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ABSTRACT: In this article, we introduce a simple analytic method for obtaining
approximate solutions of the Schrödinger equation for a wide range of potentials in
one- and two-dimensions. We define an operator, called the iteration operator, which
will be used to solve for the lowest order state(s) of a system. The method is simple in
that it does not require the computation of any integrals in order to obtain a solution.
We use this method on several potentials which are well understood or even exactly
solvable in order to demonstrate the strengths and weaknesses of this method. © 2008
Wiley Periodicals, Inc. Int J Quantum Chem 109: 982–998, 2009
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1. Introduction

N ew approximate solutions to quantum prob-
lems are always welcome. Every method has

its strengths and limitations, and so they tend to be
applied to different kinds of systems.

Variational methods work well for calculating
the upper bound for the energy of the system.
While the resulting approximate energy is accurate
to second order, the corresponding wave function
is only approximate to first order. A more accurate

approximation of the wave function is desired be-
cause it is critical for solving for other physical
properties of the system (i.e. angular momentum).
Perturbative methods are capable of finding highly
accurate energies and wave functions, but they are
applicable only when the potential changes little
from a problem that has known solutions. Other
well-known methods have a myriad of other re-
strictions.

Modern research into actual quantum systems,
for the most part, uses numerical methods to build
up approximations of the solution to the Schröd-
inger equation. There are several problems with
numerical approximations. First, a numerical ap-
proximation usually computes the value of the so-
lution at a finite number of points. This allows for
the possible loss of important information. Second,
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the coding of boundary conditions must be care-
fully done in order for the solution to be meaning-
ful. Third, numerical methods tend not to handle
singularities well.

The purpose of this work is to demonstrate a
proof of concept concerning a technique for solving
for particular solutions of the Schrödinger equation
which takes advantage of the computational effi-
ciency of computers but yields a wave function that
is actually an analytic function (of position in this
work). The only assumption used in the derivation
of the method of approximation described hereafter
is that the potential to which it is being applied is
real and finite over all space. It is able to give an
accurate particular solution to the Schrödinger
equation with any given potential. It is also appli-
cable to a system with any number of degrees of
freedom. In this article, we have restricted the ap-
plication to up to 2 degrees of freedom. It is equally
successful at computing the ground state wave
function, or lowest order state of a given symmetry
of the problem, as it is at computing the corre-
sponding eigenvalue.

Our method is based on the idea of applying a
first-order iteration operator (IO) to a suitable initial
function given in analytic form. Throughout every
step in the iteration we produce a (truncated) ana-
lytic approximation, monitoring its accuracy with
the approximate corresponding energy.

In Section 2 we describe the ideas and algorithms
used in this article. Section 3 is concerned with the
trivial example of a harmonic oscillator starting
with an approximate initial function. In Section 4
we solve the problem of an anharmonic quartic
oscillator and compare our results with other meth-
ods. A modified Pöschl–Teller (MPT) potential is
dealt with in Section 5, followed by a two-dimen-
sional example in Section 6.

2. Theory

The crux of the IO method consists in applying it
directly to an initial (trial) wave function, �, to
obtain an analytic approximation to the ground
state wave function. As the iteration progresses,
many terms are generated because of the deriva-
tives in the kinetic portion of the Hamiltonian, Ĥ,
and because of the multiplication of � by the po-
tential portion of Ĥ. To counteract the growing
number of terms the result of each iteration (exclud-
ing the possible exponential in the initial function)
is first turned into a polynomial expanded around

the minimum of the potential and is then truncated
to a desired order of accuracy.

2.1. THE ITERATION OPERATOR

The derivation of the IO [1] resembles the devel-
opment of the techniques used in Monte Carlo sim-
ulations. Suppose that a time-independent Hamil-
tonian, Ĥ, describes some quantum system. The
time development of the wave function �n�x�,t� can
be written, in units of � � 1, as

�n� x� ,t� � exp� � iĤt��n�x�� (1)

for each eigenfunction �n.
Making the substitution � � i t we can follow the

�-evolution of an arbitrary initial function ��x� and
expand it in the basis {�n}

exp� � Ĥ����x�� � exp� � Ĥ���
n�0

�

an�n�x��

� aoexp� � Eo���o�x�� � �
n�0

�

anexp� � En���n�x��, (2)

where an is the set of expansion coefficients of the
initial wave function � with respect to the basis �n.
For large �3 �, the dominant term is the first one,
because Eo � En for n � 1. This way we can extract
information about the ground state of the system
starting with an arbitrary function �(x) with the
appropriate boundary conditions [2].

