
EXPLORING RELATIONSHIPS BETWEEN NETWORK STRUCTURE &

MANIFOLD STRUCTURE IN SIMPLE PATH MASS ACTION MODELS

by

George Evans

A senior thesis submitted to the faculty of

Brigham Young University - Idaho

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics

Brigham Young University - Idaho

April 2021

Copyright © 2021 George Evans

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY - IDAHO

DEPARTMENT APPROVAL

of a senior thesis submitted by

George Evans

This thesis has been reviewed by the research advisor, research coordinator,
and department chair and has been found to be satisfactory.

Date Mark Transtrum, Advisor

Date Richard Datwyler, Committee Member

Date Lance Nelson, Committee Member

Date R. Todd Lines, Chair

ABSTRACT

EXPLORING RELATIONSHIPS BETWEEN NETWORK STRUCTURE &

MANIFOLD STRUCTURE IN SIMPLE PATH MASS ACTION MODELS

George Evans

Department of Physics and Astronomy

Bachelor of Science

Models describing how concentrations change over time in chemical reaction

networks can become very complicated very fast. To help simplify such models,

researchers often want to know the manifold structure of such models. As such,

I explore the relation between network structure and manifold structure in

mass action models, hoping to shorten the process of discovering the manifold

structure. In this report, I describe some tools I created that will help future

studies. I will also expose some complications that arise when trying to relate

network structure to manifold structure.

ACKNOWLEDGMENTS

I would like to thank Mark Transtrum for welcoming me into this project

and helping me through this whole endeavor. I would like to thank the faculty

of Brigham Young University - Idaho for helping me gain the physics, math-

ematical, and computational competency needed to perform this research. I

especially wish to acknowledge Richard Datwyler and Lance Nelson for their

aid in refining this thesis and Todd Lines for his guidance in general. I also

wish to thank Richard Sandberg at Brigham Young University for helping me

get in contact with Dr. Transtrum in the first place.

Furthermore, I would like to thank my “physics friends,” as I like to call

them, for helping me get through these last few semesters, as well as my other

friends for helping me take a break from school every once in a while.

I thank my parents and siblings for their support throughout college, high

school, and life.

Most importantly to me, I thank my wife for her love and support that has

helped me find joy despite the pandemic troubles compounded with stress due

to school.

Contents

Table of Contents vi

List of Figures viii

1 Introduction and Background 1
1.1 Overview . 1
1.2 Model Reduction . 2
1.3 Models — What Goes Into Them? 4
1.4 Data Fitting . 5
1.5 Sloppy Models . 6
1.6 The Model Manifold . 8
1.7 Manifold Structure . 13
1.8 Cross Sections of Model Manifolds . 16
1.9 Introduction to Chemical Reaction Networks and Mass Action Models 19
1.10 The Objective . 22

2 Method 25
2.1 Generating Mass Action Models and Predicting Manifold Structure . 25
2.2 Linear Simple Path Networks and Hasse Diagrams 28

3 Results 39
3.1 Independent Species: A Tool for Grouping Similar Networks 39
3.2 Unbounded Manifolds . 43
3.3 The Equivalent Model: Another Tool for Grouping Similar Networks 46
3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 48
3.5 Linear Branching Models and Branching like behavior in Simple Path

Models . 57
3.6 Dependency on Initial Conditions . 63

4 Conclusion 66

Bibliography 67

vi

CONTENTS vii

A Code 68
A.1 Two-Parameter Plotting Code . 68
A.2 Three-Parameter Plotting Code . 78
A.3 File of Models . 86
A.4 Package Installer . 92
A.5 Mathematica Based Model Solver . 94
A.6 Hasse Diagrams and Network Structures 97

List of Figures

1.1 The cost contour of f(~θ) = e−θ1~t + e−θ2~t. Darker colors mean the
corresponding set of parameters generate predictions that are closer
to the actual data, as seen by the scale on the right. Because this is
a log-log plot, the far right and top of the graph correspond to when
θ1 ≈ ∞ and θ2 ≈ ∞, respectively. Similarly, the far left and bottom
of the graph correspond to when θ1 ≈ 0 and θ2 ≈ 0, respectively. . . 7

1.2 The cost contour of f(~θ) = θ1
θ2
t. Notice that the color doesn’t vary if the

ratio between θ1 and θ2 doesn’t change. (The bottom corner is white
because taking θ2 to zero while θ1 is not zero eventually generates an
error as θ1

θ2
approaches infinity) . 8

1.3 The model manifold of f(~θ) = e−θ1~t + e−θ2~t. 10

1.4 Connecting the cost contour of f(~θ) = e−θ1~t+e−θ2~t to its model manifold. 12
1.5 Taking θ2 to infinity leaves behind a model that maps to the cyan

edge of the model manifold. Taking another limit as θ1 goes to zero or
infinity leaves behind a model that maps to the yellow or green dots,
respectively. 14

1.6 Taking θ2 to zero leaves behind a model that maps to the red edge
of the model manifold. Taking another limit as θ1 goes to zero or
infinity leaves behind a model that maps to the purple or yellow dots,
respectively. 15

1.7 Taking θ2 to θ1 leaves behind a model that maps to the black edge
of the model manifold. Taking another limit as θ1 goes to zero or
infinity leaves behind a model that maps to the purple or green dots,
respectively. 16

1.8 Hasse diagram/manifold structure of f(~θ) = e−θ1t + e−θ2t 17

viii

LIST OF FIGURES ix

1.9 Vertices N1=(2,2,0,0) and N2=(0,0,3,1) are connected by an edge that
represents a reaction with a reaction rate constant of k1. Vertices
N2=(0,0,3,1) and N3=(0,1,0,2) are connected by a different edge that
represents a reaction with a reaction rate constant of k2. Another way

to represent this network is 2A+ 2B
k1−→ 3C +D

k2−→ B + 2D. In other
words, two of species A can react with two of species B, creating three
of species C and one of species D, using up the two of species A and
the two of species B in the process. At the same moment, three of
species C could react with one of species D to create one of species B
and another species D, using up the three of species C in the process. 20

1.10 (a) Cyclic network structure example: 2A→ B+2C+D → 2B+C →
2A. (b) Branching network structure example: A → B + C, A →
B+D+2E. (c) Disconnected network structure example: A+B → C,
D → E+F+G. (d) Combination of different types of network structure
example. 21

1.11 A+B
k1−→ C . 22

2.1 A
k1−→ B . 25

2.2 Plot of the model manifold of A
k1−→ B. The x-axis is the concentration

of A and the y-axis is the concentration of B. The unused z-axis is an
artifact of my plotting program. 27

2.3 Example of how three-parameter models have three-dimensional model

manifolds. This is a plot of the model manifold of A
k1−→ B

k2−→ C,

A
k3−→ . The x-axis is the concentration of A, the y-axis is the

concentration of B, and the z-axis is the concentration of C. Note that
conservation of mass is not required of mass action models. 28

2.4 (a) Example of a two-parameter linear simple path network: A
k1−→

B
k2−→ C. (b) Example of a three-parameter linear simple path network:

A
k1−→ B

k2−→ C
k3−→ D. (c) Another example of a two-parameter linear

simple path network: A
k1−→ B

k2−→ C + 3D + 2E. Note that the final
product of a linear simple path network can have more than one species
in the stoichiometry. 29

2.5 Incomplete Hasse Diagram of A
k1−→ B

k2−→ C 33

2.6 Almost Finished Hasse Diagram of A
k1−→ B

k2−→ C 34

2.7 Completed Hasse Diagram of A
k1−→ B

k2−→ C 35

2.8 The network A
k1−→ B

k2−→ C produces a manifold that, topologically, is
a square, just like the Hasse diagram predicted. 35

2.9 Plot of the model manifold of the mass action model that describes
A

k1−→ B
k2−→ C

k3−→ D . 36
2.10 Completed Hasse Diagram of A

k1−→ B
k2−→ C

k3−→ D 37

LIST OF FIGURES x

2.11 Equations for the one- and zero-dimensional models of A
k1−→ B

k2−→
C + 3D + 2E . 38

3.1 (a) The Hasse diagram of A
k1−→ A+B predicts a ray: a one-dimensional

shape with one side bounded (the solid line) and one side unbounded

(the dotted line) (b) A plot of A
k1−→ A + B’s model manifold. Notice

that, though a (portrayed on the x-axis, up and down) stays at 2, b
does in fact go off to infinity, implying a ray. 44

3.2 A plot of A
k1−→ B

k2−→ B + C’s model manifold. Notice that, though a
and b remain finite, c (displayed on the z-axis) goes to infinity. . . . 45

3.3 Four models that all have the same manifold structure to illustrate how
the equivalent model works. 47

3.4 Linear Cycles . 49

3.5 Incomplete Hasse diagram of A
k1−→ B

k2−→ A 50

3.6 Taking parameters to zero or infinity in the model A
k1−→ B

k2−→ A. . . 51

3.7 Complete Hasse diagram of A
k1−→ B

k2−→ A 53

3.8 Model manifold of A
k1−→ B

k2−→ A.a . 54
3.9 Linear simple path network A

k1−→ B
k2−→ A+ C 55

3.10 (a) To interpret the Hasse diagram, there are four bounded one-dimensional
sides, one unbounded one-dimensional side, three bounded corners,
and two unbounded corners. They are connected together to form a
pentagon that has one of its sides at infinity. (b) The one- and zero-
dimensional models that correspond to the different nodes in the Hasse
diagram. Note that the one-dimensional models have been color coded. 56

3.11 A
k1−→ B, A

k2−→ C, meaning reaction 1 consumes A and turns it into
B while reaction 2 consumes A and turns it into C. This is the same
figure shown in Figure 3.3d. 57

3.12 The one- and zero-dimensional models that result from taking k1 or

k2 to infinity or zero in the model describing the network A
k1−→ B,

A
k2−→ C. 58

3.13 Model manifold of A
k1−→ B, A

k2−→ C. The Hasse diagram is the same
as in Figure 3.7. 60

3.14 Model manifold of 2A
k1−→ A+B

k2−→ B +C. The Hasse diagram is the
same as in Figure 3.7. 62

3.15 Incomplete Hasse diagram of A+B
k1−→ B

k2−→ 62

Chapter 1

Introduction and Background

1.1 Overview

Models, whether mathematical, computational or experimental, are one of the fun-

damental parts of science. They help us take what we know and make predictions

about what we don’t know. More specifically, we put in initial conditions, parame-

ters, and points of measurement for the system being modeled, then the model gives

us predictions for the behavior of the system at those points of measurement. Such

models enable much of modern life, allowing inventors to test devices before they’ve

been built, hiring managers to estimate how many employees they can afford, city

planners to design effective road systems, etc.

However, modeling a complex system can rapidly become computationally inten-

sive. To enable accurate yet effective models of complex systems, Dr. Mark Transtrum

and his team have created a method by which they could systematically reduce the

number of parameters needed to create an effective model, and they have been ac-

tively using it on models of power systems, developmental biology, and a few other,

complex systems. This method, known as the Manifold Boundary Approximation

1

1.2 Model Reduction 2

Method (MBAM), is explained well in Transtrum and Qiu’s article “Model Reduc-

tion by Manifold Boundaries” [1]. It is used to find useful reduced models out of the

set of all possible reduced models [2]. This set of all possible reduced models is called

the information topology of the model [2, 3], and I spent my internship studying the

information topology of mass action models.

Specifically, my task was to explore the possibility of applying Dr. Transtrum’s re-

search in a new area: nonlinear mass action models (see Section 1.9). Dr. Transtrum’s

team has already done some research with a similar class of models, linear compart-

ment models (LCMs), and their discoveries led them to hypothesize that mass action

models might behave similarly. If that were the case, the team’s efforts in applying

MBAM to LCMs would easily carry over to mass action models.

Over the course of the summer, I found that mass action models can be treated

like linear compartment models, but only in a special case (see Section 3.1). In gen-

eral, nonlinear mass action models turned out to be trickier to analyze than similarly

sized LCMs. Furthermore, even linear mass action models had some complications

that LCMs don’t have. This document, after providing an introduction to relevant

terminology and methodology, discusses various ways to recognize when a mass action

model deviates from the analogous LCM, along with the likely effects of such devi-

ations. I also propose a method of categorizing mass action models to guide future

research.

1.2 Model Reduction

There are many different ways to categorize models. When it comes to model reduc-

tion, it is useful to think of models that were developed using a big-picture approach

versus a small-picture approach (also called macroscopic versus microscopic [3]). The

1.2 Model Reduction 3

big-picture approach focuses on describing the macroscopic details of what is going

on, ignoring the bits and pieces. For example, PV = NkT , the ideal gas law, de-

scribes how a gas behaves when there are many, many particle, completely ignoring

the microscopic movements of the particles involve [3]. This type of model is usually

computationally simple and describes the overall idea of what is going on. As it turns

out, this simple model, or a similar model with some small corrections added, is often

all scientists and engineers need in order to accomplish their goals. Unfortunately,

big-picture models can easily gloss over complications that arise and obscure why the

system behaves the way it does.

On the other side of the spectrum, models built using a small-picture approach

are built up by taking every single part of the system and connecting them together.

For example, scientists trying to understand how the human body works have an

extensive list of different proteins in the body and how they interact with each other.

This allows for extreme accuracy in models of such systems, along with remarkable

clarity regarding why the the system behaves as it does. However, such models are

computationally intensive, often making them impractical to work with.

Bridging these two realms is both tricky and the essence of model reduction.

Model reduction is about taking complex, accurate, small-picture models and simpli-

fying them to be more manageable computationally. Unfortunately, many common

methods of model reduction cause considerable loss of accuracy and clarity as the

models are reduced [2], which is a large part of why my internship mentor has been

striving to develop a better method of model reduction. His objective is to start

with understandable, accurate, small-picture models, then simplify them in a way

that preserves most of their clarity and accuracy while also making them manageable

computationally [2].

1.3 Models — What Goes Into Them? 4

1.3 Models — What Goes Into Them?

As mentioned before, models need inputs in order to make predictions. In this paper,

there are two main types of inputs: parameters and independent variables. The most

common independent variables are time and position, although any variable that

defines the conditions under which you took a measurement could be considered an

independent variable (e.g., the temperature at which the measurements were taken).

Parameters, meanwhile, can be considered constant with respect to the independent

variables. For example, consider the radioactive decay of a single radioactive isotope.

Such a model is often of the form f(t) = a0e
−θt, where θ is the decay constant and a0

is the initial concentration of the isotope. Note that θ is constant with respect to time;

as such, θ is a parameter in this system. Meanwhile, a0 can change depending on

when we started measuring the concentration, so it will be considered an independent

variable in this report.

Often, we are given a model with predefined parameters and asked to see what

it predicts. For example, we might be asked to use our radioactive decay model and

the decay rate of Technetium-99m (99mTc) to predict a later concentration of 99mTc

given any initial concentration of 99mTc. Alternatively, we could be given a set of

independent variables and asked to see what parameters make the model fit them.

Such models are called parametric models.

To demonstrate how a parametric model might work, consider again a model of

radioactive decay:

f(~θ) = a0e
−θ1~t + b0e

−θ2~t. (1.1)

In this model, suppose we already know the times at which the system was measured

and the initial concentrations of the radioactive substance. Specifically, suppose ~t =

(1, 2, 3) and a0 = b0 = 1. With such a model, we can try out different parameters to

1.4 Data Fitting 5

see what the outcome would be. For example, suppose we put ~θ = (θ1, θ2) = (0.1, 0.5)

into our model. The output would be the prediction vector f(~θ) = (e−0.1+e−0.5, e−0.2+

e−1, e−0.3 + e−1.5) ≈ (1.51137, 1.18661, 0.963948). Such models are especially useful

when fitting data because we usually know the independent variables of the system

(such as the concentrations of a radioactive isotope at different times), but we may

not know the parameters (such as the decay constant).

