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Abstract

Complex systems are an unavoidable problem in the field of bi-
ology. One of the ways that scientists have tried to overcome this
problem is by building mathematical models–manageable represen-
tations designed to look at specific physical phenomena. The Wnt
Signaling Pathway is a complex system known to regulate cell-to-cell
interactions, play a crucial role in Embryonic Development, and has
been implicated in the study of cancer. The Wnt hormone regulates
the behavior of a protein called β-Catenin. In 2003, Lee et al. built
a model of the Wnt pathway in which β-Catenin increases overtime.
However, in 2010, Jensen et al. built a different model of the Wnt
pathway in which β-Catenin oscillates overtime. To investigate the
Jensen et al. model, model reduction is employed to identify the phe-
nomenological parameter combinations that determined features of
the Wnt oscillations. The method used to reduce the model is called
the Manifold Boundary Approximation Method which is a geometric,
parameter-independent method of reducing the model by removing
one parameter at a time. Reduction of the model showed that there
were 5 variables and 8 parameters which drove the oscillating behav-
ior of the system. After comparing to the Lee et al. reduced model of
the Wnt pathway done by student Dane Bjork, a new minimal model
combining elements of both systems is constructed, which predicts a
novel class of behavior in the Wnt system: biological adaptation.
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1 Introduction

1.1 Complex systems and the need for simple models

There are many examples of systems in the physical world which fall under the um-
brella of a complex system. While there is no universally accepted definition of a
complex system, they are often categorized by having a large number of heteroge-
neous components that interact in nonlinear ways. The complexity to these systems
is nontrivial because within these mechanisms lies the heart of interesting phenomena
yet, it is the major obstacle in advancing understanding. [6]

Figure 1: This is a representation of a social network. Each dot represents a different
person. The colors represent a “type of person” meaning religious views, hobbies, and
personalities. The segments represent ways in which the dots are connected. There
are many segments and different colors which causes this system to be categorized as
complex.

Figure 1 is a diagram of a social network. In this network, there are many segments
and links that connect different people together. These segments represent interac-
tions that are not well understood and are likely non-linear. If one were to pose the
question, “How do the beliefs or preferences of some individuals influence the behav-
ior of the system?” one would realize that this question is difficult for small systems,
and especially for large systems in which the network continues to grow. Thus, it
would be helpful to find a way to simplify a complex system in such a way that is
both understandable and manageable.
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1.2 Mathematical Models

Mathematical models are representations of complex systems designed to look at spe-
cific physical phenomena. While they are not complete representations, they serve as
helpful tools in understanding specific portions of a complex system. These models
are made out of variables and parameters. Variables are the “things” or entities inter-
acting in the system while parameters are placeholders for constants–unknown values
that describe the ways in which the variables interact. In many ways, one could imag-
ine that parameters are like control knobs that can be tuned or adjusted to observe
a specific behavior. Good mathematical models walk the fine line between exhibiting
the system’s complexity while remaining simple enough to reveal new insights which
enable accurate predictions of the system’s behavior. [6]

Nonetheless, the growth in modeling has created a divide amongst two groups
of model builders and users: Those who build minimal models with simple represen-
tations for the way variables effectively interact with one another and those who build
complex models with many parameters which describe the underlying mechanistic in-
tricacies that cause the variables to change. The former are often known as top-down
models or phenomenological models because they expose a system’s phenomenology
and are limited in mechanistic meaning. However, the problem with these models is
that they are black-box approximations that are not immediately connected to the
complicated mechanistic reality underlying the phenomena.

Figure 2: This graph can be modeled by a standard mechanics free-fall equation which
describes the change in vertical position of the ball overtime. In the equation, there
are two parameters, g–the acceleration due to gravity, and initial velocity, v0 . If I
pick certain parameter values for both g and v0 then I am able to obtain the graph
above which measures the macroscopic behavior of one variables, vertical position as
a function of time
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Figure 2 is an example of a non-complex system. It is represented by the
mathematical model below.

y − y0 = v0t+
1

2
gt2 (1)

In the figure, there is one variable being measured–position as a function of
time. Although we can easily see how the change in time affects the position of the
ball, it is not obvious whether air resistance affects the motion of the ball, nor is it
obvious how the mass of the ball is changing its ability to move. Components like air
resistance or the mass of the ball are examples of parameters that are not represented
in the minimal model, yet they significantly affect the position of the ball as it changes
overtime. While a person looking at the graph would be able to easily understand
the behavior of this system, it is not clear whether or not this minimal model could
generate accurate predictions or give an accurate approximation of the motion of the
ball. Hence, the big problem with using phenomenological or minimal models.

