set.

By analyzing properties of the input data population combined with the features of our current
training data set, using a K-Means clustering algorithm, we can glean quantitative insights into how
closely the training data represents the input population. These insights can then inform the process

of acquiring new training data whose addition will then better represent the input data population.
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1.2 Previous work

There has been extensive work done in the field of data science using unsupervised machine
learning [1] [2]. However, most studies involving clustering analysis are focused on a specific sets
of data and published work on machine learning methods used specifically on geospatial data is
sparse.

There is, however, a large community devoted to the collection of geospatial data using satellite
imaging, weather monitoring systems, statistical topography, and other means under the field of
geographical information systems (GIS) [3] [4]. The CONUS geospatial data used in this analysis
was collected from these various GIS databases and formatted by the BBRC for the purpose of
developing a supervised machine learning model to predict ambient outdoor noise levels. The work
contained in this thesis was done in conjunction with the machine learning model development in
hopes of informing future data sampling of outdoor noise levels for overall model improvement.

An overview of clustering methods and unsupervised machine learning will be covered in detail

in a later chapter.

1.3 Overview

The focus of this thesis will be 1) an exploration into the nature of geospatial data and its statistical
properties, 2) an explanation of the numerical methods used to perform the clustering analysis,
3) providing physical insights on the acoustic implications of the clustering analysis, and 4) to
show how a statistical comparison of cluster occurrence can inform which new locations to sample
acoustic data from based on interpretation of the clustering results.

Initial results show a significant disparity in the statistical similarity between the input geospatial
data and our current training data set. Additionally, the input data clusters appear to group themselves

according to prominent geospatial features based on the standard deviation of the cluster centers.
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This allows us to rank geospatial features in order of predictive importance for cluster assignment

and can help lead to feature down selection in the future.



Chapter 2

Geospatial and Ambient Acoustic Data

Since we are using geospatial feature data as inputs to predict outdoor ambient noise levels, a
general understanding on the nature of geospatial data is required before addressing the clustering
methods used to group geographic sites together. In this chapter the goal will be to understand what
is meant by the term geospatial feature layer and how such data is collected and compiled. We will
also touch on the nature of ambient acoustic data as the outputs of our model and the process by

which we make predictions at unmeasured sites.

2.1 The nature of geospatial feature data

A single geospatial feature layer is compiled by picking a single metric to describe a given point, or
area, with a quantifiable value given a specific latitude and longitude. These values can be measured
in a variety of units such as ratios, proportions of land cover, area densities, frequency of flight
observations, distances, measured light intensity from satellite imaging, weather data, etc. Using
these values we can then plot a pixel map across a given area using latitude and longitude as axes as
shown in Figure 2.1.

While each feature layer is distinct, many geospatial features can be highly correlated to each

5



2.1 The nature of geospatial feature data 6

1. TdewAvgSummer

5. RddAll

7. Elevation 8. RddMajor 9. RecCon

Figure 2.1 A map of several geospatial features. These nine geospatial feature layers
represent a few of the 100 feature layers that we use to make predictions on ambient noise
levels across the CONUS area shown. The x and y axis of each map are latitude and
longitude, the x axis being displayed by the Longitude feature map above (top middle),
with color representing a relative numerical value at a given location. Features such as
Summer dew point temperature (PPTSummer, middle left) and Elevation (bottom left) are
more descriptive of the climate for a given area, while the sum of all road lengths in given
area (RddAll, center) and proportion of developed landcover (Developed, middle right) are
more indicative of human population levels. For more detailed descriptions on what other
feature layers represent see Table 3.1.
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other due to common physical factors. For example, road density and mean upward radiance at
night are closely related by the factor population levels, although not exactly the same. Similarly,
elevation and dew point temperature (PPTSummer) show a strong negative correlation due to related
meteorological factors.