1.4 Data Fitting

When Kepler discovered the laws that bear his name, he did so by trying various

parameters in various models and, by hand, seeing if the model’s predictions fit the

data. Nowadays, we have computational tools that help us derive models for our

systems. With these tools, we can take data points, their associated independent

variables, and a model that we think will fit the data, feed them into the computer,

and expect that the computer will tell us the likely parameters associated with the

model. With those parameters, we can then go on to predict what will happen next

in that specific system or, if it’s a system that can be replicated, in another similar

situation. For example, if we knew how much of a radioisotope there was at several

different time points, we could feed that data into a computer along with the model

f(θ) = a0e
θ~t to find what the decay constant is likely to be.

In order for a computer to know how close a prediction is to the data, it needs

a metric of some sort. Suppose we have a set of parameters ~θ. Plugging those

parameters into the model, we get a set of predictions f(~θ). Next, we check to

see how close this set of predictions is to the measured data (denoted ~d) with the

equation [2]

1.5 Sloppy Models 6

C(~θ) =
N∑
i=1

(f(~θ)− ~d)2. (1.2)

This function, called the cost function, is a metric. Specifically, it tells us how far

the predictions are from the data. Data fitting is all about making the cost function

as small as it can be. Because data seldom perfectly fit even the correct model, we

don’t expect the cost function to go to zero. Nevertheless, finding the minimum of

the cost function identifies those parameter values that best fit the data.

1.5 Sloppy Models

Despite the many benefits of data fitting, there are many potential ways that it can

go wrong. In this document, we particularly care about when the model is what

we call “sloppy,” a type of model characterized by the fact that certain parameters

or combinations of parameters can vary wildly without changing the prediction of

the model [2, 4]. In such a situation, it can be extremely difficult, if not impossible,

to get accurate predictions of the parameters without having a lucky guess or prior

knowledge [2].1

The prototypical example of a sloppy model is the sum of decaying exponentials

[2]:2

f(~θ) = e−θ1
~t + e−θ2

~t (1.3)

Noting that, in order to remain decaying exponentials, we must have θ1 ≥ 0 and

θ2 ≥ 0, it is possible to generate a log-log plot that gives a qualitative idea of how

1Much of the motivation for model reduction is to convert sloppy models into more rigid models,

allowing data fitting to be more effective [2]
2This is the radioactive decay model discussed earlier, with the initial concentrations again set

to 1 for convenience in discussion.

1.5 Sloppy Models 7

changing the parameters changes the predictions. We do this by taking the value of

the cost function for a set of parameters and displaying it via a contour plot. Such a

plot, called the cost contour, can be seen in Figure 1.1.

Figure 1.1 The cost contour of f(~θ) = e−θ1~t + e−θ2~t. Darker colors mean the
corresponding set of parameters generate predictions that are closer to the
actual data, as seen by the scale on the right. Because this is a log-log plot,
the far right and top of the graph correspond to when θ1 ≈ ∞ and θ2 ≈ ∞,
respectively. Similarly, the far left and bottom of the graph correspond to
when θ1 ≈ 0 and θ2 ≈ 0, respectively.

Notice the four regions on the corners where the cost function is approximately

constant. This tells us that, as a parameter goes towards infinity or to zero, it has

less and less of an effect on the predictions of the model. Such behavior is why the

sum of decaying exponentials model is considered a sloppy model: there are ways

in which the parameters can vary wildly without changing the prediction [2]. As a

quick demonstration, consider the difference between setting θ1 equal to ten thousand

versus ten million. In both cases, e−θ1 ≈ 0 — to over 4000 decimal places. Note that

this also illustrates why a data fitting algorithm may have a difficult time finding

the correct parameters: If the parameters seeded into the algorithm are in one of

1.6 The Model Manifold 8

these regions where the predictions don’t change significantly even with significant

changes in the parameters, the algorithm will struggle to discern how it should adjust

its guesses to find the parameters that best fit the data.

Another simple example is the model f(~θ) = θ1
θ2
t. In this case, only the ratio

between θ1 and θ2 matters — you can multiply θ1 by whatever you want and still

get the same prediction so long as you also multiply θ2 by the same thing. In such

situations, it becomes nearly impossible to find the actual parameters from data, and

the best you can usually get is the ratio between the parameters (see Figure 1.2 for

the cost contour of the model f(~θ) = θ1
θ2
t)

Figure 1.2 The cost contour of f(~θ) = θ1
θ2
t. Notice that the color doesn’t

vary if the ratio between θ1 and θ2 doesn’t change. (The bottom corner is
white because taking θ2 to zero while θ1 is not zero eventually generates an
error as θ1

θ2
approaches infinity)

1.6 The Model Manifold

Our newfound understanding of the cost contour of the model now lets us better

understand the parameter space of the model. The parameter space of a model is

1.6 The Model Manifold 9

the n-dimensional Euclidean space that houses all possible combinations of the n

parameters used in the model. Each axis corresponds with a parameter, and each

point in this space denotes a combination of parameters, often described with a

parameter vector.

Throughout this paper, we’ve been discussing the sum of decaying exponentials:

f(~θ) = e−θ1
~t + e−θ2

~t. (1.4)

In this model, the parameter space is two dimensional, with one axis corresponding to

θ1 and the other axis corresponding to θ2, as in the Figure 1.1’s cost contour. In fact,

the cost contour is a convenient representation of the parameter space for this model.

Each possible set of parameters that could be plugged into the model correspond to

a point in the parameter space.

When the input parameters are thought of this way, we can begin to see the model

as a mapping from the parameter space to what is called the prediction space (also

known as the data space) [2]. The prediction space is the m-dimensional Euclidean

space that houses all possible predictions of the model given the m values of inde-

pendent variables at which you want to make a prediction. If we measure the system

twice, such as when ~t = (0.5, 2), our prediction space will be two dimensional —

the first axis would correspond to all the possible measurements of the system after

one second, while the second axis would correspond to all the possible measurements

after two seconds. It is important to note that, generally, sloppy models do not fill

the prediction space [2]. For example, our model of exponential decay cannot predict

that there can be more of the radioisotope than we started with,3 even though there

are circumstances where that may happen.

When we do map the entire parameter space to the prediction space, we get

3Assuming t > 0

1.6 The Model Manifold 10

a cross section of what’s called the model manifold, specifically the cross section

corresponding to the specific set of values for the independent variables you used as

axes [2]. A manifold is a topological space that, when viewed on a local (“very small”)

level, is identical to a Euclidean space no matter where you view it [5]. This particular

manifold is the set of all possible predictions of the model at the specific values of

the independent variable, such as when t = (0.5, 2). We can see an example of this in

Figure 1.3. To get the full manifold, we would need to map the parameter space to an

infinite dimensional prediction space that has an axis corresponding to a value of f

at each possible value of a independent variable. Fortunately, the model manifold of

many simple models can be visualized adequately using a three-dimensional or even

two-dimensional cross section, which is what we will do throughout this report.

Figure 1.3 The model manifold of f(~θ) = e−θ1~t + e−θ2~t.

In Figure 1.4, I make connections between the cost contour and the model manifold

to show how the parameter space maps to a bound manifold. Notice how the plateaus,

regions with near-uniform prediction vectors, all map to points while the canyons,

regions which have constant prediction vectors when the parameters are varied in

1.6 The Model Manifold 11

one direction but not another, map to curves, specifically curves on the edge of the

manifold because one of the parameters has been taken to its limits. Finally, notice

that the basins, small regions in the center of the graph where changing the parameters

by a little bit in any direction affects the prediction, thus map to the majority of the

model manifold. With this in mind, a structure begins to emerge: there are three

boundary points, or corners, mapped to by the three unique regions4; three curves,

or edges, mapped to by the three canyons; and a two-dimensional region mapped

out by the basins. From this, we can guess that this particular model manifold is

topologically equivalent to a triangle, as we saw in Figure 1.3. As such, if our guess

was correct, the manifold structure of this model is a triangle. We will discuss this

more quantitatively in the next section.

4Because swapping θ1 for θ2 doesn’t affect the prediction of the model, there is symmetry such

that the bottom-right half of the parameter space maps to the exact same region as the upper-left

half of the parameter space

1.6 The Model Manifold 12

(a) The top right region of the cost contour (where θ1 ≈ θ2 ≈ ∞) maps approximately
to the single point “0” in the prediction space. The bottom left region of the cost
contour (where θ1 ≈ θ2 ≈ 0) approximately maps to the single point “2” in the
prediction space.

(b) The top left and bottom right regions of the cost contour map approximately to
the single point “1” in the prediction space.

(c) Crossing the canyons from one region to another is equivalent to moving along
the edge of the model manifold.

Figure 1.4 Connecting the cost contour of f(~θ) = e−θ1~t + e−θ2~t to its model
manifold.

1.7 Manifold Structure 13

1.7 Manifold Structure

Now that we have a qualitative idea of what a manifold structure is, it’s time to gain

a quantitative idea. We start yet again with our sum of decaying exponentials model:

f(~θ) = e−θ1t + e−θ2t. (1.5)

There are three different ways we can reduce this model such that we are left with a

model that maps to an edge of the model manifold. First, we can take the limit of

f(~θ) as θ2 goes to infinity:

lim
θ2→∞

f(~θ) = e−θ1t + 0 (1.6)

= e−θ1t. (1.7)

Notice that this reduced model has only one parameter remaining in it. As such,

its model manifold will be one dimensional. Furthermore, because one of the original

parameters has been taken to one of its limits (infinity), we know the reduced model

manifold corresponds to an edge of the original model manifold. To find out which

edge it corresponds to, we can take another limit as θ1 goes to 0 or as θ1 goes to

infinity:

lim
θ1→0

(e−θ1t) = 1 (1.8)

lim
θ1→∞

(e−θ1t) = 0. (1.9)

Thus, the reduced model obtained when θ2 is taken to zero corresponds to the edge

of the model manifold that connects the points “1” and “0,” as illustrated in Figure

1.5.

1.7 Manifold Structure 14

Figure 1.5 Taking θ2 to infinity leaves behind a model that maps to the cyan
edge of the model manifold. Taking another limit as θ1 goes to zero or infinity
leaves behind a model that maps to the yellow or green dots, respectively.

Another way to reduce our original model by one parameter is to take the limit

of f(~θ) as θ2 goes to zero:

lim
θ2→0

f(~θ) = e−θ2t + e0 (1.10)

= e−θ2t + 1. (1.11)

Again, this model has only one parameter remaining in it, and again, its model

manifold corresponds to an edge of the model manifold. Taking limits as θ1 goes to

zero or infinity gets us

lim
θ1→0

(e−θ2t + 1) = 2 (1.12)

lim
θ1→∞

(e−θ2t + 1) = 1. (1.13)

As such, we find that this reduced model corresponds with the edge that connects

the points “1” and “2,” as illustrated in Figure 1.6.

1.7 Manifold Structure 15

Figure 1.6 Taking θ2 to zero leaves behind a model that maps to the red
edge of the model manifold. Taking another limit as θ1 goes to zero or infinity
leaves behind a model that maps to the purple or yellow dots, respectively.

Finally, we find the last reduced model by taking the limit as θ2 goes to θ1:

lim
θ1→θ2

f(~θ) = e−θ2 + e−θ2t (1.14)

= 2e−θ2t. (1.15)

From there, taking the remaining limits gets us

lim
θ1→0

(2e−θ1t) = 2 (1.16)

lim
θ1→∞

(2e−θ1t) = 0, (1.17)

which connects the last two points. This final side is illustrated in Figure 1.7. Note

that we don’t need to worry about taking θ1 to zero, infinity, or θ2 because, by

symmetry, it would produce the exact same models that we just found, just with

different labels.

The structure built on the right in Figure 1.7 (and seen full more detail in Figure

1.8) is known as a Hasse diagram. Hasse diagrams describe the information topology

1.8 Cross Sections of Model Manifolds 16

Figure 1.7 Taking θ2 to θ1 leaves behind a model that maps to the black
edge of the model manifold. Taking another limit as θ1 goes to zero or infinity
leaves behind a model that maps to the purple or green dots, respectively.

of a model, which directly corresponds to the topological structure of the model man-

ifold. As such, we consider the Hasse diagram we built to be the manifold structure

of the model.

1.8 Cross Sections of Model Manifolds

Earlier, when introducing the model manifold, I mentioned that we needed to map

the parameter space to an infinite dimensional prediction space that has an axis

corresponding to the value of f at each possible value of each independent variable

in order to get the full model manifold. I also mentioned that the model manifold of

many simple models can be visualized adequately using a two- or three-dimensional

model. In this section, I will elaborate on why these cross sections are often a good

estimate of what the larger manifold is like.

1.8 Cross Sections of Model Manifolds 17

Figure 1.8 Hasse diagram/manifold structure of f(~θ) = e−θ1t + e−θ2t

Throughout this section, we’ll focus on the radioactive decay model:

f(~θ) = a0e
−θ1t + b0e

−θ2t. (1.18)

This is exactly like the sum decaying exponentials, just with the addition of initial

concentrations a0 and b0 of radioactive substances A and B, respectively. In adding

these variables, we expand the manifold space to incorporate all possible values of a0

and b0.

To elaborate, even when we didn’t have a0 and b0, the model manifold included

every prediction of every set of parameters at any time. This can include values of t

such that t < 0, but we usually consider this situation to be non-physical and focus

on t ≥ 0. Regardless, because time is continuous, there is an infinite number of axes

to this model’s manifold, with each axis corresponding to possible values of f given

different sets of parameter at a specific time. When we include a0 and b0, we then

must have an axis for every possible combination of a0, b0, and t.

As you can imagine, such a manifold would be impossible to plot with any known

1.8 Cross Sections of Model Manifolds 18

technology. Fortunately, for my research, I only need enough of it to discover its in-

formation topology/manifold structure/Hasse diagram, which is where cross sections

come in. Any plot of the model manifold with fewer than every axis is a cross section

of the model manifold [2]. For my purposes, three axes were usually sufficient to

gain adequate visualization. This is because the vast majority of models described by

an axis would have identical manifold structures and because three-dimensions was

usually enough to visualize two-dimensional manifold structures.

For example, consider three of the many possible radioactive models:

f(~θ) = 1e−1θ1 + 1e−1θ2 (1.19)

f(~θ) = 2.5e−50θ1 + 2.5e−50θ2 (1.20)

f(~θ) = 10000e−πθ1 + 10000e−πθ2 . (1.21)

(We restrict the model to when a0 = b0 to preserve the symmetry that swapping θ1

with θ2 doesn’t affect prediction.) Notice that, if we were to build the Hasse diagram

of any of these models, we would get the same triangle as before. Upon farther

reflection, you should be able to see that this would be the case for the vast majority

of models. Therefore, if we pick random initial conditions, we will most likely choose a

set of “generic” initial conditions — initial conditions that produce the same manifold

structure as the vast majority of others.

There are, however, specific initial conditions for which this isn’t the case. It is

possible for this to happen due to symmetries, but, in my research, we were primarily

concerned about avoiding picking a set of initial conditions such that one of the

values was zero. Consider, for example, if I had chosen a0 to be zero instead of one

in Equation 1.19. The resulting model would have been

f(~θ) = e−θ2 , (1.22)

1.9 Introduction to Chemical Reaction Networks and Mass Action Models 19

which is only an edge of the larger cross section that would have been found if we

plotted the manifold of Equation 1.19. If we were to try to obtain the manifold

structure of the initial model by examining the manifold structure of this specific

model, we would have lost its two-dimensional nature and that it was shaped like a

triangle.