In contrast to the top-down, phenomenological models are bottom-up or
mechanistic models. These models contain a large number of parameters, which
represent casual relationships in the system–oftentimes referred to as mechanistic pa-
rameters. Thinking back to our image of the social network (see Figure 1), the casual
relationships are respective to each and every segment which connects one person to
another. Oftentimes, these models give the feeling that they are “parts-lists” of the
system. However, the problem with these models is that they require an unreason-
able amount of information about the intricacies of the underlying mechanisms. This
causes the models to be over-parameterized or sloppy. [6] [?]
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Figure 3: This is an example of a complex system that can be represented by a
mathematical model. In this diagram, each casual interaction is represented with a
parameter. For example, parameters k4 and kL represent the way Wnt is being input
in the system. We can also see that there are numerous parameters which describe the
formation of proteins DC, GSK, Axin and APC and how they are circulating through-
out the system.We also have parameters which describe the mechanisms which cause
a protein such as β-Catenin to enter and leave the system. All of these parameters,
from k4 to k17 describe the chemical reactions and interactions taking place which
cause this system to behave a certain way (Image from Goentoro 2009).

Figure 3 is a diagram of a signaling pathway called Wnt, described in the
section below. In this diagram, we can see that there are many different mechanisms
which create the functionality of this pathway. From these mechanisms, we can
calculate the behavior of all the variables at all times. However, it is not obvious
which are necessary or relevant for explaining those behaviors.

Both of these approaches to modeling have strengths and weaknesses. Phe-
nomenological models contain parameters that can be inferred by much less data but,
they do not give many mechanistic insights. This becomes problematic because the
ability to engineer or control a system typically operates on a mechanistic level. For
example, mutations operate on individual genes or drugs target specific biological
molecules–none of which are represented in a reduced model, alone. Contrary, mech-
anistic models, such as the biological one above, derive the mechanistic interactions
but they require an unreasonable amount of data to understand. The contradiction
between both types of models create a divide amongst model builders and users. On
one hand, we have simple, phenomenological models which are easily understood and
require a reasonable amount of data to understand, yet we question their ability to
generate accurate predictions and make proper approximations. On the other, we
have complex, mechanistic models which represent the deeper, intimate details of the
system yet, they are not easily understood and require an unreasonable amount of
data.
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The solution to this problem requires a method that explicitly reveals how
the behavior of variables can be described by just a few parameters. Thus making
the overarching goal of this thesis an attempt to bridge this gap between these two
types of models by learning or deriving combinations of mechanistic parameters that
can be described as phenomenological. Essentially, this thesis is going to demonstrate
how we can apply a method called the Manifold Boundary Approximation Method
(described in Chapter 3) to create “grey box” approximations of the Wnt pathway.

2 Background

2.1 Biology

In recent decades, many scientists have began to build complex mathematical models
that describe mechanistic intricacies of a complex system. In the field of biology,
this proves paradoxical because, as stated before, “The complexity is the origin of
the richness of biological phenomena and the biggest hurdle in advancing mechanistic
understanding of a behavior” [6]. One example of a complex system is a signaling
pathway. We can imagine signaling pathways as being information highways–roads
that our cells turn on depending on what it wants to create. Every cell has a finite
number of pathways that contain sequences of chemical reactions and interactions
which help to transfer and process information between cells and their environments
to create a functioning system. One of these signaling pathways is called Wnt, and
will be the focus of this thesis.

The Wnt signaling pathway helps to regulate cell-to-cell interactions, plays a
crucial role in embryonic development, and has been implicated in the study of cancer
[3]. The effects of the Wnt signaling pathway is observed through the behavior of a
protein called β-Catenin. There is a signal called Wnt that is input into the pathway
that operates much like a computer. The pathway will do some calculation and
provide an output. The output, in this case is β-Catenin and is believed to be the
end product of the computer algorithm for the Wnt signal. This was evident when
“β-Catenin was very sensitive to relatively small perturbations in the Wnt pathway
parameters” [1]. However, what makes this pathway interesting is that it can have
two different behaviors given two different sets of variables and parameters.

In some cases, Wnt behaves in such a way that β-Catenin is bound by a
group of proteins, a macromolecule, called the destruction complex. The destruction
complex consists of Axin, APC, GSK3B and β-Catenin. When β-Catenin attaches to
the destruction complex, it degradates, lowering its concentration. Thus preventing
the target genes from being expressed at improper times or at harmful levels [1].
Figure 4 below demonstrates the difference of the Wnt pathway without the Wnt
signal and under the influence of the Wnt signal.
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Figure 4: This figure compares the behavior of the Wnt pathway without the Wnt
signal in comparison to the behavior of the pathway under the influence of the Wnt
signal. In the case that the Wnt signal is not input into the system, we see the proper
behavior of β-Catenin. It attaches to the destruction complex and then becomes
phosphorylated causing the target gene expression to remain unaffected. Contrary,
under the presence of the Wnt signal, we see that β-Catenin accumulates and thus
alters the proper expression of target genes (Image taken from MacDonald 2009).