However, it is possible for false correlation to arise due to the size of the area of analysis, such
as with the high correlation between all of the geospatial feature layers displayed in Figure ?? and
longitude (displayed in the upper middle feature map). This is intuitively a poor feature to use for
predicting sound levels on a global scale, since geographic areas vary widely and unpredictably
across different longitudes, but when analyzed only over the CONUS(Continental United States)
area we can see a general correlation that shows a strong difference between the eastern and western
areas of the United States that is fairly consisted across many features.

Also of note are the various levels of data resolution and accuracy for geospatial features
depending on how each type of data was collected. In some cases several different area resolutions
were used to describe the same feature ranging from 200m? to Skm? [add figure showing different

levels of resolution for the same geospatial feature]

2.2 Ambient acoustic noise level measurements

Even though the actual ambient acoustic measurements are not used in the clustering analysis of
this thesis, a general understanding the process involved for the acquisition of ambient acoustic data
is helpful for a full understanding of the challenges involved in selecting and sampling training data
site locations.

The first step in taking ambient acoustic data is setting up a sound level meter that is indepen-
dently powered and protected against the outdoor elements in the location of interest. Then over an

extended period of time, usually at least one week, the sound level of the location is sampled over a
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set interval of time and averaged to extract the various noise metrics commonly used in community
noise measurements. Different noise metrics include L10, L50, L90, daytime vs nighttime levels,
frequency band energy, etc.

The L10, L50, and L90 levels are calculated based off of the percentage of time a certain
sound level was exceeded during the length of the recording. For an example of one such spectral
measurement see Figure 2.2. For each exceedance level metric we can also measure the average
frequency band energy. An example of One-third Octave (OTO) band frequency levels for an L50
measurement at one of our training sites, and accompanying predictions from various machine

learning models, is shown in Figure 2.3.

dB (A)

Maximum
-~ Lo
-~ Lgg

-- Lgp
Minimum

Sound Pressure Level

Time (s)
-

0 T

Figure 2.2 Example of how L10, L50, and L90 acoustic metrics are calculated.
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Figure 2.3 Example of ambient acoustic L50 spectral data.
2.3 Applications through machine learning

Using the relationships between geospatial features and measured sound levels we can predict
ambient noise levels through supervised machine learning models. Each observed point where
ambient acoustic data has been taken has a set of geospatial feature values attached to it for that
specific location. By feeding the measured noise level outputs with the attached geospatial inputs
into a machine learning algorithm the model can learn the correlations between the ambient noise
levels and geospatial feature values. An example of a general supervised machine learning model is
shown in Figure 2.4

Our challenge lays in deciding which kind of sites we should sample from next to further
diversify our training data. We can better visualize how closely our training data statistically
matches our input data through a joint clustering analysis of the geospatial features associated with
each training point in conjunction with the entire geospatial feature space that we are trying to make

predictions over.
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Figure 2.4 Flow chart of supervised machine learning model.



Chapter 3

Clustering Methods

3.1 Unsupervised Machine Learning

The field of machine learning includes many methods which are used to make predictions and draw
interpretations from various sets of data. A very broad overview of machine learning categories is
displayed in Figure 3.1. The K-Means clustering analysis used in this thesis falls under the category
of unsupervised machine learning; meaning that instead of giving an algorithm a set of training
outputs to learn from in order to make predictions you provide only the inputs and let the algorithm
categorized the data on its own. This allows us to use only the input data to find patterns in the data
without knowing the "true" values of the outputs.

For a review on principles of statistical machine learning see Jain et al, 2000 [5].

3.2 K-Means Clustering Analysis

The goal of K-means clustering is to partition data into K clusters based on geometric proximity
of data objects to each other, where K is a predetermined number of how many clusters we expect

to see. Each cluster is assigned a centroid , which is a point denoting the center of each cluster,

11
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Figure 3.1 A global view of machine learning practices.
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Figure 3.2 An example of a two dimensional data set that can be grouped into clusters.

which is moved iteratively until all centroids have reached a stable position according to a set
threshold [1] [6]. An example of two dimensional clustering is shown in Figure 3.2 where K = 3.
Additionally, a simplified flow chart of the K-means clustering algorithm is shown in Figure 3.3.