I display many cross sections of the model manifold throughout this document for

visualization purposes. Because I am careful to choose only generic initial conditions,

these cross sections are a good representative of the full model manifold and, as such,

I will typically refer to them as the model manifold. At the end of the document, I will

also discuss briefly how choosing generic initial conditions affects the cross sections

of the model manifold when focusing on mass action models, which I will introduce

in this next section.

1.9 Introduction to Chemical Reaction Networks

and Mass Action Models

We can represent any network of chemical reactions as a directed graph using graph

theory. In these networks, each vertex is a stoichiometry—a set of numbers (called

stoichiometric coefficients) describing how many molecules of each reactant are con-

sumed by a reaction or how many molecules of each product are produced by a reac-

tion [6]. Each edge, then, represents a reaction that can turn one stoichiometry into

another stoichiometry. These edges are weighted, with each associated weight being

the reaction rate constant of that reaction.5 A network structure is any combination

of edges and at least one vertex (see Figure 1.9 for an example).

The basic network structures are as follows: cyclic networks, which have the same

5These reaction rate constants are the parameters that we search for with data fitting.

1.9 Introduction to Chemical Reaction Networks and Mass Action Models 20

Figure 1.9 Vertices N1=(2,2,0,0) and N2=(0,0,3,1) are connected by an
edge that represents a reaction with a reaction rate constant of k1. Vertices
N2=(0,0,3,1) and N3=(0,1,0,2) are connected by a different edge that repre-
sents a reaction with a reaction rate constant of k2. Another way to represent

this network is 2A + 2B
k1−→ 3C + D

k2−→ B + 2D. In other words, two of
species A can react with two of species B, creating three of species C and
one of species D, using up the two of species A and the two of species B in
the process. At the same moment, three of species C could react with one
of species D to create one of species B and another species D, using up the
three of species C in the process.

first and last vertex (see Figure 1.10a); branching networks, which have multiple re-

actions stem from the same stoichiometry (see Figure 1.10b); converging networks,

which have multiple reactions producing in the same stoichiometry (basically the op-

posite of branching); and disconnected networks, which have portions of the network

that don’t connect in any way (see Figure 1.10c and note that even though the exam-

ple doesn’t show the same species in both networks, it is possible to have the same

species in both networks so long as the specific stoichiometries don’t repeat). You

can then combine these different structures into much more complicated networks

(see Figure 1.10d) or leave out any of these structure to create a simple path network

(discussed in detail later).

Assuming these reactions follow the law of mass action,6 we can we can generate

a certain system of equations called the mass action model. This model describes

how the concentrations of the various species in the reaction(s) change over time. To

elaborate, we can assume that the rate of each chemical reaction being modeled is

6Note: even if it’s not mentioned, we make this assumption for every network in this paper

1.9 Introduction to Chemical Reaction Networks and Mass Action Models 21

(a) (b)

(c)

(d)

Figure 1.10 (a) Cyclic network structure example: 2A → B + 2C + D →
2B + C → 2A. (b) Branching network structure example: A → B + C,
A→ B+D+2E. (c) Disconnected network structure example: A+B → C,
D → E + F + G. (d) Combination of different types of network structure
example.

1.10 The Objective 22

directly proportional to the product of the concentrations of the reactants [7]. For

example, let’s look at the reaction network A+B
k1−→ C, shown graphically in Figure

1.11.

Figure 1.11 A+B
k1−→ C

Because we can assume that this network obeys the law of mass action, we

know the following equations describe how the concentration of each chemical species

changes:

da
dt

= −k1ab (1.23)

db
dt

= −k1ab (1.24)

dc
dt

= k1ab, (1.25)

where a ≡ the concentration of A, b ≡ the concentration of B, and c ≡ the concentra-

tion of C.7 Once we have these equations, we have the mass action model associated

with this network and can start making predictions. Furthermore, we can start the

process of discovering the manifold structure of the specific mass action model.

1.10 The Objective

Knowing the manifold structure of a model is an important step in applying Dr.

Transtrum’s model reduction methods, but obtaining that knowledge can be a time

7Note: for the rest of this paper, the lower case of a capital letter that labels a species is the

concentration of that species.

1.10 The Objective 23

consuming process. At the beginning of this internship, we would start with the

chemical network, generate the mass action model, plug it and our initial conditions

into various code we had written (found in the appendix), analyze the contour plots,

model manifolds, and limits that the parameters were taken to, then finally get the

Hasse diagram. Beyond the many step process, most of our methods worked best for

models that had one or two parameters, far simpler than the models that we were

hoping to study.

Our goal was to explore the relationship between the network structure and the

manifold structure. In doing so, we were hoping to find a definitive relationship

between the network structure and the manifold structure that would allow us to

deduce the manifold structure directly from the network structure. This would greatly

streamline the process of applying MBAM to mass action models and hopefully allow

us to apply it to arbitrarily large chemical reaction networks.

Prior to my internship, Dr. Transtrum’s team had done research on linear com-

partment models, another type of sloppy model. This research led to their conjecture

that linear compartment models always have hypercubic model manifolds. Because

of similarities between simple path reaction networks (introduced in Section 2.2) and

linear compartment models, we hypothesized that all simple path reaction networks,

whether they be linear or nonlinear, would also have hypercubic model manifolds. As

such, we decided to start my research with simple path reaction networks and expand

from there. To further simplify the problem, we decided to start my focus with one

and two parameter models, with some three parameter models as well.

Over the course of the internship, I found that nonlinear mass action models

frequently deviated from having hypercubic manifold structures. Furthermore, even

linear simple path models didn’t always have hypercubic model manifolds. After

describing my process of getting the Hasse diagram/manifold structure from the net-

1.10 The Objective 24

work structure, I will discuss in detail what some of those deviations may be as well

as how we might be able to predict their occurrence. I will also propose some tools

that may be of use to future researchers in categorizing models according to their

manifold structure.

Chapter 2

Method

2.1 Generating Mass Action Models and Predict-

ing Manifold Structure

Earlier, I mentioned that most models don’t fill the prediction space; mass action

models follow that trend. For example, concentrations cannot be negative, so all

predictions will be greater than or equal to zero. Beyond that, the maximum and

minimum concentration of each chemical species is limited by the values of the model

when the parameters are at their extremes. A simple example of these limits can be

seen by examining the model A
k1−→ B, displayed graphically in Figure 2.1.

Figure 2.1 A
k1−→ B

25

2.1 Generating Mass Action Models and Predicting Manifold Structure 26

Using the law of mass action, we can see that this network can be modeled with

the following equations:

da
dt

= −k1a (2.1)

db
dt

= k1a (2.2)

a(0) = a0 (2.3)

b(0) = b0 (2.4)

From there, it’s fairly simple to solve for a(t) and b(t) and get

a(t) = a0e
−k1t (2.5)

b(t) = a0 − a0e−k1t + b0. (2.6)

Upon further analysis, you can see that the largest a can ever be is a0, when

k1 → 0, and the smallest it can ever be is 0, when k1 → ∞. As for b, it is at its

largest, b = a0 + b0, when k1 →∞, and its smallest, b = b0, when k1 → 0. Therefore,

the manifold of the mass action model describing A
k1−→ B has two boundaries: when

k1 → 0 and when k1 →∞. Because this is a one-parameter model, there is only one

degree of freedom, and the manifold will be one-dimensional. Therefore, the manifold

must be a line segment (see Figure 2.2).

All manifolds of one-parameter models are at most one-dimensional. Such models

also seem to have at least one boundary—when the single parameter goes to zero.

In general, the dimensionality of a model manifold is n, the number of structurally

identifiable parameters, so long as none of the reactions are trivial1. This means that

the manifolds of two-parameter models are two-dimensional (see Figure 2.8 much

1An example of a trivial reaction: A
k1−→ A

2.1 Generating Mass Action Models and Predicting Manifold Structure 27

Figure 2.2 Plot of the model manifold of A
k1−→ B. The x-axis is the con-

centration of A and the y-axis is the concentration of B. The unused z-axis
is an artifact of my plotting program.

farther down for an example) and the manifolds of three-parameter models are three-

dimensional (see Figure 2.3 for an example). Like the one-parameter models, I have

also consistently seen that two-parameter models have manifolds with at least two

boundaries (when either parameter goes to zero) and three-parameter models have

manifolds with at least three boundaries (when any of the parameters go to zero). For

reasons not explained here, we expect higher dimensions to follow similar patterns.

Therefore, we conjecture and will assume that each manifold has at least as many

sides as it has parameters. Note that it is very common for there to be more than

this minimum number of boundaries, but getting the precise number of boundaries

the manifold can have is much harder and will be discussed throughout this report.

The example shown here was one of the simplest examples that exists. As you can

imagine, every node, species, and/or parameter that is added complicates the model

further. In order to build a foundation of analyzed networks, we decided to start with

networks which have relatively straightforward mass action models.

2.2 Linear Simple Path Networks and Hasse Diagrams 28

(a) (b)

Figure 2.3 Example of how three-parameter models have three-dimensional

model manifolds. This is a plot of the model manifold of A
k1−→ B

k2−→ C, A
k3−→

. The x-axis is the concentration of A, the y-axis is the concentration of
B, and the z-axis is the concentration of C. Note that conservation of mass
is not required of mass action models.

2.2 Linear Simple Path Networks and Hasse Dia-

grams

The simplest networks are linear simple paths.2 Neither linear nor nonlinear simple

path networks (such as shown in Figures 1.9, 1.11, and 2.1) have any branches,

cycles, convergence, or disconnected vertices. Networks that produce linear mass

action models (such as shown in Figures 2.1, 2.3a, and 3.11) never have more than one

reactant in a reaction. Therefore, a linear simple path network is simply a combination

of the two: a network structure that doesn’t have any branches, cycles, convergence,

2Note: strictly speaking, networks can be simple path and models can be linear, but not vice

versa. However, throughout this report I will frequently use terminology that should only apply

to a model or a network interchangeably. For example, a simple path model should be interpreted

to mean a mass action model that describes a simple path network. Similarly, a network’s model

manifold should be interpreted as the model manifold of the mass action model that describes the

network.

2.2 Linear Simple Path Networks and Hasse Diagrams 29

(a)
(b)

(c)

Figure 2.4 (a) Example of a two-parameter linear simple path network:

A
k1−→ B

k2−→ C. (b) Example of a three-parameter linear simple path net-

work: A
k1−→ B

k2−→ C
k3−→ D. (c) Another example of a two-parameter linear

simple path network: A
k1−→ B

k2−→ C + 3D + 2E. Note that the final prod-
uct of a linear simple path network can have more than one species in the
stoichiometry.

or disconnected vertices, and never has more than one reactant in a reaction (see

Figures 2.1, 2.4a, 2.4b, and 2.4c for examples).

When we began this research, we believed that all linear simple path networks

would have model manifolds with a manifold structure that was an n-dimensional

hypercube, where n was the number of parameters in the model. To elaborate, we

believed the following: a one-parameter linear simple path model would always have

a manifold that was a line segment (a one-dimensional hypercube); a two-parameter

linear simple path model would always have a manifold that was topologically equiva-

lent to a square (a two-dimensional hypercube); a three-parameter linear simple path

model would always have a manifold that was topologically equivalent to a cube; etc.

We believed this because, based on the models we had observed, every parameter

added to the model would also add two sides to the manifold related to when that

parameter was taken to zero and when that parameter was taken to infinity. Adding

2.2 Linear Simple Path Networks and Hasse Diagrams 30

a parameter would also add a dimension to the manifold. Therefore, changing a

one-parameter model to a two-parameter model would change a line bounded by two

endpoints into a square bounded by four line segments. Adding another parameter to

get a three-parameter model would change that square bounded by four line segments

into a cube bounded by six squares. This could, in theory, continue up to any arbitrary

number of parameters you choose. Let’s analyze the network A
k1−→ B

k2−→ C (see

Figure 2.4a) to see how this works.

First, let’s get the mass action model:

da
dt

= −k1a (2.7)

db
dt

= k1a− k2b (2.8)

dc
dt

= k2b (2.9)

a(0) = a0 (2.10)

b(0) = b0 (2.11)

c(0) = c0 (2.12)

Taking k1 to zero results in a model equivalent to the model of B → C. From

what we saw of the last model, B → C likely has a manifold that is a line segment.

We can check this by running this set of equations through a solver3 then looking at

what happens to the equations as we take k1 to zero and then separately take k2 to

zero or infinity:

3The solver referenced here and in other places throughout this report can be found in the

Appendix, under the section “Mathematica Base Model Solver.” You can find it on page 94.

2.2 Linear Simple Path Networks and Hasse Diagrams 31

k1 → 0

a = a0

b = b0e
−tk2 (2.13)

c = b0 + c0 − b0e−tk2

k1 → 0, then k2 → 0

af = a0

bf = b0 (2.14)

cf = c0

k1 → 0, then k2 →∞

af = a0

bf = 0 (2.15)

cf = b0 + c0

where af denotes the final concentration of species A, bf denotes the final concentra-

tion of species B, etc.

The same sort of thing happens when we take k2 to zero first:

k2 → 0

(a, b, c) = (a0e
−tk1 , a0 + b0 − a0e−tk1 , c0) (2.16)

k2 → 0, then k1 → 0

(af , bf , cf) = (a0, b0, c0) (2.17)

k2 → 0, then k1 →∞

(af , bf , cf) = (0, a0 + b0, c0) (2.18)

2.2 Linear Simple Path Networks and Hasse Diagrams 32

Therefore, not only do we know that this manifold is a two-dimensional shape

with at least two boundaries, we know that at least two of the boundaries are line

segments. This is important because, in general, not all sides of the model manifold

need to be bounded.

In addition, we can see by looking at the above equations that k1 → 0, k2 → 0

results in the same zero-dimensional model as k2 → 0, k1 → 0. This means that the

side of the manifold corresponding to k1 → 0 meets up with the side of the manifold

corresponding to k2 → 0, specifically at the corner of the manifold where both k1

and k2 are zero. The other line segment boundaries (where a parameter is taken to

zero first then the other parameter is taken to infinity) don’t seem to have sides that

meet up with them, but intuitively we know there must be at least one more side to

connect those corners.

Trying to keep track of this in your head can get pretty difficult pretty fast, which

is why we use the Hasse diagram described earlier to help us. The collection of

reduced models form a partially ordered set (a poset), and the Hasse diagram is a

tool to organize the elements as a graded poset.

With the Hasse diagram, we can see what we have so far mapped out in Figure

2.5. Note that there are two one-dimensional models (the circles) and three zero-

dimensional models (the oval-like shapes), like we’ve seen so far. Beyond that, note

how both one-dimensional models connect at ZD1. This represents the two line

segments connecting at the point (a0, b0, c0).

Now consider when we begin by taking the parameters to infinity first, instead of

taking the parameters to zero first. Starting with k1 → ∞ leaves a network which

changes just like the network B
k2−→ C, which we have just found to be a line segment.