In 2003, Lee et al. built a model of the Wnt pathway which included fifteen
variables and nineteen parameters. In this model, the Wnt signal enters the pathway,
a receptor is activated which causes the degradation of the destruction complex. This
creates a build up of β-Catenin which eventually leads to transcription of specific
genes [3]. Figure 5 below is a diagram of this process.
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Figure 5: This is a diagram of the model of the Wnt pathway that was built in
2003 by Lee et al. In this diagram, the destruction complex is formed with proteins
such as β-Catenin, Axin, APC and GSK3B but it is bound by the concentration of β-
Catenin. In this figure, single arrowheads denote the direction for specific interactions,
blue lines represent mechanisms that are only considered when there is a high Axin
concentration, and double arrowheads denote binding equilibria (Image taken from
Lee et al. 2003)

In 2015, Dane Bjork reduced this model which demonstrated that it could be
approximated with four variables, nine parameters and included three conservation
laws. Through this model reduction, we were able to verify that the 2003, Lee et
al. model caused β-Catenin to increase overtime as shown in Figure 6.
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Figure 6: The graph of β-Catenin vs time for the Lee et al. model. Before the Wnt
signal, there is a steady state of the concentration of β-Catenin. However, after the
Wnt signal enters the pathway, the concentration of β-Catenin begins to significantly
increase (Image taken from Geontoro 2009).

In 2010, Jensen et al. built a different model of the Wnt pathway which
included eight variables and twenty parameters. The diagram of this model is shown
below.

This model describes oscillatory behavior of β-Catenin which comes from a
negative feedback loop within the system. In this diagram, the Wnt signal enters the
pathway which causes β-Catenin to attach to a target protein called Axin2. When
this occurs, the concentration of the destruction complex increases which promotes
the degradation of β-Catenin and Axin2. However, lower concentrations of Axin2
decreases the amount of destruction complex which in turn, causes a build up of
β-Catenin. This demonstrates the formation of a negative feedback loop centered
around the target gene Axin2 and leads to an oscillating concentration of β-Catenin
[2].
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Figure 7: This is the diagram of the Wnt model created by Jensen et al. in 2010.
It is comparatively different to the Lee et al. model because of the replacement of
target gene Axin2 and Axin. In this diagram, red represents the protein β-Catenin,
green represents the protein Axin2, blue represents the molecule GSK3 and yellow
represents the mRNA for Axin2 (Image taken from Jensen et al. 2010).

Figure 8: This is the graph of β-Catenin vs time for the Jensen et al. model of the Wnt
signalling pathway. This model causes β-Catenin’s concentration to oscillate which is
different from the Lee et al. model where we saw β-Catenin increase overtime (Image
taken from Jensen et al. 2010).
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2.2 Goal of Thesis

The goal of this thesis is to first reduce the Jensen et al. model of the Wnt pathway
to identify the phenomenological parameter combinations that determine features in
the Wnt oscillations. Next, we will construct a minimal model which explains the
transition between oscillatory and non-oscillatory behavior in the Wnt pathway and in
doing so, predict a novel class of behavior for the Wnt system: Biological adaptation.
The method we will use to reduce the Jensen et al. model is called the Manifold
Boundary Approximation Method (described below). This analysis will also allow us
to explore the use of MBAM on oscillatory models and determine whether there are
any fundamental challenges to applying this methodology to such behaviors.

3 Methods

So, how do we reduce this complex model? The solution lies in a model reduction
technique called the Manifold Boundary Approximation Method. However, before we
begin to discuss the intimate details of this method, I will introduce a much simpler
example of model reduction using the example of a bead on a rotating hoop.

mrθ̈ + bθ̇ +mgsin(θ)−mrω2 sin(θ) cos(θ) = 0. (2)

d2θ

dt2
=

1

T 2

d2θ

dτ 2
(3)

Equation 1 above is a non-linear differential equation which contains a vari-
able, θ and parameters m, r, b, g, ω, θ0 and θ′0 where m is the mass of the bead,
r is the radius of the loop, b is the damping coefficient, g is the acceleration due to
gravity, ω is the angular velocity of the hoop and θ0, θ

′
0 are initial conditions. These

seven parameters determine the motion of a bead rotating along a hoop. The goal is
for us to get to the equation,

d2θ

dτ 2
+ ε

dθ

dt
+ sin(θ)(a− cos(θ)) = 0. (4)

We begin by first rescaling time t = Tτ .