While it is easier to discern possible cluster patterns in two dimensional data, higher dimensional
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Figure 3.3 A flow chart of the K-means clustering algorithm.

input data groups can be harder to visualize. Since our current geospatial data set has over 100
feature layers, choosing the number of clusters K to give the algorithm is less intuitive than visually
assigning clusters to a two dimensional data set. Instead we can perform a simple analysis to
determine approximately the optimal number of clusters by determining the point of diminishing
returns for the average centroid density for each number K up to a certain limit as shown in Figure
3.4.

This method is not meant to give an exact analytical answer as to the optimal number of clusters,
rather it is meant more to give a general idea as to the proper range of K that we should be using.
The number K = 12 was chosen since it appears around that point that we begin seeing diminishing

returns on the average cluster centroid density.
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Figure 3.4 A plot of average centriod density over number of clusters .
3.3 Scaling of Input Feature Data

Many of our geospatial feature layers have different units of measurement ranging from percentages
and proportions to distances and temperature values. Consequently, the numerical values can differ
from layer to layer by orders of magnitude, such that we found it necessary to scale our data to
avoid unintentional weighting on features with generally higher numerical values than others. We
achieved this using two kinds of scaling methods: standard scaling and logarithmic scaling.

The process of standard scaling involves subtracting the mean of each feature from itself and
then scaling it according to the variance of each feature. This allows our algorithm to more easily
compare features by how much variation occurs within each feature the same mean zero scale.

Logarithmic scaling sets limits to what range we think a certain feature might be relevant
intuitively by simply putting the feature on a log scale relative to the maximum value of relevance.

Since there are several distance based features, such as distance to coastline or to nearest airport,
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that we would expect to become negligible at large distances with little difference between 100
miles and 500 miles when it comes to predictive importance. Additionally, proximity to noise
sources such as roads become drastically more important for determining noises levels in a way that

is intuitively non-linear.

3.4 Calculation of Cross-entropy

We can calculate similarity between our training data set and input map through a metric commonly
used in data science called cross-entropy . After a joint clustering of the two data sets we can
calculate the percentage of occurrence for each cluster in each set by dividing the total number of
data points assigned to a given cluster by the total number data points in the set, effectively create
two probability density functions (PDF). We will call these two PDFs f;, for our input map, and g;,
for our training data.

While comparing these two PDFs and their differences is informative in itself, to obtain a more
analytical measure of their similarity we can then calculate the cross-entropy between the two
functions as follows

K f
E=) filn (—’) (3.1)

i—1 8i
The units of this calculation are arbitrary, but if a cross entropy value is lower compared to a
previous iteration of added training data it denotes that the two PDFs have become more similar to
each other than they were before the new data was added. For more information and background on

cross-entropy and related calculations see Gokcy et al, 2002 [2].

3.5 Feature Ranking

By analyzing the standard deviation of the cluster centriods across each geospatial feature we can

get an idea as to the feature’s predictive importance in cluster label assignment. If a feature has high
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variation over the range of cluster centroid locations it is indicative of the feature being spread more
across many clusters. Consequently, a value change in said feature would be more likely to change
the cluster label of a given point. A list of the top 20 ranked features according to variance across
centroid locations from a clustering analysis on the NC area is shown in Table 3.1.

Additionally, for reference later in the analysis of the clustering results, geospatial maps of

several of the top ranked features are shown in Figure 3.5.
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Figure 3.5 Feature maps of higher importance in determining cluster assignment.
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Table 3.1 A list of the top twenty ranked geospatial features out of a total of one hundred
features. Rank is determined by the standard deviation of all cluster centers across a
given feature space, with a larger standard deviation over a single feature indicating higher
predictive power in determining which cluster a data point is assigned to.