The more general form of the above derivation
involves the use of some energy E, often assumed to
be the ground state energy Eo, being subtracted off
of the Hamiltonian in the exponential exp[	(Ĥ 	
E)�]�(x�). The use of this more general form may be
needed when the ground state energy is negative;
in such a case we merely have to set E � Eo. We will
dispense with using this more general form for the
remainder of this section but it will be used again in
Section 5.

We approximate the imaginary-time evolution
operator

exp� � Ĥ�� � lim
m3�

�1 �
�

mĤ�m

� �1 � 	Ĥ�p, (3)
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where instead of taking the limit as m3 � we set m
to some large number p, and we defined the con-
stant

	 �
�

p. (4)

By fixing 	 we can force �3 � as p3 �. (While
theoretically 	 can be as small as we wish, it has
been found that 	 must remain within an order of
magnitude of 0.001 in order for the present method
to consistently work.) Thus we obtain the IO,

Îp � �1 � 	Ĥ�p. (5)

Our algorithm consists of the following steps:

1. Choose an approximate initial (trial) function
� (usually some exponential function).

2. Apply I, p-times to � to generate the set of
new functions 
I1�,I2�,. . .,Ip��.

3. For each step, expand and truncate the addi-
tional multiplicative terms as a polynomial of
given degree.

4. Stop the iteration when the local energy Ĥ�/�
becomes constant within a given accuracy.

The resultant approximate eigenfunction typi-
cally has the form of a polynomial times an expo-
nential.

2.2. INITIAL FUNCTIONS

The choice of an initial function is a critical part
of this procedure. The problem is that the deriva-
tion of the IO assumes that the initial function is
within the space spanned by the eigenfunctions of
the Hamiltonian. There are a few necessary criteria
which the initial functions must satisfy: first, the
initial function must satisfy all boundary conditions
of the system. Second, the initial function and all of
its derivatives must go to zero faster than the po-
tential blows up at any point. These criteria will be
proved below.

Theorem 1. The resultant approximation of the
wave function will, in general, use the initial func-
tion � and all of its derivatives up to �2p	2� for p �
2, where p is the number of iterations.

Proof. We will prove this by induction. Let � be
the initial function. After the second iteration the
resultant wave function is of the form

�x� �
1

4m2�
4� � �2 � 2V�

1
2m�2� � ��V�

1
m��

� �1 � 2V �
1

2m�2V � V2��,

where we have used the usual form of the Hamil-
tonian Ĥ � 1/2m�2 � V.

Assume next that the theorem is true for n iter-
ations.

�x� � � � 1�n
1

2nmn�
2n� � c1�

2n	2� � c2�
2n	3�

� . . . � c3�

Finding the n  1 iteration

�x� � � � 1�n1
1

2n1mn1�
2n2�

�
1

2m���2c1��
2n	2� � 2��c1��

2n	1�

� c1�
2n�]

�
1

2m���2c2��
2n	3� � 2��c2��

2n	2�

� c2�
2n	1�]

� . . .

�
1

2m���2c3�� � 2��c3��� � c3�
2��

� V� � 1�n
1

2nmn�
2n� � Vc1�

2n	2�

� Vc2�
2n	3� � . . . � Vc3�,

where the c’s are functions of V.
After some algebra we see that the n  1 iteration

has the form

�r � � � 1�n
1

2n1mn1�
2n2� � d1�

2n	1�

� d2�
2n	2� � . . . � d3�,

where the d’s are functions of V. �
Theorem 2. If the initial function is not an eigen-

state of the system then the initial function and all
of its derivatives must go to zero faster than the
corresponding potential blows up at a point.
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Proof. Let V be a potential that diverges at a
point, or set of points, x� � a�i. Let � be an initial
function. Suppose that � or one of its derivatives ��q�

fails to converge to zero faster than the potential
blows up at one of the points, x� � a�j � 
a�i�. Then,

�V��m��x��a� j � � (6)

where ��m� is the mth derivative of �. Every iteration
of the wave function that contains ��m� fails to be
analytic causing the approximation to fail.�

Because the initial function, and its derivatives,
must be finite throughout all space, it is reasonable
to assume an initial function with an exponential
function in it. Any symmetries of the system should
be considered when choosing the initial function.
This method projects the initial function into the
subspace of energy eigenfunctions that has the
same symmetry as the initial function.