So,

dθ

dt
=

1

T

dθ

dτ

d2θ

dt2
=

1

T 2

d2θ

dτ 2



3 METHODS 14

We can now substitute this into (1), which gives:

mr

T 2

d2θ

dτ 2
+
b

T

dθ

dτ
+mg sin(θ)−mrω2 sin(θ) cos(θ) = 0

If we divide everything by mr and then multiply both sides by T 2, we get:

d2θ

dτ 2
+
Tb

mr

dθ

dτ
+
g

r
sin(θ)T 2 − ω2 sin(θ) cos(θ)T 2 = 0

We want T 2ω2=1. Thus, T= 1
ω

. So, by substitution,

d2θ

dτ 2
+

b

ωmr

dθ

dτ
+

g

rω2
sin(θ)− ω2 sin(θ) cos(θ)

1

ω2
= 0

This gives us,

d2θ

dτ 2
+ ε

dθ

dt
+ sin(θ)(a− cos(θ)) = 0 (5)

where

ε =
b

mrω
(6)

a =
g

ω2r
(7)

By going through the process above, we were able to reduce our mathematical
model (our differential equation) from seven parameters to two. The consequence of
model reduction is the grouping of mechanistic parameters which we call ε and a.
While we have not “gotten rid” of any parameters, we have reduced our model by
creating combinations of parameters which drive the behavior of our system. Notice
that equation 5 is equal to equation 1 behaviorally–in both equations, we still ex-
hibit the behavior of the bead rotating along the hoop. However, in equation 5, we
have two parameters and in (1) we have seven. This is an example of how mecha-
nistic parameters b, m, g, r and ω can be grouped together or combined to create
phenomenological parameters, ε and a and is the way we can analytically reduce a
model.

Now imagine having a mathematical model with a system of eight equations
and twenty parameters. It is obvious that the analytic model reduction game would be
challenging to play because unlike this case, we would not know where we want to end
up, nor would we be able to identify which parameters or groups of parameters were
important. So, we need a numerical method that allows us to derive the combinations
of parameters that are necessary for the behavior of the system. That is what the
Manifold Boundary Approximation Method does.
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The Manifold Boundary Approximation Method, also called MBAM, is a
model reduction machine which takes systems of equations and generates a set of
solutions which we call the model manifold. We can build this set of solutions by first
considering the inputs and outputs. The inputs that we have are the original, finite
number of parameter values. In the case of the rotating bead, these finite number of
parameter values would be the values for all seven of our initial parameters: m, r, b, g,
ω, θ0 and θ′0. If we were to generate a space which encompasses all of these parameters,
it would be a 7 dimensional space called parameter space. Parameter space, by
definition, is a space defined by the numerical values of the original parameters in our
model. The outputs of this model are the solutions which the bead on a rotating hoop
could take on, given different initial conditions. We call this space, behavior space,
because it holds all of the possible behaviors for a given complex system. Thus, for
every input or parameter value, there is a specific output and in total, the output
would be the set of solutions for the bead on a rotating hoop.

We can imagine that each input is a vector and if we were to sweep across all
of the vectors in our model, we would trace out a smooth surface as shown in Figure
9 below. If we mapped each input to a specific output, we would also trace out a
smooth surface in behavior space. This smooth surface in behavior space is called the
model manifold. As stated before, the model manifold is a set of solutions for all of
our desired behaviors. In the case of the damped bead example, our manifold would
hold solutions for all of the possible outcomes of the beads motion such as the bead
not rotating, the bead under damped motion, the bead without damped motion, etc.
This model manifold contains all of the solutions– all the combinations of parameters
which cause our rotating bead to behave a certain way.

Figure 9: How inputs and outputs correspond to each other to build the model
manifold. Here, the blue lines correspond to the blue surfaces on the manifold, green
paths correspond to green surfaces on the manifold, etc. (Transtrum et al. 2015)
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In the case specific to this thesis, the model manifold contains all of the
solutions for the way β-Catenin behaves in the Wnt pathway. It contains the case
for which β-Catenin oscillates, and for the case that it increases overtime. We will
use this method because it is a numerical, computational machine which will tell
us which parameters, or combinations of parameters are crucial to the behavior of
the model. In this case, we want to focus on the result where β-Catenin oscillates.
MBAM will help us do that by identifying combinations of parameters in our model
which have no control over β-Catenin oscillating, thus allowing us to simulate the
analytical method, like we did with the rotating bead on a hoop, and determine the
few combinations of parameters which generate oscillations. So, how do we begin?

3.1 Building the Model Manifold

We begin by building the model manifold. The Manifold Boundary Approximation
Method is a technique which takes sets of differential equations and transposes them
into a geometric, parameter-independent set of solutions by building and analyzing
a model manifold. As said before, MBAM is a computational machine which takes
inputs (parameter values) and maps them to outputs which are solutions on the
manifold. When we sweep through all the inputs in parameter space, we also sweep
through all of the outputs in behavior space which gives us a smooth surface called
the model manifold. The model manifold is a geometric set of solutions for all of the
desired behaviors of β-Catenin in the Wnt pathway.