However, this is a different line segment than before because a→ 0 as we take k1 to

infinity:

2.2 Linear Simple Path Networks and Hasse Diagrams 33

Figure 2.5 Incomplete Hasse Diagram of A
k1−→ B

k2−→ C

k1 →∞

(a,b, c) = (2.19)

(0, (a0 + b0)e
−tk2 , a0 + b0 + c0 − a0e−tk2 − b0e−tk2)

k1 →∞, k2 → 0

(a, b, c) = (0, a0 + b0, c0) (2.20)

k1 →∞, k2 →∞

(a, b, c) = (0, 0, a0 + b0 + c0) (2.21)

With this new limit taken, Figure 2.6 has the most up to date Hasse diagram.

Notice how we now have two sides connected to ZD3 as well, but we left a new corner,

ZD4, hanging.

Now for the last side:

k2 →∞

(a, b, c) = (a0e
−tk1 , 0, a0 + b0 + c0 − a0e−tk1) (2.22)

k2 →∞, k1 → 0

(a, b, c) = (a0, 0, b0 + c0) (2.23)

2.2 Linear Simple Path Networks and Hasse Diagrams 34

Figure 2.6 Almost Finished Hasse Diagram of A
k1−→ B

k2−→ C

k2 →∞, k1 →∞

(a, b, c) = (0, 0, a0 + b0 + c0) (2.24)

And with that, we’ve completed our Hasse diagram. See Figure 2.7 and note that

Equations 2.14 and 2.17 correspond to node ZD1, Equations 2.15 and 2.23 correspond

to node ZD2, Equations 2.18 and 2.20 correspond to node ZD3, and Equations 2.21

and 2.24 correspond to node ZD4. Furthermore, OD1-OD4 correspond to the one

dimensional models discussed above.

The reasons we know this is a complete Hasse diagram are beyond the scope of

this paper, but we can still gain an intuitive sense of why by analyzing what sort of

shape this Hasse diagram predicts. It predicts that there will be a two-dimensional

surface bounded by four line segments, corresponding to the two parameter model

and the four limits to which its parameters could be taken. These line segments each

share an endpoint with two different line segments, with each end point representing

when both parameters are at an extreme. With some further thought, it becomes

clear that this Hasse diagram is predicting the model manifold will topologically be

2.2 Linear Simple Path Networks and Hasse Diagrams 35

Figure 2.7 Completed Hasse Diagram of A
k1−→ B

k2−→ C

a square,4 which is exactly what we see when we plot the manifold (see Figure 2.8).

Figure 2.8 The network A
k1−→ B

k2−→ C produces a manifold that, topologi-
cally, is a square, just like the Hasse diagram predicted.

4Note: whenever I refer to a shape in this paper, I am referring to it in the topological sense.

Therefore, a square is a two-dimensional shape with 4 bounded sides and 4 bounded corners con-

nected to each other in a certain way; a cube is a three-dimensional shape with 6 bounded faces,

12 bounded sides, and 8 bounded corners that are all connected in a certain way; a triangle has 3

bounded sides and 3 bounded corners connected together in a certain way; etc. Whether or not the

sides are the same length, or even straight, doesn’t matter topologically.

2.2 Linear Simple Path Networks and Hasse Diagrams 36

We can use this same process to find the manifold of a three-parameter model,

such as the one describing the network in Figure 2.4b. Taking any of the parameters

to zero or to infinity leaves a two-parameter model describing a network that changes

just like A→ B → C. Each of these two-parameter models represents a unique side

of the model manifold. Because there are three different ways to take a parameter

to zero and three different ways to take a parameter to infinity, there must be six

different sides of this manifold. Beyond that, each of those sides is represented by a

model nearly identical to A → B → C, so they must all be squares. With all this

in mind, the manifold of the model describing A
k1−→ B

k2−→ C
k3−→ D must be a cube,

which is exactly what we see in Figure 2.9’s plot of the manifold.

Figure 2.9 Plot of the model manifold of the mass action model that de-

scribes A
k1−→ B

k2−→ C
k3−→ D

You can work this out for yourself if you desire. A word of warning, though: the

Hasse diagram for this is enormous. It is the only three-parameter Hasse diagram

that I’ve worked out in it’s entirety, and you can see it for yourself in Figure 2.10.

Note that the example in Figure 2.4c also has a hypercubic manifold structure.

You can see this more easily by looking at the differential equations describing the

network A
k1−→ B

k2−→ C + 3D + 2E (see Equations 2.25, 2.26, 2.27, 2.28, and 2.29

2.2 Linear Simple Path Networks and Hasse Diagrams 37

Figure 2.10 Completed Hasse Diagram of A
k1−→ B

k2−→ C
k3−→ D

immediately after this paragraph) and comparing them to the differential equations

used to describe the network A
k1−→ B

k2−→ C (see Equations 2.7, 2.8, and 2.9).

da
dt

= −k1a (2.25)

db
dt

= k1a− k2b (2.26)

dc
dt

= k2b (2.27)

dd
dt

= 3k2b (2.28)

de
dt

= 2k2b (2.29)

Comparing the two sets of differential equations, you can see that a, b, and c,

all behave exactly the same as before. The only difference is that we now have to

worry about d and e. However, there are still only the same number of ways to

take unique limits and get unique one-dimensional models. Then, from those one-

dimensional models, taking the remaining parameter to zero or infinity results in

2.2 Linear Simple Path Networks and Hasse Diagrams 38

zero-dimensional models that are connected to the one-dimensional models in the

same way that the zero-dimensional models were connected to the one-dimensional

models of the network A
k1−→ B

k2−→ C. In other words, a Hasse diagram representing

the manifold structure of A
k1−→ B

k2−→ C+3D+2E would be indistinguishable from the

Hasse diagram representing the manifold structure of A
k1−→ B

k2−→ C. You can see this

for yourself by looking at the equations for said one-dimensional and zero-dimensional

models in Figure 2.11.

Figure 2.11 Equations for the one- and zero-dimensional models of A
k1−→

B
k2−→ C + 3D + 2E

The similarities between A
k1−→ B

k2−→ C and models like A
k1−→ B

k2−→ C + 3D+ 2E

have led me to develop a tool for separating networks according to which ones have

the possibility of producing a new, unique manifold, rather than a manifold that is

nearly identical to another. I’ll explain this tool in the next section.

Chapter 3

Results

3.1 Independent Species: A Tool for Grouping

Similar Networks

There is still much to explore with the idea of independent species, and, like most

concepts in this report, it is not guaranteed to always work. Nevertheless, I have

found it to be a useful tool in finding the manifold structure/Hasse diagrams of mass

action models.

In many models, there are chemical species which, whenever you find one of it in

the network, there’s a certain other species which shows up too. To help me describe

this, I’ve started using what I call the coefficient vector, ~cA,

~cA = (s1, s2, ..., sM), (3.1)

where si is the stoichiometric coefficient of species A in the ith node of the network

and M is the number of nodes that are in the network

To understand this better, let’s analyze the nonlinear simple path network A +

B+C
k1−→ 3D

k2−→ 2A+ 2C +E. To get the coefficient vector of A, ~cA, start by taking

39

3.1 Independent Species: A Tool for Grouping Similar Networks 40

the stoichiometric coefficient of A in the first node and put it in the first slot of your

vector. In this example, that number would be “1”:

~cA = (1, ,) (3.2)

Next, get the stoichiometric coefficient of A in the second node and put that num-

ber in the second slot of your coefficient vector, followed by putting the stoichiometric

coefficient of A in the third node into the third slot of the vector:

~cA = (1, 0, 2) (3.3)

Repeat for each species in the network:

~cA = (1, 0, 2) (3.4)

~cB = (1, 0, 0) (3.5)

~cC = (1, 0, 2) (3.6)

~cD = (0, 3, 0) (3.7)

~cE = (0, 0, 1) (3.8)

Once you have the vectors, it’s easier to see that A and C are always paired

together in these reactions; after all, they have the exact same coefficient vector. It

is also possible to have something like A and 2C or A and 12C paired together if the

coefficient vectors are proportional to each other (e.g., if ~cC = (12, 0, 24) instead of

~cC = (1, 0, 2)).

To summarize this, I conjecture that if cA ∝ cB for some species A and B

in a mass action model, then a new model that is identical to the original

model except that either A or B has been removed will have the same

3.1 Independent Species: A Tool for Grouping Similar Networks 41

manifold structure as the original model. In other words, you can often, if

not always, treat pairs of species that have linearly dependent coefficient vectors as

a single species and still get the same manifold structure. Equations derived from

that model would have different reaction rates, and the final concentrations would

be different, but the overall structure would be the same. For now, I call this the

Principle of Independent Species.

Applying this principle to the example given, the manifold structure of A + B +

C
k1−→ 3D

k2−→ 2A + 2C + E should be the same as the manifold structure if we were

to remove either A or C from the model:

B + C
k1−→ 3D

k2−→ 2C + E (3.9)

A+B
k1−→ 3D

k2−→ 2A+ E. (3.10)

Finding the new coefficient vectors sometimes reveals more species with propor-

tional coefficient vectors, meaning the model can then be condensed again. Note that

the vectors need to be proportional to at least one specific vector, not simply a linear

combination of multiple vectors, for it to be dependent in this context.

Further applying the principle of independent species, adding a species S which

has a coefficient vector proportional to one already in the network also shouldn’t

change the manifold structure. For example, all of the following networks should

have the same manifold structure as the example we’ve been discussing:

A+B + C + S
k1−→ 3D

k2−→ 2A+ 2C + E + 2S (3.11)

A+B + C
k1−→ 3D + 3S

k2−→ 2A+ 2C + E (3.12)

A+B + C
k1−→ 3D

k2−→ 2A+ 2C + E + 7S (3.13)

3.1 Independent Species: A Tool for Grouping Similar Networks 42

In order to have a different network, you would need to add a species in a way that

its coefficient vector isn’t proportional to any that currently existed. The following,

for example, cannot be reduced to the prior example via the principle of independent

species:

A+B + C + S
k1−→ 3D

k2−→ 2A+ 2C + E + 7S (3.14)

A+B + C
k1−→ 3D + S

k2−→ 2A+ 2C + E + 2S (3.15)

Checking if there are any dependent species will be more relevant when we talk

about nonlinear models later on, but, for now, it is part of the justification that

A
k1−→ B

k2−→ C + 3D + 2E (see Figure 2.4c), along with similar networks, behave the

same as A
k1−→ B

k2−→ C. After all, it has the following coefficient vectors:

~cA = (1, 0, 0) (3.16)

~cB = (0, 1, 0) (3.17)

~cC = (0, 0, 1) (3.18)

~cD = (0, 0, 3) (3.19)

~cE = (0, 0, 2) (3.20)

Note that ~cC , ~cD, and ~cE are each scalar multiples of each other. As such, by

the principle of independent species, this network can be reduced down to the simple

path network A
k1−→ B

k2−→ C, which we know has a hypercubic model manifold. As

such, I conjecture that every linear simple path model which doesn’t have

a reactant as a final product will have a hypercubic model manifold. After

all, adding new species to the product of the reaction and only the product of the

reaction simply adds another species that has a coefficient vector proportional to the

3.2 Unbounded Manifolds 43

coefficient vector of the last species in the reaction.1

This opens another possibility, though: networks where a reactant is in the final

product. For example, let’s talk about the linear simple path network A
k1−→ A+B.

3.2 Unbounded Manifolds

First, an important clarification. Because mass action models are simply approxi-

mations of a larger system, they don’t need to conserve mass. As such, models like

k1−→ A or A
k1−→ are legitimate mass action models.2

This leads us to another discovery: Not all linear simple path models have

hypercubic model manifolds. To see why this is, let’s look closer at the model

A
k1−→ A+B. As usual, we can start by looking at the differential equations describing

it:

(
da

dt
,
db

dt
) = (0, k1a) (3.21)

which, when solved, produces

(a, b) = (0, b0 + a0tk1). (3.22)

From there, we can see what happens when we take k1 to zero or infinity:

1Note that this is the specific type of network mentioned earlier that seems to consistently behave

like linear compartment models.

2Here’s an example of how a reaction can be well approximated by A
k1−→ A + B: if species A

reacts with water in such a way that it produces species A again and also species B, it might seem

like we would need an additional species to represent the water, say, species C. However, if this

reaction was happening in the middle of the ocean with only a few molecules of A at a time, the

concentration of C is approximately constant and can be factored into k1, leaving behind the model

A
k1−→ A+B.

3.2 Unbounded Manifolds 44

k1 → 0 : (af , bf) = (a0, b0) (3.23)

k1 →∞ : (af , bf) = (a0,∞) (3.24)

Rather than having two finite points as boundaries, we have a finite point, (af , bf) =

(a0, b0), and a point at infinity, (af , bf) = (a0,∞). Therefore, this manifold is a ray,

rather than a line segment. See Figure 3.1 for the Hasse diagram and a plot of this

model’s manifold.

(a) (b)

Figure 3.1 (a) The Hasse diagram of A
k1−→ A + B predicts a ray: a one-

dimensional shape with one side bounded (the solid line) and one side un-

bounded (the dotted line) (b) A plot of A
k1−→ A+B’s model manifold. Notice

that, though a (portrayed on the x-axis, up and down) stays at 2, b does in
fact go off to infinity, implying a ray.

A similar thing can happen with models that have more parameters. For example,

A→ B → B+C has one of its four sides at infinity along with two of its four corners

(see Figure 3.2 for a plot of the manifold). Adding another parameter and following

the pattern of making the last reactant a product of the reaction, we get the model

A
k1−→ B

k2−→ C
k3−→ C +D. Though my plotting program can’t get a plot of this, what

we have observed strongly implies that this model manifold is shaped like a cube that

has one of its faces at infinity. We expect this pattern to continue for all linear simple

3.2 Unbounded Manifolds 45

path network structures that have the only reactant in the final product be the final

reactant.

Figure 3.2 A plot of A
k1−→ B

k2−→ B + C’s model manifold. Notice that,
though a and b remain finite, c (displayed on the z-axis) goes to infinity.

Especially when it comes to nonlinear simple path models, this is something to

watch for whenever you are trying to derive the Hasse diagram from the network:

anytime the reactants of a specific reaction are produced at the same or

greater rate than they are consumed by that specific reaction, I conjecture

that one of the sides of the model manifold will be unbounded. Note that

producing less of the species than is consumed doesn’t lead to unbounded manifolds.

For example, though it may look like it would be unbounded, the model manifold of

2A→ A+B is a line segment.

This brings me to another of the tools I’ve developed to study the connection

between the model manifold and the network. It’s called the equivalent model.

3.3 The Equivalent Model: Another Tool for Grouping Similar Networks 46

3.3 The Equivalent Model: Another Tool for Group-

ing Similar Networks

The equivalent model is equivalent in the sense that, though it has different reaction

rates, the steady states reached after the reaction has run its course are usually

the same steady states as the more complex, original model. To find it, you start

by translating the reaction into a set of disconnected reactions. For example, let’s

consider the network 2A+B
k1−→ A+2B

k2−→ 2B+C (see Figure 3.3a). After breaking

it into a set of disconnected reactions, it becomes

2A+B
k1−→ A+ 2B (3.25)

A+ 2B
k2−→ 2B + C (3.26)

(see Figure 3.3b).

From there, the next steps are to find what the net result of each reaction is then

rewrite the equations to reflect the net result of each reaction. In this example, the

first reaction does the equivalent of turning A into B and the second reaction does

the equivalent of turning A into C. Rewriting the reactions to account for this gives

the following:

A
k1−→ B (3.27)

A
k2−→ C (3.28)

(see Figure 3.3c).