Rank  Feature Name  Description
1 Wet Degree of human modification from wet land use
2 Water Proportion of water (only) landcover
3 Industrial Degree of human modification from industrial land use
4 Transportation ~ Degree of human modification from transportation land use
5 VIIRSMean Mean upward radiance at night
6 VIIRSMinimum Minimum upward radiance at night
7 VIIRSMaximum Maximum upward radiance at night
8 UrbanHigh Degree of human modification from high urban land use
9 UrbanLow Degree of human modification from low urban land use
10 WaterNat Degree of human modification from natural water land use
11 Commercial Degree of human modification from commercial land use
12 Deciduous Proportion of deciduous landcover
13 RddAll Road density, sum of road lengths (all roads) divided by area of interest
14 PhysicalAccess  Travel time given transportation infrastructure and off-trail permeability
15 Shrubland Proportion of shrubland landcover
16 FlightFreq Total weekly flight observations
17 Cultivated Proportion of cultivated landcover
18 Timber Degree of human modification from timber land use
19 Grazing Degree of human modification from grazing land use
20 Forest Proportion of forest landcover




Chapter 4

Results and Analysis

There is much interpretation that can be draw from the clustering results over North Carolina, but
for the sake of brevity the results will be displayed in full with a few comments from the author as
to the meaning of the clustering patterns and the implications it has for the acquisition of data in the
future. Additionally, it should be noted that these results are localized solely to the NC area and that
clustering results may change when analyzed in the context of the entire continental United States

(CONUS) region.

4.1 Cluster Maps

Since visualizing clusters in over 100 dimensions is non-intuitive and abstract we can instead project
our cluster labels down into the two dimensional space of latitude and longitude to effectively give
us a cluster label map of our chosen geographic area of analysis. This dimension reduction allows
us to visualize how a given physical site location would be labeled in comparison to other sites on
the map.

Figure 4.1 shows the results of clustering the geospatial features across North Carolina into

twelve clusters, with black dots denoting locations of training sites used in the predictive machine

19



4.2 Feature Importance 20

K-means Clustering Map of NC: 12 clusters

Cluster Labels

Figure 4.1 A clustering map of North Carolina with magnified portion of Ashville, NC.
The black points represent sites where ambient acoustic data has been sampled as training
points for the supervised machine learning model. Black lines represent major roads while
white lines represent state boundaries. Each individual cluster is represented by an arbitrary
and discrete integer color value from 1-12.

learning model. In this case colors are arbitrary and meant solely to differentiate one cluster label
from another. For reference, a road map of the NC area with locations of major cities labeled in
Figure 4.2 has been provided for comparison with the individual cluster maps shown in later figures.

Additionally, each cluster label was mapped separately for easier distinction of the organization

of each cluster label on the input map as shown in Figures 4.3, 4.4, 4.5, and 4.6.

4.2 Feature Importance

By comparing the cluster map to several of the higher ranking feature maps shown in Figure 3.5 we
can see several clusters grouping themselves strongly according to a select handful of features. For
example, when compared with the geospatial feature of mean upward radiance at night (VIIRSMean)

at least three separate clusters appear to form in a gradient like pattern according to the level of



4.3 Input Map vs Training Data 21

o
Lexington
y Richmond
KENTUCKY Y e aissa ¥
Roanokee VIRGINIA
Norfolke oVirginia Beach
/‘;, LA ! Mg, I
Knoxville o breerg;boro Shuch 2» ‘\ ‘
Krersolnm, o Y urham By
o Murfreesboro ~Asheville NORTH Jr !
i’ o A D Al A Padll
s Charlotte CAROLINA Rt |
Chalt%ﬂooga sk o~ I“? \ y -
oHuntsville ! Sk
Atlanta SOUTH = = N\
o CARO NA y .
Charleston
{ F O
oMontgomery Map data ©2018 Google

Figure 4.2 A road map of the NC area showing major cities for comparison with the
cluster maps generated by our K-means clustering of geospatial features.

brightness in an urban location at night shown in Figure 4.7. When compared to a map of the
Ashiville city limits shown in Figure 4.8 it is apparent that the clustering algorithm finds different
levels of urbanization to be important in determining cluster label, with the most urban at the center
surrounded by a semi-urban area near the downtown area, then a larger suburban area surrounding
the semi-urban area.