The dimensions for our parameter space are dictated by the number of pa-
rameters we begin with in our original model. If we are thinking about the Jensen et
al. model of the Wnt pathway, there are twenty mechanistic parameters which means
that our parameter space is a twenty-dimensional space. Since we are mapping the
inputs from parameter space to outputs in behavior space, we also need to determine
the dimensions in behavior space. The dimensions of our behavior space are deter-
mined by the number of different predictions our model can make. In our case, the
dimensions of behavior space is the number of time points at which we predict β-
Catenin concentration. While both of these spaces are nearly impossible to visualize
because of their size, we can use computational differential geometry to explore them
numerically. This leads into the next question which is, how do we begin to use the
model manifold?

To begin using the manifold, we must first consider picking an initial point to
start at. This initial point is the set of parameter values reported by Jensen et al. [2].
From this initial point in parameter space we can calculate a geodesic. Geodesics are
the paths of least distance on a curved surface. We can imagine that they are the
analogs of straight lines but on curved surfaces–one dimensional curves in parameter
space. The initial direction is determined by decomposing the Jacobian matrix. These
paths in parameter space also have a corresponding path in behavior space on the
model manifold. Since these geodesics are the paths of least distance, we can use them
to find the nearest boundary on the model manifold. These boundaries correspond
to simplified models.
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Figure 10: In this figure the red curve corresponds to the geodesic that is being run
along the manifold. It starts by running to a boundary and then identifies a limit
represented by the green dot.The process is then iterated to the second boundary in
blue (Transtrum and Qiu 2014).

3.2 Interpreting the Boundaries as Approximations

In order to determine whether the geodesic has run sufficiently close to a boundary on
the model manifold we can track the changes in parameter values as we move along
its path as shown in Figure 10 above. Since the geodesic is bounded by the physical
edges of the manifold, as it gets closer to a boundary it can be numerically defined to
have some limit which it will asymptotically approach. As the geodesic approaches
boundaries in behavior space, the parameters velocities exponentially increases which
causes it to have extreme limit values such as zero or ∞. These extreme values
result in outputs of the model which cannot be exceeded by any other parameter
combination. They are the reason that we can interpret the boundaries of the model
manifold as limits of the model parameters.

3.3 The Method

Now that we have gone through some of the intimate details of our model reduction
method, let’s walk through the process of how it helps us reduce a sloppy model. We
first begin by gathering an over-parameterized model such as the Jensen et al. model
of the Wnt pathway. We then want to apply the MBAM to this model in order to
find simplified, approximate models.

We start by inputting our mathematical model into the MBAM program. It
then runs a geodesic which identifies a boundary as shown in Figure 11.
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Figure 11: This is one of the figures coming from the MBAM program. In this
figure, every colored line represents a different parameter in our model. One of the
parameters, cbc, in bright green, is asymptotically approaching zero at approximately
x=1.15. This allows us to conclude that (1) the Geodesic has found a boundary and
(2) has given this parameter a numerical value of zero (log value being -∞) which we
can substitute into our model.

We will also see the graph which looks like Figure 12 where we see the pa-
rameter velocities hitting a boundary which causes them to approach negative ∞
quickly.
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Figure 12: This figure from the MBAM program tells us that the velocity of this
parameter approaches negative ∞ at the boundary. Hence the asymptotic approach
towards zero. This allows us to conclude that this parameter is no longer relevant to
the oscillatory behavior of β-Catenin.

Both of the figures above allow us to conclude that a specific parameter can
become zero without significantly affecting the behavior of the model. This allows
us to begin playing our analytical model reduction game, just like we did with our
rotating bead above. Below is an example of the game we will play with our larger,
Jensen et al. model.

In the larger model, the variables on the left hand side describe the differ-
ent entities within our system. So, C describes the destruction complex–the macro-
molecule which inhibits the concentration of β-Catenin and the parameters on the
right hand side describe the way it is changing overtime. cfc describes the formation
of the destruction complex, cbc describes the breakdown of the destruction complex,
and α is a parameter which tells us that some of the destruction complex goes away
by other natural processes.

We begin with the equation 8 below where cfc, cbc, and α are three mechanistic
parameters in our model.

dC

dt
= cfcBGA− cbcC − αC. (8)
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Since MBAM told us that the parameter cbc goes to zero, we can now substitute that
value into our original model to give us:

dC

dt
= cfcBGA− αC (9)

Later in the model reduction process, we find that the parameters α and cfc
go to ∞. This causes us to begin the process by which we combine mechanistic
parameters into identifiably phenomenological combinations.

Since MBAM tells us that α goes to ∞, lets divide the equation by α.

dC

dt
· 1

α
=
cfcBGA

α
− αC

α
. (10)

By doing so, reduce the model by deriving meaningful combinations of parameters.