Seeing this equivalent network this way reveals that what seemed to be a simple

path model actually behaves more like a branching model, with two reactions coming

3.3 The Equivalent Model: Another Tool for Grouping Similar Networks 47

(a) 2A+B
k1−→ A+ 2B

k2−→ 2B + C

(b) 2A + B
k1−→ A + 2B, A + 2B

k2−→
2B + C

(c) 2A + B
k1−→ A + 2B, A + 2B

k2−→
2B + C Equivalent Network

(d) A
k1−→ B, A

k2−→ C Branching Net-
work

Figure 3.3 Four models that all have the same manifold structure to illus-
trate how the equivalent model works.

from the same node (see Figure 3.3d). Note that this is different from any of the simple

path networks we have seen so far. We’ll talk about why later, but it turns out this

deviant behavior leads this simple path network to have a triangular model manifold

rather than the previously expected square (unbounded or not) model manifold.

Rounding back to unbounded models, the equivalent model of A
k1−→ A+B is the

following:

k1−→ B (3.29)

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 48

In other words, it becomes very easy to see that something is being generated

from nothing. The equivalent model is especially helpful for unveiling this behavior

in more complicated models such 4A + 6B + C
k1−→ 2A + D + C

k2−→ 3A + D + 2C,

which has the following equivalent model:

2A+ 6B
k1−→ D (3.30)

k2−→ A+ C (3.31)

There are times, though, when the equivalent model doesn’t predict that some-

thing will come from nothing, even when it does happen. The most prominent exam-

ples of this typically involve cycles.

3.4 Linear Cycles and Cyclic Behavior in Simple

Path Models

Before talking about what cycles have to do with simple path models, lets talk about

cycles in general. First off, a reminder: cyclic networks are networks which have the

same first and last vertex. Just as linear simple path models are the most straight-

forward simple path models, linear cyclic models are the most straightforward cyclic

models. The three linear cycles with the fewest parameters are shown in Figure 3.4.

Note that nonlinear cyclic models, such as A + B
k1−→ C

k2−→ A + B or the one

in Figure 1.10a, will not be discussed in this report. Even ignoring nonlinear cycles,

though, there are some interesting things that happen to the model manifold when

cycles become involved. To start, we’ll see how the two-parameter cycle A
k1−→ B

k2−→ A

ends up with a triangular model manifold rather than a manifold with four sides. Here

is the network’s mass action model:

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 49

(a) A
k1−→ B

k2−→ A
(b) A

k1−→ B
k2−→ C

k3−→ A
(c) A

k1−→ B
k2−→ C

k3−→
D

k4−→ A

Figure 3.4 Linear Cycles

(da
dt
, db
dt

) = (−k1a+ k2b, k1a− k2b) (3.32)

The solution to these equations is a fairly complex set of equations for a and b.3

Once we have them, taking k1 or k2 to zero results in the linear simple path networks

B
k2−→ A or A

k1−→ B, respectively, so we know that there exists at least two sides

to the model manifold which are line segments. However, problems start happening

when you take either parameter to infinity:

k1 →∞ : (a, b) = (0, a0 + b0) (3.35)

k2 →∞ : (a, b) = (a0 + b0, 0) (3.36)

In both cases, taking the parameter to infinity jumps the model straight to a

zero-dimensional model, rather than passing through a one-dimensional model like

3

a =
a0e

t(−k1−k2)k1 + a0k2 + b0k2 − b0et(−k1−k2)k2
k1 + k2

(3.33)

b = −−a0k1 − b0k1 + a0e
t(−k1−k2)k1 − b0et(−k1−k2)k2
k1 + k2

(3.34)

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 50

normal, which is like jumping straight to a corner of the model manifold instead of an

edge. After all, taking k1 →∞ makes the network pretty much identical to B
k2−→ B:

every tiny bit of B that turns into A is immediately turned back into B. The same

sort of thing happens when you take k2 →∞, and the remaining model is essentially

A
k1−→ A. In other words, taking either parameter to infinity practically wipes out the

ability of the other parameter to change predictions, reducing what would be a side

of the manifold to a single point.

This isn’t like before, where there were four sides with one or more at infinity.

Instead, this manifold simply doesn’t have four sides, or at least not in the same way

as the linear simple path networks we’ve been looking at. However, we know that,

topologically, there needs to be at least one more side to connect the corners (see

Figure 3.5 for the partial Hasse diagram and Figure 3.6 for the reduced models so

far). We’ll just need to find the reduced model for the remaining side another way,

and in this case that other way involves ratios.

Figure 3.5 Incomplete Hasse diagram of A
k1−→ B

k2−→ A

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 51

Figure 3.6 Taking parameters to zero or infinity in the model A
k1−→ B

k2−→ A.

If we reparameterize the model so that k = k1 and K = k2/k1, we end up with

this new set of equations:

da
dt

= k(−a+Kb) (3.37)

db
dt

= k(a−Kb). (3.38)

The solved version of these equations is included in the footnote below.4Now, when

we take k to infinity, we end up with a model that still depends on the parameter K.

In other words, the final concentrations depend on the ratio between the two initial

parameters:

da
dt

= (a0 + b0) ∗
K

1 +K
(3.39)

db
dt

= (a0 + b0) ∗
1

1 +K
(3.40)

4

a = −−a0e
tk(−1−K) − a0K − b0K + b0e

tk(−1−K)K

1 +K
(3.41)

b =
a0 + b0 − a0etk(−1−K) + b0e

tk(−1−K)K

1 +K
(3.42)

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 52

Taking K to infinity or zero shows that this side connects with the other sides at

their endpoints:

k →∞, then K → 0

af = 0 (3.43)

bf = a0 + b0 (3.44)

k1 → 0, then K →∞

af = a0 + b0 (3.45)

bf = 0 (3.46)

Therefore, we predict that the manifold will have three one-dimensional bound-

aries, two of which appear when a parameter goes to zero, and a third which appears

when the two parameters go to infinity in ratio with each other. Those three sides

are then connected via one of three zero-dimensional models, the final states when

both of the parameters are at their limits (you can see these predicted connections in

Figure 3.7). In other words, we predict we will see a triangle, which is, in fact, what

we see in Figure 3.8.

The A
k1−→ B

k2−→ A network has provided us an example of how cycles can lead to

losing a side of the manifold and how that side disappears because taking parameters

to infinity feeds a node into itself. However, sometimes cycles can lead to an extra

side appearing, such as with the network A
k1−→ B

k2−→ C
k3−→ A (shown in Figure 3.4b).

Taking k1, k2, or k3 to zero leaves behind a two-parameter network identical to

a linear simple path network with no reactant in the product, so there will be three

sides of this manifold that are squares (with each square side corresponding to one

of the two-parameter models left behind when one of the three parameters goes to

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 53

Figure 3.7 Complete Hasse diagram of A
k1−→ B

k2−→ A

zero first). Meanwhile, taking k1, k2, or k3 to infinity results in a two-parameter

linear cycle, the model we just studied. As such, there will be three sides of this

manifold that are triangles, each corresponding with the model resulting from taking

a parameter to infinity. This means there are six sides predicted so far. This might

seem to be all of the sides, but, if you were to actually fill out the Hasse diagram,

you would discover that there must be at least one other side to allow everything to

fit together topologically. It turns out that we can find the missing side using ratios

again.

In this case, instead of taking one parameter to infinity, take all of the parameters

to infinity in ratio to each other. To do this, reparameterize the model so that k = k1,

K2 = k2/k1, and K3 = k3/k1. Once k is taken to infinity, K2 and K3 can be taken

to zero individually to match up with two of the remaining sides, or taken to infinity

in ratio to each other to match up with the final side. This leaves behind a strange,

three-dimensional shape that is made up of three squares and four triangles, for seven

sides total.

Now that we’ve seen how cycles can lead to more or fewer sides than might be

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 54

Figure 3.8 Model manifold of A
k1−→ B

k2−→ A.a

a In order the break a time symmetry and an initial condition symmetry in this model, I

had the x-axis be a at one time with one set of initial conditions, the y-axis be b at

another time with a different set of initial conditions, and finally the z-axis be a at yet

another time with a third set of initial conditions. The reasoning and method behind

doing this is beyond the scope of this paper; it is simply important to know that it

produced the expected triangular model manifold. The program used to plot this and

other two-parameter model manifolds can be found in the appendix under the section

“Two-Parameter Plotting Code.”

expected, let’s see how this knowledge can be applied to simple path models. The

most straightforward example of how they relate can be demonstrated by the network

A
k1−→ B

k2−→ A + C. Though this seems very much like the cycle A
k1−→ B

k2−→ A, the

addition of C makes it a simple path network (see Figure 3.9). Some interesting

behavior results because this network behaves like a linear simple path network in

some ways and like a linear cycle in other ways.

To start our analysis, taking either k1 or k2 to zero results in a linear simple

path model with no reactants in the final product. Therefore, unlike in the network

A
k1−→ B

k2−→ B + C, both one-dimensional models correspond to boundaries of the

model manifold that are line segments. Taking k1 or k2 to infinity also results in

perfectly valid one-dimensional models. So far, this sounds a lot like the models

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 55

Figure 3.9 Linear simple path network A
k1−→ B

k2−→ A+ C

of the other linear simple path networks we’ve analyzed. However, taking the limit

k1 →∞ then k2 →∞ results in a corner that is unbounded. Even more unexpectedly,

taking the limit k2 →∞ then k1 →∞ results in a different unbounded corner. This

means there needs to be another side to connect the two corners.

It turns out that taking the parameters to infinity together in ratio provides that

remaining side, although that side is exclusively at infinity. You can see how this all

plays out in Figure 3.10.

We only recently found this model, so we haven’t been able to do much analysis

regarding how it might help us make predictions regarding other models. However,

the main takeaway from this section is to be careful anytime a reactant shows up

in multiple nodes of the network because additional sides may appear and

the manifold may be unbounded on some sides. Having fewer sides happens

when taking a parameter to infinity causes the remaining parameter to simply funnel

a node back into itself, becoming effectively useless. Extra sides, however, can come

because cycles allow for steady states in which reactions still occur (as opposed to

in linear simple path networks that don’t have reactants as a final product, where

steady states only appear after all reactions have stopped).

3.4 Linear Cycles and Cyclic Behavior in Simple Path Models 56

(a) Hasse diagram of A
k1−→ B

k2−→ A+ C

(b) Limits taken to get the Hasse diagram of A
k1−→ B

k2−→ A+ C

Figure 3.10 (a) To interpret the Hasse diagram, there are four bounded
one-dimensional sides, one unbounded one-dimensional side, three bounded
corners, and two unbounded corners. They are connected together to form
a pentagon that has one of its sides at infinity. (b) The one- and zero-
dimensional models that correspond to the different nodes in the Hasse dia-
gram. Note that the one-dimensional models have been color coded.

3.5 Linear Branching Models and Branching like behavior in Simple Path Models57

3.5 Linear Branching Models and Branching like

behavior in Simple Path Models

In the last section, we learned that taking parameters to infinity in cycles can fre-

quently lead to a node being its own product, effectively reducing the model to a

zero-parameter model and facilitating the need for a ratio to describe the remaining

side. However, there is another reason ratios may be required that is best exemplified

by linear branching models. In these models, taking a parameter to infinity results

in multiple reactions running out of at least one reactant, again reducing the number

of effective parameters by more than one. As such, we need to use ratios to find the

last side.

The simplest linear branching network was encountered earlier in Figure 3.3d and

is shown again in Figure 3.11. Rather than its model manifold having four sides like

linear simple path models that have no reactants as a final product, we will see that

the model manifold of this model is actually triangular.

Figure 3.11 A
k1−→ B, A

k2−→ C, meaning reaction 1 consumes A and turns
it into B while reaction 2 consumes A and turns it into C. This is the same
figure shown in Figure 3.3d.

3.5 Linear Branching Models and Branching like behavior in Simple Path Models58

Let’s analyze this network to see why its model manifold is shaped like a triangle,

starting with writing out the mass action model describing the network:

da
dt

= −k1a− k2a (3.47)

db
dt

= k1a (3.48)

dc
dt

= k2a (3.49)

a(0) = a0 (3.50)

b(0) = b0 (3.51)

c(0) = c0 (3.52)

After solving these equations and taking limits of k1 and k2 to infinity and/or

zero, I end up with the collection of equations found in Figure 3.12. Notice that,

though taking k1 or k2 to zero produce acceptable one-dimensional models, taking

either parameter to infinity produces a zero-dimensional model. In other words, what

we see so far is a Hasse diagram that looks exactly like the one in Figure 3.5.

Figure 3.12 The one- and zero-dimensional models that result from taking

k1 or k2 to infinity or zero in the model describing the network A
k1−→ B,

A
k2−→ C.

3.5 Linear Branching Models and Branching like behavior in Simple Path Models59

It turns out that taking either parameter to infinity results in a zero-dimensional

model because, as k1 →∞ or k2 →∞, a→ 0. Because both reactions require a 6= 0

to continue, they both cease instantly. Instead of getting a new, one-dimensional

side to our two-dimensional manifold, a side that would have been described by a

one-dimensional (one-parameter) model, we get just a single point described by a

zero-parameter model.5 As mentioned earlier, the way to get the last side of this

model is by taking both parameters to infinity at once in ratio to each other.

If we reparameterize the model so that k = k1 and K = k2/k1, we end up with

this new set of equations:

da
dt

= −k(a−Ka) (3.53)

db
dt

= ka (3.54)

dc
dt

= kKa (3.55)

(a(0), b(0), c(0)) = (a0, b0, c0) (3.56)

Now, if we solve this set of equations and take k to infinity, we end up with a

model that still depends on the parameter K. In other words, the final concentrations

depend yet again on the ratio between the two initial parameters:

a = 0 (3.57)

b =
a0 + b0 + b0K

1 +K
(3.58)

c =
a0K + c0 + c0K

1 +K
(3.59)

Taking K to infinity or zero shows that this side connects with the other sides at

their endpoints:

5The zero-dimensional model would either be (af , bf , cf) = (0, b0 + a0, c0) or (af , bf , cf) =

(0, b0, c0 + a0), depending on which parameter you take to infinity.

3.5 Linear Branching Models and Branching like behavior in Simple Path Models60

k →∞, then K → 0

af = 0 (3.60)

bf = a0 + b0 (3.61)

cf = c0 (3.62)

k → 0, then K →∞

af = 0 (3.63)

bf = b0 (3.64)

cf = a0 + c0 (3.65)

Therefore, we predict that the manifold will have three one-dimensional bound-

aries: two for when a parameter goes to zero, and a third for when the two parameters

go to infinity in ratio with each other. Those three sides are then connected via one

of three zero-dimensional models that represent the final concentrations when all pa-

rameters are at their limits. In other words, we predict we will see a triangle, which

is exactly what we see in Figure 3.13.

Figure 3.13 Model manifold of A
k1−→ B, A

k2−→ C. The Hasse diagram is the
same as in Figure 3.7.

3.5 Linear Branching Models and Branching like behavior in Simple Path Models61

Now to show how branch-like6 ratios apply to simple path models. It turns out

that, like linear branching models, there exist simple path models in which taking any

parameter to infinity reduces the model by multiple dimensions. For example, let’s

analyze the network 2A
k1−→ A+B

k2−→ B+C. Using the equivalent model, we can see

that it has the same steady states as the linear branching model we just observed:

A
k1−→ B (3.66)

A
k2−→ C (3.67)

Taking either parameter to infinity results in the concentration of A going to zero,

abruptly ending both reactions. This is just like with the model 2A+B
k1−→ A+2B

k2−→

2B + C, which we discussed earlier in the section “The Equivalent Model: Another

Tool for Grouping Similar Networks.” Therefore, we might guess that this network

would have a model manifold that is topologically a triangle7, which is exactly what

we see when we analyze it (not discussed here) and plot it (see Figure 3.14).