2.3. FINDING STATES OTHER THAN THE
GROUND STATE

Our derivation of the IO involved taking some
initial function �, which was, in general, a linear
combination of all of the energy eigenstates of the
system, and projecting out the ground state. Sup-
pose now that the ground state is lowest order state
of some symmetry of the system (i.e., the potential
is even about the origin) then the first excited state
would be the lowest order state that is odd. To find
the first excited state we must provide an initial
function that is odd.

2.4. TESTING THE RESULT

We will compute the local energy [3, 4] associ-
ated with the state in question via

E� x� � �
Ĥ�

�
. (7)

A local energy that is constant over the classi-
cally allowed region is a necessary condition for the
resultant wave function to be a good approximation
of the eigenfunction, but we will show that it is not
sufficient. Equation (7) seems to be the best method
for testing a solution and we will show how this can
be used to confidently obtain a solution.

3. Simple Harmonic Oscillator

The simple harmonic oscillator, referred to here-
after as SHO, is a natural choice for working
through the process of how to actually perform the
iteration approximation, as well as for discovering
the limitations of the procedure. The SHO potential
is continuous and finite over all space, can be cen-
tered around any point in space, and can be ab-
stracted to n-dimensions. The solutions to the SHO
are simple and can be found analytically. We will
use the SHO to explore the functionality of the IO
method of approximation.

Using Eq. (5) the IO for the SHO is given by

Îp � �1 �
	

2
d2

dx2 �
	

2x2� p

. (8)

In solving for the ground state energy eigenvalue
and eigenfunction, a range of iteration coefficient
values, from 	 � 0.00002 to 	 � 0.07, were used. We
will see that the ability of the iteration method to
solve for the correct eigenvalues and eigenfunctions
will depend on the particular combination of values
for 	 and the initial function.

3.1. GUASSIAN INITIAL FUNCTION

We use asymptotic analysis to obtain an initial
function for use in the IO method. Unfortunately,
for our purposes, the asymptotic solution happens
to be the unnormalized ground state eigenfunction.
We will thus use Gaussians of the form

�� x� � exp� � 
x2�, (9)

where 
 � {0.2, 0.4, 0.6, 0.8, 1.0, 2.0}, as initial
functions. Recall that the exact solution corre-
sponds to 
 � 0.5.

3.2. APPROXIMATIONS WITH POLYNOMIALS
OF INCREASING ORDER IN x

Figure 1 shows the results of using the IO
method to compute the wave function and energy
of the ground state for the SHO, for a particular
choice of 	 and 
. The top and middle graphs are
self-explanatory, and the bottom graph was pro-
duced by dividing our approximate wave function
by the ground state eigenfunction. Notice that the
wave functions appear to be Gaussian. As was
stated in Section 2.4, the correct approximation is
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said to be found if the energy is constant over a
range in position. We also see that the area over
which the energy is found to be constant is related
to the magnitude of the order in x to which the
approximation is taken to.

If we divide the approximate wave function by
the eigenfunction, and graph with respect to posi-
tion, the area over which the approximation essen-
tially equals the eigenfunction expands with in-
creasing order in x. Note also that both the region of
constant energy and the region where �approx/�exact

equals 1 are, for all orders of x computed, at least a
couple times larger than the area enclosed by the
classical turning points. This ensures that the ap-
proximation is meaningful. Table I lists the proba-

bility of finding the particle within the area en-
closed by each approximation.

3.3. APPROXIMATIONS WITH DIFFERENT
GAUSSIAN INITIAL FUNCTIONS

Not surprisingly, the closer an initial function is
to the eigenfunction the better the resultant approx-
imation, as can be seen in Figure 2. Notice that the
result for 
 � 0.2 obtains the correct energy but the
wave function has “wings.” The bottom graph sug-
gests, and computation shows, that if we were to
ignore the wings and normalize over the range x �
(	3, 3) then the Gaussian between the wings is a
very good approximation of the eigenfunction.

3.4. FIRST EXCITED STATE OF THE SHO

The IO is a method to approximate the lowest
order state of any given symmetry, not just the
ground state. Thus far we have focused on finding
the ground state wave function which is the lowest
order state that is even about x � 0. We can also
find the first excited state which is the lowest order
odd state. A suitable initial function for the first
excited state is

�� x� � x�exp� � 
x2�, (10)

where � is any odd number. Cases which have been
investigated include {1, 3, 5, 7, 9, 21, 23, 25}, and
most of these have produced satisfactory results; of
course, Eq. (10) also allows for even trial functions;
suitable results have been found for the ground
state energy eigenfunction and energy eigenvalue
for � � {2, 4, 6, 8, 20, 22, 24} (see Fig. 3 and Table II).