0 = BGA− cfcC

α
− C, (11)

where identify
cfc
α

a new parameter This process allowed us to reduce the model from
two parameters to one.

The iteration of this process is the way we use MBAM as a model reduction
tool and also the way we play the analytical reduction game similar to that of a bead
on a rotating hoop.

3.4 Periodicity

One of the questions that this thesis explores relates to model reduction techniques
for oscillatory regimes. One of the big questions we consider is “How does periodicity
affect the results of reduction?” In order to answer this question, geodesics were run
using predictions for both one period and two periods.

4 Data

As we iteratively remove parameters from our model, we will have a series of paths
which allow us to go from our original twenty mechanistic parameters to the minimal
model with nine phenomenological parameters. Since we wanted to explore how the
periodicity of the oscillations affected our model reduction techniques, we used the
MBAM in two different cases. One which looked at two periods of time, and another
which only looked at one period of time. The sequence of approximations for each
case are summarized in Figure 13.
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Figure 13: The flow chart above summarizes the different reduction paths for the one-
period and two period data sets. Notice that the two sequences are nearly identical
with the biggest difference being the order in which the limits are identified.
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In the flow chart above, it is evident that the Manifold Boundary Approximation
Method did not generate identical paths of model reduction for the two cases. How-
ever, it is important to note that the final nine parameters are the same in both cases.
This allows us to conclude that our results are not dependent on the choice of model
predictions. It further shows that MBAM can successfully reduce oscillatory models
without additional techniques.

5 Data Analysis

5.1 Model Reduction for Oscillatory Regimes

From the flow chart in Figure 13, it is evident that the periodicity did not affect
the minimal model derived from reduction. Although different paths were taken to
arrive at a model with nine parameters, the same model resulted in both cases. This
allowed us to assume that there was no information lost from having too little data. It
also allowed us to infer that the MBAM generates accurate predictions for oscillating
models, and that the specific behavior space used does not strongly affect the final
outcome.

5.2 Comparing Two Models

Now that we have a minimal model for the oscillating Wnt signaling pathway (left),
we can compare it to the non-oscillatory reduced model made by Dane Bjork in 2015
(right).

Ḃ = ˜̃S − cfc ˜̃B[GA2] (12)

˙Am =
˜̃
B2 − Ãm

τA2m

(13)

Ȧ2 =
(KGA2 + A2)(−cfALA2L+ ˜A2m)

KGA2 +G+ A2
(14)

˙GA2 =
−cfALA2LG+ ˜A2mĠ

KGA2 +G+ A2

(15)

ȦL = −cfALA2L− νA2L = −̇L (16)

Ḃ = −k13X11 −X8 + k12 (17)

Ċ = −k̃9
X̃8

X11

(1 +X2) +
˜̃k9
X11

(18)

Ẋ1 = −W ∗X1 + X̃2F (W ) = Ẋ2 (19)

The equations on the left hand side make-up the final, minimal, reduced model for
oscillating concentration of β-Catenin created by Jensen et al. Equations 12-16 make
up the simplified model which is behaviorally equivalent to the original oscillating
model with 14 variables and 20 parameters.
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In this model, Equation 12 describes the parameters which affect the concen-

tration of β-Catenin. The parameter ˜̃S or SctsA represents the production rate of
β-Catenin and cfc represents the formation rate of the destruction complex denoted

by ˜̃B[GA2]. Equation 13 describes the way Axin2’s mRNA concentration is being
controlled. Equation 14 describes the components of the Axin2 protein.The parame-
ters KGA2 and ˜A2m control the production rate of Axin2 while the parameter −cfAL
controls its degradation. Equation 15 describes the dynamics of the destruction com-
plex and Equation 16 describes a conservation law between AL and L. Although the
typical student reading this paper may not understand the mechanistic intricacies of
the parameters in the model, it is important to notice that in our model reduction
process, we have been able to identify the parameter combinations which make this
minimal model equivalent to our original model. Just like the original Jensen model
that we looked at, this model encompasses some variable which describes the forma-
tion of β-Catenin, a variable which describes the concentration of Axin2 and the way
it is being produced in a negative feedback loop, the destruction complex and the
way Wnt is entering into our pathway.

On the right side, Equations 17-19, make up the final, minimal, reduced model
for the non-oscillating concentration of β-Catenin created by Lee et al. This model
was similarly derived from a complicated mechanistic model by Dane Bjork. In the
model, there are three variables which drive the behavior of increasing β-Catenin–the
concentration of β-Catenin, the destruction complex, and a conservation law which
describes how Wnt is being input into the pathway. More specifically, in Equation 17,
the parameter k12 is the production rate of β-Catenin and the parameter k13 is the

degradation rate, analogous to cfc. Likewise, Equation 18 has a parameter ˜̃k9, which
is the formation rate of the destruction complex and k̃9 is the degradation rate.