In the last two examples, taking either parameter to infinity resulted in a zero-

dimensional model. However, there exist two-parameter networks which reduce to

a zero-parameter network when one parameter is taken to infinity but not when

the other parameter is taken to infinity. The simplest such network is probably

A+B
k1−→ B

k2−→ .

In the network A + B
k1−→ B

k2−→ , taking either parameter to zero results in

6Note: this was a fairly simple example of a branching network; after all, not only was it linear,

but it also had none of the reactants as a final product. The manifolds of nonlinear branching

networks or branching networks with reactants as products can be complicated in many of the ways

discussed throughout this report. As such, many of the techniques discussed in this report can be

applied to branching networks, but such studies are outside the scope of this report.
7Just like the branching model has a manifold that is topologically a triangle

3.5 Linear Branching Models and Branching like behavior in Simple Path Models62

Figure 3.14 Model manifold of 2A
k1−→ A+B

k2−→ B+C. The Hasse diagram
is the same as in Figure 3.7.

a bounded one-dimensional model. Furthermore, taking k1 to infinity also results in

a bounded one-dimensional model. However, taking k2 to infinity cause b to go to

zero, ending both reactions. So far we can describe these connections using the Hasse

diagram seen in Figure 3.15. I suspect that it’s possible to use ratios to create the

missing side, but how that might work is beyond the scope of this report.

Figure 3.15 Incomplete Hasse diagram of A+B
k1−→ B

k2−→ .

Note, networks that behave like A+B
k1−→ B

k2−→ provide the only counterex-

3.6 Dependency on Initial Conditions 63

ample I’ve found to categorizing models according to their equivalent model. They

are a counterexample because both A + B
k1−→ B

k2−→ and A
k1−→ , B

k2−→

have the same equivalent model,8 even though A
k1−→ , B

k2−→ doesn’t have

problems when k2 →∞.

In summary, another reason to be cautious whenever reactants show up

in more than one stoichiometry is because taking one parameter to infinity

may cause multiple reactions to run out of reactant. If this happens, taking

that parameter to infinity by itself is no longer a valid way to find a side of

the model manifold, so you may need to resort to ratios or other parameter

combinations.

3.6 Dependency on Initial Conditions

I will just briefly touch on how the model manifolds of a mass action model may be

dependent on the initial conditions. More specifically, I will discuss how the initial

conditions which we choose in making our cross section may affect whether the cross

section we see is a good representative of the full model manifold.

To start off, the specific dimensions of the manifold cross section are obviously

dependent on the initial conditions, especially since boundaries are frequently along

where a concentration stays constant. However, as discussed in the introduction, it

is not very often that the initial conditions cause the structure of the manifold cross

section to be different than that of the full model manifold, at least so long as we are

8Here is the equivalent model of both A+B
k1−→ B

k2−→ and A
k1−→ , B

k2−→ :

A
k1−→ (3.68)

B
k2−→ (3.69)

3.6 Dependency on Initial Conditions 64

using generic initial conditions. There are two common ways that initial conditions

don’t affect the manifold cross section’s structure and at least one way that I’ve seen

in which they do affect its structure.

First, because we use generic initial conditions, the final manifold structure isn’t

based on any particular set of initial conditions. This was discussed earlier with a

model of radioactive decay, and the principle carries over to here nicely. For example,

whether a0 is set to one, ten, or ten thousand, the mass action model describing

the network A
k1−→ B would still have the same limits to which we take k1 and we

would still get a one-dimensional bounded model. Setting a0 = 0 in the network

A
k1−→ B would change the manifold structure of that particular model,9 but we

already discussed that zero often can’t be considered an initial condition. After all,

if you were to pick set of generic initial conditions, statistically you would almost

certainly choose numbers other than zero.

Secondly, sometimes the difference between two or more initial conditions affect

the final outcome of a normal network, such as in the network A + B
k1−→ C. To

elaborate, lets examine what happens as k1 is taken to infinity. If a0 > b0, the final

concentration of B, denoted by bf , would go to zero, and the final concentration of A,

denoted by af , would go to a0−b0. On the other hand, a0 < b0 would lead to af going

to zero and bf going to b0− a0. However, the limits to which we take the parameters

don’t change even when the final values change, so Hasse diagrams of this model and

models like this one would still represent line segments. As such, picking any set of

initial conditions to use in our cross section should still give us a good representation

of the full model manifold.

With those two ideas in mind, we can feel confident that we have the right manifold

structure of all the models we’ve examined in this paper so far. There is, however,

9The reaction can’t ever start, so the manifold is just a point.

3.6 Dependency on Initial Conditions 65

at least one network that I have found in which a cross section with generic initial

conditions is not a good representation of the full model manifold. I didn’t find this

network until the last few days of my internship, so I haven’t had time to analyze it

in great detail. However, I am reasonably sure that it is different enough from the

other networks that I have discussed in this report that it can be discussed separately

from them. Specifically, let us consider the network A+B
k1−→ B + C

k2−→ .

In this network, if you start with b0 > a0 and b0 > c0, then everything behave

exactly like a linear simple path network with no reactants as final products. In other

words, there are four limits that can initially be taken to find a side of the model

manifold: k1 → 0, k1 → ∞, k2 → 0, and k2 → ∞. However, if b0 < a0 and b0 < c0,

we end up with the something like a linear branching model, where taking either

parameter to infinity reduces the model to a zero-dimensional model. As such, the

limits that can be taken are k1 → 0, k2 → 0, and k → ∞ with K kept finite (where

k = k1 and K = k2/k1). Alternatively, if b0 was greater than one of a0 or c0 but not

the other, we would end up with a situation where one parameter can be taken to

infinity normally but the other cannot.

Because there are five different limits which, depending on the initial conditions,

you can take the parameters to,10 this network has a bounded pentagon-shaped model

manifold. However, it is possible that no cross section of the model manifold will be

shaped like a pentagon since I’m not sure how to take into account that different

limits are needed for different sets of initial conditions. Regardless, it is important

to note that two parameter networks do have the potential of having more

than four different bounded sides, and that some of those sides may only

be revealed with certain initial conditions.

10k1 → 0, k1 → ∞, k2 → 0, k2 → ∞, and k → ∞ with K kept finite (where k = k1 and

K = k2/k1).

Chapter 4

Conclusion

Instead of showing that certain network structures consistently lead to certain man-

ifold structures like we had initially endeavored to do, we found that the manifold

structures of simple path networks are very dependent on the specific stoichiometries

in that network, and sometimes even the initial concentrations of the species. In

the process of discovering this, we explored new methods of categorizing models (the

equivalent model, independent species) and some aspects of the stoichiometries that

may lead to unexpected manifold structures (unboundedness, cycles, running out of

reactants).

Regarding future research, the goal to find a way to connect the network structure

to the manifold structure has not yet been achieved. I still believe that it should be

possible to prove some relationships, perhaps starting with my conjecture that all

linear simple path models with no reactants as a final product will have a hypercubic

manifold structure. I further conjecture that the independent species principle holds

for all networks, and proving it to be true should allow for further breakthroughs.

This research was supported by NSF Grant# 1757998

66

Bibliography

[1] M. K. Transtrum and P. Qiu, “Model Reduction by Manifold Boundaries,” Phys-

ical Review Letters (2014).

[2] M. K. Transtrum, B. B. Machta, K. S. Brown, B. C. Daniels, C. R. Myers, and

J. P. Sethna, “Perspective: Sloppiness and emergent theories in physics, biology,

and beyond,” The Journal of Chemical Physics (2015).

[3] M. K. Transtrum, G. Hart, and P. Qiu, “Information topology identifies emergent

model classes,” (2016). 1409.6203.

[4] K. S. Brown, C. C. Hill, G. A. Calero, C. R. Myers, K. H. Lee, J. P. Sethna,

and R. A. Cerione, “The statistical mechanics of complex signaling networks:

nerve growth factor signaling,” Physical Biology 1(3), 184–195 (2004). URL https:

//doi.org/10.1088/1478-3967/1/3/006.

[5] L. W. Tu, An Introduction to Manifolds (Springer-Verlag, New York, 2011).

[6] “Chemical reaction network theory,” (2020). URL https://en.wikipedia.org/wiki/

Chemical reaction network theory#Overview.

[7] C. R. Bagshaw, Law of Mass Action, pp. 1233–1234 (Springer Berlin Heidelberg,

Berlin, Heidelberg, 2013). URL https://doi.org/10.1007/978-3-642-16712-6 574.

67

1409.6203
https://doi.org/10.1088/1478-3967/1/3/006
https://doi.org/10.1088/1478-3967/1/3/006
https://en.wikipedia.org/wiki/Chemical_reaction_network_theory#Overview
https://en.wikipedia.org/wiki/Chemical_reaction_network_theory#Overview
https://doi.org/10.1007/978-3-642-16712-6_574

Appendix A

Code

A.1 Two-Parameter Plotting Code

This is the code which I used to plot the model manifolds of two-parameter mass

action models. It is written in Julia 1.4.1. Note: you can choose which concentration

is displayed on each axis. In addition, you can also choose which time point and with

what set of initial conditions each axis uses to make predictions.

In order to run the program, you will need to first install all the needed packages

(including some custom made packages) using the program in the section “Package

Installer” found on page 92 of this report. You will also need another file, the one in

the section “File of Models” (page 86), in the same folder as this plotting code to run

the code properly.

When running the plotting code, use the code “mymodel = ” on line 83 to choose

which model in your file of models to use when plotting.

1 # Print time and program name. Make it clear the program has started

2 using Dates

3 println("\n\n\n\nTime ",

4 now())

68

A.1 Two-Parameter Plotting Code 69

5

6 using DelimitedFiles

7 import Models

8 import ModularLM # used for doing fitting

9 import ParametricModels # used for models like the ODE model

10 using Parameters

11 println("Halfway through packages")

12 using LinearAlgebra

13 import Random

14 using PyPlot

15 import Sundials # a package for solving ODEs

16

17 ### Setup

18 docostcont = true # Do you want a contour plot

19 domanifold = true # Do you want a plot of the model manifold

20 scattering = true # Get a scatter plot of the model manifold ...

21 surfing = true # ... and/or a surface plot of the model manifold

22 # After the first time running this program , feel free to move the "

mymodel" line here

23

24

25 myobs = [1,2,3] # Which variables do you want to observe

26 mytimes = [1,2,3] # Which times do you want to observe

27

28 # Initial Concentrations:

29 A0 = [2.0 ,2.0 ,1.0]

30 B0 = [3.0 ,1.0 ,5.0]

31 C0 = [1.0 ,3.0 ,3.0]

32 t = [.7, 3, 5]# Quantities of interest (expandable)

33

34 num = 50 # Number of points in each parameter (or you can customize

A.1 Two-Parameter Plotting Code 70

it \|/)

35 parRange = 10 # Parameter range (or you can customize it \|/)

36 x1 = range(-parRange , parRange , length=num) |> collect

37 x2 = range(-parRange , parRange , length=num) |> collect

38

39 # Cost contour stuff

40 xi=log .([0.7 , 2.0]) # Best fit parameters

41 sigma = 0.01 # standard deviation (for creating the data)

42 # How many colors the plot uses to distinguish costs

43 ContourLevels = 50

44 # If wanting to narrow the color range , use something like

45 #ContourLevels = range (11.9 , stop =12.1 , length =100)

46 # instead

47

48

49 ### Create a Julia type that holds parameter values

50 # @with_kw allows you to set default values (such as k1 = exp(xi[1])

).

51 # /|\ Comes from the parameters package , I think

52 # @deftype T sets the default type inside this structure to be T. In

other words ,

53 # because k1 and k2 don ’t have a type specified , they are of

type T.

54 # /|\ Comes from the parameters package , I think

55 # Wnt{T<:Real} <: ParametricModels.AbstractParameterSpace{T} means

that we

56 # declare Wnt{T} to be a subtype ParametricModels.

AbstractParameterSpace{T}

57 # for every T that is a subtype of Real , I think

58 # One reason to do this is you can have parameters with different

names

A.1 Two-Parameter Plotting Code 71

59 @with_kw mutable struct Wnt3p{T<:Real} <: ParametricModels.

AbstractParameterSpace{T} @deftype T

60 k1 = exp(xi[1])

61 k2 = exp(xi[2])

62 k3 = exp(xi[3])

63 end

64 @with_kw mutable struct Wnt2p{T<:Real} <: ParametricModels.

AbstractParameterSpace{T} @deftype T

65 k1 = exp(xi[1])

66 k2 = exp(xi[2])

67 end

68

69 # Connect this program to the file with the different models

70 # Note: the "include" line needs to be after the Wnt lines

71 include("my MAM models.jl")

72 # mymodel lets you choose which model to use from the file "my MAM

models ."

73 # For example , if mymodel = A1B1C , then you will use the model for

the network

74 # A->B->C. If, on the other hand , mymodel = AB2C , the plotting

program would

75 # use the model for the network A+B<->C. Currently it is set to the

most useful

76 # model , asN1N1N13s , which stands for "Arbitratray stoichiometeries:

Node 1 goes

77 # to Node 2 goes to Node 3 with three species involved at most." See

the file

78 # "my MAM models" for details of how that works. Note that this

plotting program

79 # only works for models that have two parameters.

80

A.1 Two-Parameter Plotting Code 72

81 # The "mymodel" line must be beneath the "include" line during 1st

run;

82 # afterwards , you can move it up to where the initial conditions are

defined

83 mymodel = asN1N1N3s

84

85 println("Model file included")

86 ### Initial condition function

87 # ic accepts only arguments of type Wnt{T} where T is a subtype of

Real

88 function ic1(ps::Wnt2p{T}) where T<:Real

89 # Convert A0,B0, and C0 to Type T, while making sure they

90 # (the parameters? The ics?) are type T

91 return T[A0[1], B0[1], C0[1]]

92 end

93 function ic2(ps::Wnt2p{T}) where T<:Real

94 # Convert A0,B0, and C0 to Type T, while making sure they

95 # (the parameters? The ics?) are type T

96 return T[A0[2], B0[2], C0[2]]

97 end

98 function ic3(ps::Wnt2p{T}) where T<:Real

99 # Convert A0,B0, and C0 to Type T, while making sure they

100 # (the parameters? The ics?) are type T

101 return T[A0[3], B0[3], C0[3]]

102 end

103

104 ### Define observation function

105 function obs(ps::Wnt2p{T}, t, y) where T<:Real

106 ans = zeros(length(myobs))

107 for i in 1: length(myobs)

108 ans[i] = y[myobs[i]]

A.1 Two-Parameter Plotting Code 73

109 end

110 return ans

111 end

112

113

114 ### Specify data object to specify what time point to evaluate this

at

115 ### and specify the data

116 Random.seed !(0) # I don ’t think I’m going to be able to get cost

contours to work right with this

117 parametricmodel1 = @ParametricModels.ODEModel(ParametricModels.

OLSData(

118 "TempData",zeros(length(t)*length(myobs))), Wnt2p , ic1 , mymodel ,

obs , t,

119 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

120 ydata1 = ParametricModels.model_predictions(parametricmodel1) +

121 Random.randn((length(t),length(myobs)))*sigma

122 data1 = ParametricModels.OLSData("MyData1", ydata1) # Might need to

change to MyData

123 #

124 parametricmodel2 = @ParametricModels.ODEModel(ParametricModels.