Features such as bodies of water (Wet and Water), shown in Figure 3.5, are also strong indicators
of a specific cluster assignments and almost exclusively follow the features definition for clusters 2

and 6 shown in Figures 4.3 and 4.4.

4.3 Input Map vs Training Data

By comparing the occurrence of each cluster label in the NC area compared with the occurrence of

each cluster label in our training data, shown in Figure 4.9, a general idea can be obtained as to how
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Figure 4.3 A visualization of NC clusters separated from each other. A zoomed in portion
of Ashville, NC (left) and full map of the NC area (right) are show for cluster labels 1-3,
with the cluster label number being shown in the bottom left corner of each pair. Some
clusters more obviously follow certain features and when appropriate interpretive labels
are given to the clusters on the right.
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Figure 4.4 A visualization of NC clusters separated from each other. A zoomed in portion
of Ashville, NC (left) and full map of the NC area (right) are show for cluster labels 4-6,
with the cluster label number being shown in the bottom left corner of each pair. Some
clusters more obviously follow certain features and when appropriate interpretive labels
are given to the clusters on the right.
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Figure 4.5 A visualization of NC clusters separated from each other. A zoomed in portion
of Ashville, NC (left) and full map of the NC area (right) are show for cluster labels 7-9,
with the cluster label number being shown in the bottom left corner of each pair. Some
clusters more obviously follow certain features and when appropriate interpretive labels
are given to the clusters on the right.
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Figure 4.6 A visualization of NC clusters separated from each other. A zoomed in portion
of Ashville, NC (left) and full map of the NC area (right) are show for cluster labels 10-12,
with the cluster label number being shown in the bottom left corner of each pair. Some
clusters more obviously follow certain features and when appropriate interpretive labels
are given to the clusters on the right.
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Figure 4.7 Clusters 7, 3, and 8 display different levels of urban population around the
city of Ashville as three separate clusters arranged from most the densely populated and

urbanized areas to more suburban class areas when compared against the map of Ashville
as seen in Figure 4.8.
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Figure 4.8 Map of the Ashville city limits and surrounding area.
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Figure 4.9 The occurrence of each cluster on the NC map by percentage of site locations
(left) compared with the occurrence of each cluster in our training set (right).

well our training data represents the area over which we are trying to make predictions.

It is immediately apparent that the training data set has some major statistical difference
compared to the the NC area. For example, a large portion of our training sites fall under the cluster
label of 9 whereas the NC has a much smaller proportion of sites labeled under the same cluster.
There are also clusters such as 10 and 11 that show up frequently in the NC area but are hardly
represented at all in our training set. Using this kind of analysis we can infer which kinds of sites

need to be sampled from next in order to make our training set more similar to our area of interest.



Chapter 5

Colnclusions

The results of this initial analysis show that the current training set used to make acoustic predictions
over the continental United States (CONUS) area may not be fully representative of the full
geospatial population. Additionally, out of the 100 features used in the analysis the clustering
process seems to pick up on a select handful when determining which label a particular location
receives. This feature importance may be useful in informing a reduced input feature set for future

supervised machine learning models

5.1 Optimization of Training Data Acquistition

Using a statistical comparison of cluster occurrence between our area on interest and our current
training set we can select new sites to sample from based on what is lacking or imbalanced in our
training data. This greatly reduces the guess work involved in the selection of new locations to
add to our training data by giving an empirical measurement of improvement in terms of statistical

similarity.
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5.2 Future Work

It is hoped that this same geospatial analysis can be performed over the entire CONUS area, since
we are interested in making predictions across all of CONUS and not just NC. There are however
issues of memory size in performing clustering calculations on such a large number of sites, but
with further optimization and use of larger computing resources, such an analysis is feasible. Once

a full analysis is obtained the results can be updated at each addition of new training data.
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