These two models are not designed to represent the same functions of the
Wnt pathway. They are distinct, separate models, with several common elements
which we can generalize to be functionally equivalent in the pathway.

The final goal of this thesis is to combine the relevant elements from the mini-
mal Jensen model (Equations 12-16) with those of the minimal Lee model (Equations
17-19) in order to build a new hybrid model that predicts novel Wnt behaviors. While
the models above model two separate behaviors of β-Catenin, we can make general
conclusions about the mechanisms they are describing.
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In both cases, there is an equation describing the way β-Catenin is changing
overtime.

Ḃ = ˜̃S − cfc ˜̃B[GA2] (20) Ḃ = −k13X11 −X8 + k12 (21)

The Jensen and Lee model do not match; however, there are similarities in the
equations. Generalizing the commonalities in both models is crucial for building the
combined minimal model because they describe the same underlying mechanisms.
In the Ḃ equation, both models have a parameter describing a mechanism which
causes the amount of β-Catenin to decrease (-cfc from (20) and -k13 from (21)) and

a parameter that causes β-Catenin to incrase ( ˜̃S from (20) and k12 from (21)). Since
these mechanisms appear in both minimal models separately, we can infer that they
should also appear in our combined minimal model.

There is also an equation describing the way the destruction complex, C, is
changing overtime.

˙GA2 =
−cfAL ∗ A2 ∗ L ∗G+ ˜A2m ∗ Ġ

KGA2 +G+ A2

(22)

Ċ = −k̃9
X̃8

X11

(1 +X2) +
˜̃k9
X11

(23)

Similar to the case of β-Catenin, there is a parameter which describes the
mechanism that causes the concentration of destruction complex to decrease as well
as a parameter which describes the increase of destruction complex in the system.

Using these similarities, we can begin to piece our combined minimal model
together where we have a parameter describing Wnt entering the pathway, a param-
eter describing the destruction complex inhibiting the formation of β-Catenin, and
a parameter describing the formation rate of β-Catenin. We can also identify dif-
ferences in our model such as the negative feedback loop which cuases β-Catenin to
oscillate from the Jensen et al. model and formation and degradation rates for the
destruction complex from the Lee et al. model. These similarities and differences are
shown in the combined minimal model in Figure 14 below.
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Figure 14: This is the diagram of our new combined model. Red lines signify pa-
rameters which are derived from the Lee et al. model, blue lines from the Jensen et
al. model and black lines are parameters incorporated into both models.

In Figure 14, the red lines represent the variables derived from the Lee et
al. model and the blue arrow represents the portion derived from the Jensen et
al. model. The black lines are the parameters or mechanisms that are present in
both models. This diagram summarizes the combined minimal model which embod-
ies the transition between the Lee et al. and Jensen et al. model.

The mathematical model for this diagram is:

Ḃ = −k2C + k3 − k4β (24)

Ċ = kjβ − k1W + kL − k5C. (25)

Now that we have our new mathematical model which encompasses both the case
where we have increasing β-Catenin from the Lee et al. 2003 model and oscillating
β-Catenin from the Jensen et al. 2010 model, we can now determine the steady states
by solving the equations Ċ = 0 and Ḃ = 0.

[
Ċ

β̇

]
=

[
−k5 kj
−k2 −k4

] [
C
β

]
+

[
−k1W + kL

k3

]
where, detAJensen= [

0 kj
k2 0

]
Which gives us an oscillatory steady state.
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detALee= [
−k5 0
−k2 −k4

]
gives us a stable steady state.

If we recall our minimal model:

Ḃ = −kLC + k3 − k4β (26)

Ċ = kjβ − k1W + kL − k5C (27)

One will notice that recovering the minimal Lee 2003 model requires that we
set the parameter kj to ∞. However, it is also interesting to investigate the case
where kL, k4, kL, and kj all approach ∞.

In that case,
Ċ

kL
=
kjβ − k4W + kL − k5C

kL
, (28)

So,

Ċ

kL
= −C

β
− k4
kL
W (

C

β
) +

kL
kL

+
k5
kL
β. (29)

Therefore, if kL approaches ∞ then,

0 = −C
β
− k4
kL
W (

C

β
) +

kL
kL

+
k5
kL
β. (30)

In this case, we know that we will have fractions which have the form ∞
∞ . However,

we overcome this indeterminate form by remembering that the geodesic tells us the
magnitude of our ∞. Thus, we are able to say that although the two parameters
alone are infinitely large, their ratio is finite.