OLSData(

125 "TempData",zeros(length(t)*length(myobs))), Wnt2p , ic2 , mymodel ,

obs , t,

126 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

127 ydata2 = ParametricModels.model_predictions(parametricmodel2) +

128 Random.randn((length(t),length(myobs)))*sigma

129 data2 = ParametricModels.OLSData("MyData2", ydata2)

130 #

A.1 Two-Parameter Plotting Code 74

131 parametricmodel3 = @ParametricModels.ODEModel(ParametricModels.

OLSData(

132 "TempData",zeros(length(t)*length(myobs))), Wnt2p , ic3 , mymodel ,

obs , t,

133 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

134 ydata3 = ParametricModels.model_predictions(parametricmodel3) +

135 Random.randn((length(t),length(myobs)))*sigma

136 data3 = ParametricModels.OLSData("MyData3", ydata3)

137

138

139 ### Define the parametric model

140 parametricmodel1 = @ParametricModels.ODEModel(data1 , Wnt2p , ic1 ,

mymodel , obs , t,

141 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

142 parametricmodel2 = @ParametricModels.ODEModel(data2 , Wnt2p , ic2 ,

mymodel , obs , t,

143 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

144 parametricmodel3 = @ParametricModels.ODEModel(data3 , Wnt2p , ic3 ,

mymodel , obs , t,

145 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

146 println("Parametric models defined")

147

148 ### Transform parameters that need to be positive

149 # Tells the code how to transform the parameters so that the inputs

to the model

150 # can be all reals. So long as worrying about MAMs , probably don ’t

have to worry

A.1 Two-Parameter Plotting Code 75

151 # about changing

152 for i in 1: length(xi)

153 parametricmodel1.parameters[i].t = exp

154 parametricmodel1.parameters[i].invt = log

155 end

156 for i in 1: length(xi)

157 parametricmodel2.parameters[i].t = exp

158 parametricmodel2.parameters[i].invt = log

159 end

160 for i in 1: length(xi)

161 parametricmodel3.parameters[i].t = exp

162 parametricmodel3.parameters[i].invt = log

163 end

164 println("Parameter inverses defined")

165

166 ### Take parametric model and make it a normal model

167 # The parameteric model is useful for being solvable using Dr.

Transtrum ’s packages

168 # The normal model structure is useful for other reasons the will be

used

169 # throughout this program

170 model1 = Models.Model(parametricmodel1)

171 model2 = Models.Model(parametricmodel2)

172 model3 = Models.Model(parametricmodel3)

173

174

175 function Cost1(x)

176 return 0.5* sum(model1.r(x).^2)/sigma^2

177 end

178 function Cost2(x)

179 return 0.5* sum(model2.r(x).^2)/sigma^2

A.1 Two-Parameter Plotting Code 76

180 end

181 function Cost3(x)

182 return 0.5* sum(model3.r(x).^2)/sigma^2

183 end

184

185

186 if docostcont || domanifold

187 num1 = length(x1)

188 num2 = length(x2)

189 cost = zeros(num2 , num1)

190 manif = []

191 println("Beginning loop for filling out the graphs")

192 for i in 1:num1

193 for j in 1:num2

194 params = [x1[i], x2[j]]

195 if docostcont

196 cost[j,i] = (Cost1(params)+Cost2(params)+Cost3(

params))

197 end

198 if domanifold

199 appendable = []

200 append !(appendable ,[(ydata1 -reshape(model1.r(params)

,

201 (length(t),length(myobs))))[mytimes [1],myobs

[1]]])

202 append !(appendable ,[(ydata2 -reshape(model2.r(params)

,

203 (length(t),length(myobs))))[mytimes [2],myobs

[2]]])

204 append !(appendable ,[(ydata3 -reshape(model3.r(params)

,

A.1 Two-Parameter Plotting Code 77

205 (length(t),length(myobs))))[mytimes [3],myobs

[3]]])

206 append !(manif , [appendable])

207 end

208 end

209 print("*")

210 end

211

212

213 println("\nDone with filling out the graphs")

214

215 if docostcont

216 figure ()

217 contourf(x1, x2, log.(cost), levels=ContourLevels)

218 colorbar(label="log(cost)")

219 scatter ([xi[1]], [xi[2]], c="red", marker="x") # Plot the

best fit point

220 xlabel("log(k1)")

221 ylabel("log(k2)")

222 end

223

224 if domanifold

225 # manif contains the predictions specified at the top.

226 # Take all of the first predictions and store them in p1,

227 # then the second predictions in p2, etc.

228 p1 = [el[1] for el in manif]

229 p2 = [el[2] for el in manif]

230 p3 = [el[3] for el in manif]

231 if scattering

232 figure ()

233 scatter3D(p1, p2, p3, s=2)

A.2 Three-Parameter Plotting Code 78

234 xlabel("x")

235 ylabel("y")

236 zlabel("z")

237 end

238 if surfing

239 figure ()

240 surf(p1 ,p2 ,p3)

241 xlabel("x")

242 ylabel("y")

243 zlabel("z")

244 end

245 end

246 end

247

248

249 ###### model.r returns the data - observable

250 ###### m.model.r([1.0 ,0.1 ,3.0]) |> plot # to plot stuff

251 ###### m.ydata - m.model.r([2.0 ,0.0 ,3.0]) returns just the

observable (KE)

252 PyPlot.display_figs () # required to see the graph in Atom

253 println("Finished")

A.2 Three-Parameter Plotting Code

This program (also written in Julia) has all the same functionality and requirements

of the two-parameter plotting code except for two things: first, it works for models

that require three parameters instead of two parameters; secondly, each axis has to

use the same initial conditions.

1 # Print time and program name. Make it clear the program has started

A.2 Three-Parameter Plotting Code 79

2 using Dates

3 println("\n\n\n\nTime ",

4 now())

5

6 using DelimitedFiles

7 import Models

8 import ModularLM # used for doing fitting

9 import ParametricModels # used for models like the ODE model

10 using Parameters

11 println("Halfway through packages")

12 using LinearAlgebra

13 import Random

14 using PyPlot

15 import Sundials # a package for solving ODEs

16

17 ### Setup

18 docostcont = false # Do you want a contour plot

19 domanifold = true # Do you want a plot of the model manifold

20 scattering = true # Get a scatter plot of the model manifold ...

21 surfing = true # ... and/or a surface plot of the model manifold

22 # After the first time running this program , feel free to move the "

mymodel" line here

23

24

25 myobs = [1,2,3] # Which variables do you want to observe

26 mytimes = [1,2,3] # Which times do you want to observe

27

28 # Initial Concentrations:

29 A0 = 1.0

30 B0 = 2.0

31 C0 = 5.0

A.2 Three-Parameter Plotting Code 80

32 t = [.7, 3, 5] # Quantities of interest (expandable)

33

34 num = 25 # Number of points in each parameter (or you can customize

it \|/)

35 parRange = 10 # Parameter range (or you can customize it \|/)

36 x1 = range(-parRange , parRange , length=num) |> collect

37 x2 = range(-parRange , parRange , length=num) |> collect

38 x3 = range(-parRange , parRange , length=num) |> collect

39

40 # Cost contour stuff

41 xi=log .([0.7 , 2.0, 3.0]) # Best fit parameters

42 sigma = 0.01 # standard deviation (for creating the data)

43 # How many colors the plot uses to distinguish costs

44 ContourLevels = 50

45 # If wanting to narrow the color range , use something like

46 #ContourLevels = range (11.9 , stop =12.1 , length =100)

47 # instead

48

49

50 ### Create a Julia type that holds parameter values

51 # @with_kw allows you to set default values (such as k1 = exp(xi[1])

).

52 # /|\ Comes from the parameters package , I think

53 # @deftype T sets the default type inside this structure to be T. In

other words ,

54 # because k1 and k2 don ’t have a type specified , they are of

type T.

55 # /|\ Comes from the parameters package , I think

56 # Wnt{T<:Real} <: ParametricModels.AbstractParameterSpace{T} means

that we

A.2 Three-Parameter Plotting Code 81

57 # declare Wnt{T} to be a subtype ParametricModels.

AbstractParameterSpace{T}

58 # for every T that is a subtype of Real , I think

59 # One reason to do this is you can have parameters with different

names

60 @with_kw mutable struct Wnt3p{T<:Real} <: ParametricModels.

AbstractParameterSpace{T} @deftype T

61 k1 = exp(xi[1])

62 k2 = exp(xi[2])

63 k3 = exp(xi[3])

64 end

65 @with_kw mutable struct Wnt2p{T<:Real} <: ParametricModels.

AbstractParameterSpace{T} @deftype T

66 k1 = exp(xi[1])

67 k2 = exp(xi[2])

68 end

69

70 # Connect this program to the file with the different models

71 # Note: the "include" line needs to be after the Wnt lines

72 include("my MAM models.jl")

73 # mymodel lets you choose which model to use from the file "my MAM

models ."

74 # For example , if mymodel = A1B1C1 , then you will use the model for

the network

75 # A->B->C->__. If, on the other hand , mymodel = A1B1_andA1C , the

plotting

76 # program would use the model for the network A->B->__ and A->C.

Note that this

77 # plotting program only works for models that have three parameters.

78

A.2 Three-Parameter Plotting Code 82

79 # The "mymodel" line must be beneath the "include" line during 1st

run;

80 # afterwards , you can move it up to where the initial conditions are

defined

81 mymodel = A1B1C1#A1B1_andA1C

82

83 println("Model file included")

84 ### Initial condition function

85 # ic accepts only arguments of type Wnt{T} where T is a subtype of

Real

86 function ic(ps::Wnt3p{T}) where T<:Real

87 #Convert A0,B0, and C0 to Type T, while making sure it is type T

88 return T[A0 , B0 , C0]

89 end

90

91 ### Define observation function

92 function obs(ps::Wnt3p{T}, t, y) where T<:Real

93 ans = zeros(length(myobs))

94 for i in 1: length(myobs)

95 ans[i] = y[myobs[i]]

96 end

97 return ans

98 end

99

100

101 ### Specify data object to specify what time point to evaluate this

at

102 ### and specify the data

103 Random.seed !(0)

104 parametricmodel = @ParametricModels.ODEModel(ParametricModels.

OLSData(

A.2 Three-Parameter Plotting Code 83

105 "TempData",zeros(length(t)*length(myobs))), Wnt3p , ic, mymodel ,

obs , t,

106 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

107 ydata = ParametricModels.model_predictions(parametricmodel) +

108 Random.randn((length(t),length(myobs)))*sigma

109 data = ParametricModels.OLSData("MyData", ydata)

110 println("Parametric models defined")

111

112 ### Define the parametric model

113 parametricmodel = @ParametricModels.ODEModel(data , Wnt3p , ic,

mymodel , obs , t,

114 (Sundials.CVODE_BDF () ,), Tuple{Symbol , Any }[(: abstol , 1e-6), (:

reltol , 1e-6)])

115

116

117 ### Transform parameters that need to be positive

118 # Tells the code how to transform the parameters so that the inputs

to the model

119 # can be all reals. So long as worrying about MAMs , probably don ’t

have to worry

120 # about changing

121 for i in 1: length(xi)

122 parametricmodel.parameters[i].t = exp

123 parametricmodel.parameters[i].invt = log

124 end

125 println("Parameter inverses defined")

126

127 ### Take parametric model and make it a normal model

128 # The parameteric model is useful for being solvable using Dr.

Transtrum ’s packages

A.2 Three-Parameter Plotting Code 84

129 # The normal model structure is useful for other reasons the will be

used

130 # throughout this program

131 model = Models.Model(parametricmodel)

132

133 function Cost(x)

134 return 0.5* sum(model.r(x).^2)/sigma^2

135 end

136

137

138 if docostcont || domanifold

139 num1 = length(x1)

140 num2 = length(x2)

141 num3 = length(x3)

142 cost = zeros(num2 , num1)

143 manif = []

144 println("Beginning loop for filling out the graphs")

145 for i in 1:num1

146 for j in 1:num2

147 for k in 1:num3

148 params = [x1[i], x2[j], x3[k]]

149 if docostcont # NOT ADAPTED FOR 3 Parameters

150 cost[j,i] = Cost(params)

151 end

152 if domanifold

153 appendable = []

154 for cntr in 1:3

155 append !(appendable ,[(ydata -reshape(model.r(

params),

156 (length(t),length(myobs))))[mytimes[cntr

],myobs[cntr]]])

A.2 Three-Parameter Plotting Code 85

157 end

158 append !(manif , [appendable])

159 end

160 end

161 end

162 print("*")

163 end

164

165

166 println("\nDone with filling out the graphs")

167 if docostcont #NOT ADAPTED FOR 3 Parameters

168 figure ()

169 contourf(x1, x2, log.(cost), levels=ContourLevels)

170 colorbar(label="log(cost)")

171 scatter ([xi[1]], [xi[2]], c="red", marker="x") # Plot the

best fit point

172 xlabel("log(k1)")

173 ylabel("log(k2)")

174 end

175

176 if domanifold

177 # manif contains the predictions specified at the top.

178 # Take all of the first predictions and store them in p1,

179 # then the second predictions in p2, etc.

180 p1 = [el[1] for el in manif]

181 p2 = [el[2] for el in manif]

182 p3 = [el[3] for el in manif]

183 if scattering

184 figure ()

185 scatter3D(p1, p2, p3, s=2)

186 xlabel("x")

A.3 File of Models 86

187 ylabel("y")

188 zlabel("z")

189 end

190 if surfing

191 figure ()

192 surf(p1 ,p2 ,p3)

193 xlabel("x")

194 ylabel("y")

195 zlabel("z")

196 end

197 end

198 end

199

200

201 ###### model.r returns the data - observable

202 ###### m.model.r([1.0 ,0.1 ,3.0]) |> plot # to plot stuff

203 ###### m.ydata - m.model.r([2.0 ,0.0 ,3.0]) returns just the

observable (KE)

204 PyPlot.display_figs () # required to see the graph in Atom

205 println("Finished")

A.3 File of Models

This program needs to be named “my MAM models” and be in the same folder as

the plotting programs in order for those programs to work. It has many ready made

models that can be run, or you can create your own. You can either create your model

from scratch or, if it is a simple path network with three species and two parameters,

there is a model called asN1N1N13s that can be easily edited to work with your

network. There is also one for four species and two parameters called asN1N1N14s.

A.3 File of Models 87

1 ### Name this file "my MAM models" and put it in the same folder as

your

2 # plotting code in order to use the models in this file to create

plots

3

4 ### Define the mass action models of the networks you want to model

5 # Wnt2p only works with the program that focuses on two parameter

models ,

6 # Wnt3p only works with the program that focuses on three parameter

models

7 #

8 # y[1] is the concentration of the first substance , y[2] is the

concentration

9 # of the second substance , etc. dy[1] is the change in concentration

of the

10 # first substance , etc.

11 #

12 # ps.k1 is the first parameter , ps.k2 is the second parameter , etc.