Thus,

C

β
+
k4
kL
W (

C

β
) =

kL
kL

+
k5
kL
β (31)

C

β
+
k4
kL
W (

C

β
) =

kL
kL

+
k5
kL
β. (32)

After doing some algebra, we arrive at,

C =
β(kL

kL
+ k5

kL
β)

k4
kL
W + 1

. (33)
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This is the process for which we solve the new steady state of our destruction
complex, C. After we plug in this value of C into equation 20, we are able to determine
our new steady state for B which is,

0 = kL − β(k4 −
kL
kL

1 + k4
kL
W

)− β2

kj
kL

1 + k4
kL
W
. (34)

The roots of (33) can be found using the quadratic formula, to give steady
state values to β-Catenin.

By finding the steady state in this model, we know that for some combi-
nations of parameters that describe the input of the Wnt signal, we should expect
that the system will fall into a new steady state which is not necessarily oscillating
concentrations of β-Catenin or an increasing concentration of β-Catenin.

Figure 15: From the image above, we can see that the vector plots flows towards some
new steady state. This steady state comes from the positive solution to Equation 33.
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Figure 15 above corresponds to our quadratic equation above as we see two
different steady states which our model could settle into. However, the quadratic
equation which we solve for provides us with two different solutions–one which is
negative and one which is positive. We disregard the solution that is negative because
it is physically impossible for us to achieve–it does not make sense for us to have
negative concentrations of either the protein β-Catenin or the macromolecule called
the destruction complex.

We are then able to generate the next graph which demonstrates decaying
oscillations.

Figure 16: This graph is the graph of the concentration of β-Catenin as it changes
overtime. In this graph, we see decaying oscillations as time continues to increase.

Figure 16 above is a graph with decaying oscillations. This implies that there
is a new steady state under the Wnt signal because decaying oscillations implies that
there is some finite amount of time for which oscillatory behavior exists.If we were to
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look at the behavior of β-Catenin overtime as time ran towards infinity, we would not
see the oscillatory behavior continue. In the Jensen et al. model of the Wnt signaling
pathway, we saw a limit cycle where our oscillations continued as time ran towards
infinity. However, these graphs tell us that there is some type of bifurcation point at
which the oscillating concentration of β-Catenin ends and a new steady state that it
begins to settle into.

This new steady state hints that there is a minimal model that exists which
encompasses both behaviors of β-Catenin from the Lee et al. model and the Jensen
et al. model of the Wnt pathway. We can now use this minimal model to generate
new predictions about the Wnt pathway and other behaviors that it encompasses.

Figure 17: This image is a graph of the concentration of the destruction complex
C and β-Catenin as it changes overtime. The first is related to the former and
the second is related to the latter. The first curve, the curve which describes the
destruction complex changing overtime has the features of an adaptation curve.

In this figure, we are able to see that the destruction complex, C, has a
concentration which is adapting overtime. By definition, adaptation is the ability for
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“something” to start out in one behavior, change and morph into a different state,
and then return back to its original state which we are able to see in the first graph
[4]. While this curve tells us that the destruction complex has the ability to adapt,
we also know that since it inhibits the production of β-Catenin, that β-Catenin must
also have the ability to settle into a new steady state. We also see that both C and
B are settling into new steady states which implies that the Wnt pathway has some
adaptive behavior which it is able to fall into and function under.

6 Conclusion

Lets recall the goals of this thesis. The first goal of this thesis was to reduce the
Jensen et al. model of the Wnt pathway to identify the phenomenological parameter
combinations. We did that by using the Manifold Boundary Approximation Method
and playing the analytical reduction game analogous to a bead on a rotating hoop.
By going through the reduction process, we were able to draw the conclusion that
one, MBAM is able to successfully reduce oscillating models and two, our results were
independent from the periodicity. The second goal of this thesis was to combine the
Lee et al. minimal model with the Jensen et al. minimal model to build a new minimal
model of the Wnt pathway. After analyzing our new minimal model, we were able to
predict adaptive behavior for the destruction complex, and we were able to show the
protein β-Catenin settling into a new steady state.

Moving forward, this project makes predictions that can be done experimen-
tally. Our model predicts that Wnt regulates β-Catenin through an adaptation mech-
anism in the destruction complex. Adaptation is a survival function of cells and gives
us reason to believe that this prediction of novel class behavior for the Wnt pathway is
physically plausible. It would be interesting to observe this behavior experimentally
as a validation for our model.

The ultimate goal of this thesis hinted at the need for minimal models which
are complex enough to capture the intricacy of a complex system while remaining
simple enough to generate new, accurate predictions. Through this project, we were
able to show that we can bridge the gap between mechanistic models and phenomeno-
logical models by deriving combinations of mechanistic parameters which control the
phenomenology. These results are particularly fascinating because we are able to
combine mechanisms from two models and we were able to generate a new prediction
which neither of those models could have predicted individually.
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