13

14

15 #A+B<->C

16 function AB2C(ps::Wnt2p{T}, t, y, dy) where T<:Real

17 dy[1] = -ps.k1*y[1]*y[2] + ps.k2*y[3]

18 dy[2] = -ps.k1*y[1]*y[2] + ps.k2*y[3]

19 dy[3] = ps.k1*y[1]*y[2] - ps.k2*y[3]

20 nothing

21 end

22

23 #A->B->C

24 function A1B1C(ps::Wnt2p{T}, t, y, dy) where T<:Real

25 dy[1] = -ps.k1*y[1]

A.3 File of Models 88

26 dy[2] = ps.k1*y[1] - ps.k2*y[2]

27 dy[3] = ps.k2*y[2]

28 nothing

29 end

30

31 #A->B, doesn ’t work on two -parameter or three -parameter program

32 function A1B(ps::Wnt2p{T}, t, y, dy) where T<:Real

33 dy[1] = -ps.k1*y[1]

34 dy[2] = ps.k1*y[1]

35 nothing

36 end

37

38 #A->B, C->D

39 function A1B0C1D(ps::Wnt2p{T}, t, y, dy) where T<:Real

40 dy[1] = -ps.k1*y[1]

41 dy[2] = ps.k1*y[1]

42

43 dy[3] = -ps.k2*y[3]

44 dy[4] = ps.k2*y[3]

45 nothing

46 end

47

48 # A goes to B or C

49 function A1BoC(ps::Wnt2p{T}, t, y, dy) where T<:Real

50 dy[1] = -ps.k1*y[1] - ps.k2*y[1]

51 dy[2] = ps.k1*y[1]

52 dy[3] = ps.k2*y[1]

53

54 nothing

55 end

56

A.3 File of Models 89

57 # Arbitrary stoichiometry , node one -> node 2 -> node 3, with 3

species

58 function asN1N1N3s(ps::Wnt2p{T}, t, y, dy) where T<:Real

59 #=A+B->B->__=#

60 a = [1,0,0]

61 b = [1,1,0]

62 c = [0,0,0]

63 #=3A+1B+C->1A+2B->2B+C

64 a = [3,1,0]

65 b = [1,3,2]

66 c = [1,0,1]=#

67 v1 = ps.k1 * y[1]^a[1] * y[2]^b[1] * y[3]^c[1]

68 v2 = ps.k2 * y[1]^a[2] * y[2]^b[2] * y[3]^c[2]

69

70 dy[1] = -(a[1]-a[2])*v1 - (a[2]-a[3])*v2

71 dy[2] = -(b[1]-b[2])*v1 - (b[2]-b[3])*v2

72 dy[3] = -(c[1]-c[2])*v1 - (c[2]-c[3])*v2

73 nothing

74 end

75

76 # A<->B

77 function A2B(ps::Wnt2p{T}, t, y, dy) where T<:Real

78 dy[1] = -ps.k1*y[1] + ps.k2*y[2]

79 dy[2] = ps.k1*y[1] - ps.k2*y[2]

80 dy[3] = 0

81 nothing

82 end

83

84

85 # A->B->C->A

86 function A1B1C1A(ps::Wnt3p{T}, t, y, dy) where T<:Real

A.3 File of Models 90

87 dy[1] = -ps.k1*y[1] + ps.k3*y[3]

88 dy[2] = ps.k1*y[1] - ps.k2*y[2]

89 dy[3] = ps.k2*y[2] - ps.k3*y[3]

90 nothing

91 end

92

93 # A goes to B which goes to __ while A also goes to __

94 function A1B1_andA1C(ps::Wnt3p{T}, t, y, dy) where T<:Real

95 dy[1] = -ps.k1*y[1] - ps.k2*y[1]

96 dy[2] = ps.k1*y[1] - ps.k3*y[2]

97 dy[3] = ps.k2*y[1]

98 nothing

99 end

100

101 # A goes to B or A goes to C or A goes to __

102 function A1BorCor__(ps::Wnt3p{T}, t, y, dy) where T<:Real

103 dy[1] = -ps.k1*y[1] - ps.k2*y[1] - ps.k3*y[1]

104 dy[2] = ps.k1*y[1]

105 dy[3] = ps.k2*y[1]

106 nothing

107 end

108

109

110 # A goes to B which goes to __ or C

111 function A1B1_orC(ps::Wnt3p{T}, t, y, dy) where T<:Real

112 dy[1] = -ps.k1*y[1]

113 dy[2] = ps.k1*y[1] - ps.k2*y[2] - ps.k3*y[2]

114 dy[3] = ps.k2*y[2]

115 nothing

116 end

117

A.3 File of Models 91

118

119 # Arbitrary stoichiometry , node one -> node 2 -> node 3, with 4

species

120 function asN1N1N4s(ps::Wnt2p{T}, t, y, dy) where T<:Real

121 #=A+2B->C+2D->2A+D=#

122 a = [1,0,2]

123 b = [2,0,0]

124 c = [0,1,0]

125 d = [0,2,1]

126

127 v1 = ps.k1 * y[1]^a[1] * y[2]^b[1] * y[3]^c[1] * y[4]^d[1]

128 v2 = ps.k2 * y[1]^a[2] * y[2]^b[2] * y[3]^c[2] * y[4]^d[2]

129

130 dy[1] = -(a[1]-a[2])*v1 - (a[2]-a[3])*v2

131 dy[2] = -(b[1]-b[2])*v1 - (b[2]-b[3])*v2

132 dy[3] = -(c[1]-c[2])*v1 - (c[2]-c[3])*v2

133 dy[4] = -(d[1]-d[2])*v1 - (d[2]-d[3])*v2

134 nothing

135 end

136

137

138 # A goes to B which goes to A which goes to B... Also , B can go to C

139 function A2B1C(ps::Wnt3p{T}, t, y, dy) where T<:Real

140 dy[1] = -ps.k1*y[1] + ps.k2*y[2]

141 dy[2] = ps.k1*y[1] - ps.k2*y[2] - ps.k3*y[2]

142 dy[3] = ps.k3*y[2]

143 nothing

144 end

145

146 # A -> B -> C -> __

147 function A1B1C1(ps::Wnt3p{T}, t, y, dy) where T<:Real

A.4 Package Installer 92

148 dy[1] = -ps.k1*y[1]

149 dy[2] = ps.k1*y[1] - ps.k2*y[2]

150 dy[3] = ps.k2*y[2] - ps.k3*y[3]

151 nothing

152 end

A.4 Package Installer

This program installs the various packages needed to run the plotting programs.

1 # Code to get most of the important packages installed for members

of

2 # Dr. Transtrum ’s team

3

4 # Initialize Package Path

5 import Pkg

6 # Uncomment next line to put packages into "Modeling" environment

7 # Pkg.activate (" Modeling ")

8 # Import registered packages

9 Pkg.add("PyCall")

10 Pkg.add("PyPlot")

11 Pkg.add("DifferentialEquations")

12 Pkg.add("Sundials") # Not required , but useful

13 Pkg.add("Dierckx") # Not required , but useful

14 # On ubuntu , install hdft -tools first using ‘‘sudo apt -get install

hdf5 -tools ‘‘

15 Pkg.add("MAT") # Not required , but useful

16 Pkg.add("ForwardDiff")

17 Pkg.add(Pkg.PackageSpec(url="https :// github.com/mktranstrum/

NumDiffTools.jl"))

18 Pkg.add("Logging")

A.4 Package Installer 93

19 Pkg.add("Parameters")

20 Pkg.add("JSON")

21 #Install Main Modeling Package

22 Pkg.add(Pkg.PackageSpec(url="https ://git.physics.byu.edu/Modeling/

Models.jl.git"))

23 # Install Geometry Package

24 Pkg.add(Pkg.PackageSpec(url="https ://git.physics.byu.edu/Modeling/

Geometry.jl.git"))

25 Pkg.add(Pkg.PackageSpec(url="https ://git.physics.byu.edu/Modeling/

SmoothApproximations.jl.git"))

26 # Install Fitting Packages

27 # Note that GeodesicLM will need to compile some FORTRAN source

before working.

28 # ModularLM is a good pure -julia alternative for now that will

eventually replace GeodesicLM , so we leave this commented out for

now.

29 # Pkg.add("https ://git.physics.byu.edu/Modeling/GeodesicLM.jl")

30 # Install Additional Modeling Packages.

31 Pkg.add(Pkg.PackageSpec(url="https ://git.physics.byu.edu/Modeling/

ModularLM.jl.git"))

32 Pkg.add(Pkg.PackageSpec(url="https ://git.physics.byu.edu/Modeling/

ParametricModels.jl.git"))

33 Pkg.add(Pkg.PackageSpec(url="https ://git.physics.byu.edu/Modeling/

ExampleModels.jl.git"))

34 # Test installation

35 # If this test works , then all the other dependencies should be

working , too

36

37 # Uncomment the line below this comment to let the program test to

see if all

A.5 Mathematica Based Model Solver 94

38 # the custom packes were installed correctly. Note , it may take

several hours

39 # for the tests to run.

40 #Pkg.test(" ExampleModels ")

A.5 Mathematica Based Model Solver

This program (written in Mathematica 12.1) analytically solves the mass action mod-

els of a simple path networks with three or fewer species and one or two parameters,

then finds the models that describe the boundaries of the model manifold by taking

parameters to their limits. The reaction rates can be adjusted to take ratios into ac-

count. Unfortunately, many, if not most, models cannot be solved by this or perhaps

any solver. That said, many of the models in this report were successfully and easily

analyzed using this solver, so it can be very useful when it does work.

1 In [93]:= (* N1\[Rule]N2 2 Species *)

2 (* Two nodes , two species *)

3 (*2A\[Rule]B*)

4 Clear["‘*"]

5 aa = {2,0}

6 bb = {0,1}

7 v[1] :=k[1]*a[t]^aa [[1]]*b[t]^bb[[1]]

8 sol=DSolve [{

9 a’[t]==-v[1]*(aa[[1]]-aa [[2]]) ,

10 b’[t] == -v[1]*(bb[[1]]-bb [[2]]) ,

11 a[0]==a0,b[0]== b0},

12 {a[t],b[t]},t];

13 {a,b}={sol [[1]][[1]][[2]] , sol [[1]][[2]][[2]]}

14

15 p = 1; (* Number of parameters *)

A.5 Mathematica Based Model Solver 95

16 dim1 = Array[0,{p ,2}];

17

18 lims = {0,Infinity };

19 For[ki=1,ki <= p,ki++,

20 For[i = 1, i <= Length[lims],i++,

21 dim1[[Mod[ki ,p]+1,i]]= Limit[{a,b},k[Mod[ki ,p]+1]->lims[[i]],

Assumptions ->{t >0}];

22 Print["Position ",Mod[ki,p]+1,i," ",k[Mod[ki,p]+1],"->",lims[[i]],"

gets ",dim1[[Mod[ki ,p]+1,i]]]]];

23

24 dim1;

25

26

27

28

29

30

31

32

33 (* N1\[Rule]N2\[Rule]N3 3 Species *)

34 (* A\[Rule]B\[Rule]C *)

35 Clear["‘*"]

36

37 (* Coefficient vectors *)

38 aa = {1,0,0};

39 bb = {0,1,0};

40 cc = {0,0,1};

41 Print["aa = ",aa]

42 Print["bb = ",bb]

43 Print["cc = ",cc]

44

A.5 Mathematica Based Model Solver 96

45 (* Reaction rates*)

46 v[1] :=k[1]*a[t]^aa [[1]]*b[t]^bb [[1]]*c[t]^cc[[1]]

47 v[2] :=k[2]*a[t]^aa [[2]]*b[t]^bb [[2]]*c[t]^cc[[2]]

48

49 (* Solve the mass action model*)

50 sol=DSolve [{

51 a’[t]==-v[1]*(aa[[1]]-aa [[2]]) -v[2]*(aa[[2]]-aa [[3]]) ,

52 b’[t] == -v[1]*(bb[[1]]-bb [[2]]) -v[2]*(bb[[2]]-bb [[3]]) ,

53 c’[t] == -v[1]*(cc[[1]]-cc [[2]]) -v[2]*(cc[[2]]-cc [[3]]) ,

54 a[0]==a0,b[0]==b0,c[0]== c0},

55 {a[t],b[t],c[t]},t];

56 {a,b,c}={sol [[1]][[1]][[2]] , sol [[1]][[2]][[2]] , sol [[1]][[3]][[2]]}

57

58

59 (* Number of parameters *)

60 p = 2;

61 (* Arrays to store the new equations as they are found *)

62 dim1 = Array[0,{p,2}] ;

63 dim0=Array[0,{p,2,2}] ;

64 (* The limits that you want to take the parameters to *)

65 lims = {0,Infinity };

66

67 (* For every parameter that exists ... *)

68 For[ki=1,ki <= p,ki++,

69 (* ... and for every limit that you want to take ... *)

70 For[i = 1, i <= Length[lims],i++,

71 (* ... take parameter Mod[ki ,p]+1 (the Mod is to help switch which

parameter has the limits taken first) to limit i and store it

accordingly ...*)

72 dim1[[Mod[ki ,p]+1,i]]= Limit[{a,b,c},k[Mod[ki ,p]+1]->lims[[i]],

Assumptions ->{t >0}];

A.6 Hasse Diagrams and Network Structures 97

73 (* ... then print the result ... *)

74 Print["Position ",Mod[ki,p]+1,i," ",k[Mod[ki,p]+1],"->",lims[[i]],"

gets ",dim1[[Mod[ki ,p]+1,i]]];

75 (* ...then , for every limit that you want to take ... *)

76 For[j = 1, j<= Length[lims], j++,

77 (* ... take the other parameter to limit j, storing the result

accoringly ... *)

78 dim0[[Mod[ki ,p]+1,i,j]]= Limit[dim1[[Mod[ki ,p]+1,i]],k[Mod[ki+1,p

]+1]->lims[[j]],Assumptions ->{t >0}];

79 (* ... and print out the the result. *)

80 Print["Position ",Mod[ki,p]+1,i,j," ",k[Mod[ki,p]+1],"->",lims[[i]],

" and ",k[Mod[ki+1,p]+1],"->",lims[[j]]," gets ",dim0[[Mod[ki,p

]+1,i,j]]]]]]

81 dim1;

82 dim0;

A.6 Hasse Diagrams and Network Structures

The Hasse diagrams in this report, with the exception of the Hasse diagram for

A
k1−→ B

k2−→ C
k3−→ D and the Hasse diagrams in the introduction, were created

using a free account on the website Lucidchart.com. The website is targeted towards

people who want to make professional looking flowcharts. The company running the

website gave me a temporary premium account as part of a promotion, and I created

the Hasse diagram for A
k1−→ B

k2−→ C
k3−→ D during that time. Without a premium

account, I would have exceeded the permitted number of objects in my flowchart

while making such a large Hasse diagram.

The network structures in this report and the Hasse diagrams in the introduction

were created using a licensed copy of Microsoft PowerPoint for Microsoft 365.

	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction and Background
	1.1 Overview
	1.2 Model Reduction
	1.3 Models — What Goes Into Them?
	1.4 Data Fitting
	1.5 Sloppy Models
	1.6 The Model Manifold
	1.7 Manifold Structure
	1.8 Cross Sections of Model Manifolds
	1.9 Introduction to Chemical Reaction Networks and Mass Action Models
	1.10 The Objective

	2 Method
	2.1 Generating Mass Action Models and Predicting Manifold Structure
	2.2 Linear Simple Path Networks and Hasse Diagrams

	3 Results
	3.1 Independent Species: A Tool for Grouping Similar Networks
	3.2 Unbounded Manifolds
	3.3 The Equivalent Model: Another Tool for Grouping Similar Networks
	3.4 Linear Cycles and Cyclic Behavior in Simple Path Models
	3.5 Linear Branching Models and Branching like behavior in Simple Path Models
	3.6 Dependency on Initial Conditions

	4 Conclusion
	Bibliography
	A Code
	A.1 Two-Parameter Plotting Code
	A.2 Three-Parameter Plotting Code
	A.3 File of Models
	A.4 Package Installer
	A.5 Mathematica Based Model Solver
	A.6 Hasse Diagrams and Network Structures