TABLE I ______________________________________
Probability of finding SHO particle within a given
area.

Order Range
Eigenfunction

probability
Approx.

probability

10 [	2, 2] 99.5322265018953 99.535204873
20 [	4, 4] 99.9999984582742 99.999998529
30 [	6, 6] 99.91297848 100.00000004
40 [	7, 7] 99.91896 100.00000007

Note that the subscripts “12” and “18” are in replacement of
the respective number of 9s in a row within the probabilities
given.
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FIGURE 1. Example of how the region of constant
energy increases with order in x, for the cases where 	

� 0.005 and 
 � �2/2. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]
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3.5. QUALITY OF APPROXIMATION

In any interesting system we will have a harder
time finding out whether the solution that we have
found actually approximates the energy eigenfunc-
tion and energy eigenvalue. If the same form of
solution is found, with the same value for the en-
ergy, for a battery of cases, then we can be confident
that the solution we seek is reasonably approxi-
mated by any one of these cases.

In analyzing the area over which the approxima-
tion is accurate we have used the ground state
solution, but we will not be able to do this with a
system in which there is no known closed form
solution. It is then of interest to know that for this
system we find that the area over which the energy

is constant corresponds to the area over which the
solution is accurate (see Fig. 4).

3.6. TRENDS

In performing the large number of cases we have
identified trends as to the conditions under which
the IO method will work. We have found that the
likelihood of the method converging to a solution
depends inversely on the order in x to which the
approximation was truncated and, as might be ex-
pected, proportionally with the closeness of the trial
function to the actual eigenfunction. This can be
seen in Figure 5.
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FIGURE 3. Results found for the first excited state of
the SHO, using an iteration coefficient of 	 � 0.001,
the initial function x3 exp[	0.4x2], and keeping polyno-
mials up to order xp, where p � {20, 40, 60}. [Color fig-
ure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]
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FIGURE 2. Example resultant functions for the
Gaussian initial functions with 
 � {0.2,0.4,0.6, 0.8}, an
iteration coefficient 	 � 0.001, and keeping up through
20 orders in x. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.
com.]
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We also see what appears to be a lower bound on
the iteration coefficient for which this method will
work reliably. It was thought that the lower bound
on the iteration coefficient might be an artifact of
how many significant figures we keep. Maple®’s
default setting is 10 significant figures. We ran a set
of cases where the number of significant figures
was increased to 50. We found that this produced
no change in the bounding values of the iteration
coefficient. We thus conclude that the iteration co-
efficient has a lower bound, at least for the method
currently under consideration, but can give no
mathematical reason for it.

4. Anharmonic Oscillator

The potential used in this section is of the form

V� x� �
m�2

2 x2 � x4. (11)

We follow the works of others [5–7] and set the
following: � � 2, m � 0.5, and  � {0.1, 0.2, 0.3, 1,
2, 3}.

The leading order approximation [8] of the
Schrödinger equation,

�� x� � exp� �
�

3 x3�, (12)

cannot be used because of its inability to satisfy the
boundary conditions at x � �� simultaneously. But
suppose if we took the negative exponential in Eq.
(12) and expand the x3 in the following manner

TABLE II _____________________________________
Results for SHO with the trial function
�(x) � xKexp[�0.6x2].

� Energy � Energy

0 0.5000000005 1 1.500000003
2 0.4999999966 3 1.500000000
4 0.4999999932 5 1.499999996
6 0.4999999900 7 1.499999992
8 0.4999999856 9 1.499999988

20 0.4999999646 21 1.499999973
22 0.4999999649 23 NR
24 NR 25 NR

NR, no result.
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FIGURE 4. Example of how the region of close-fit
corresponds to the region of constant energy for the
case where 	 � 0.005, 
 � �2/2. Top: Truncation af-
ter 20 orders in x. Bottom: Truncation after 40 orders in
x. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

FIGURE 5. Graphical display of when the first-order
iteration operator gives the proper result for the cases
where 
 � �2/2. Top: Each line represents the order
in x after which the solution was truncated; 	 � 0.005.
Bottom: Each line represents a value of the iteration
constant; truncation after 20 orders in x. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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x33 �x2 � ��
3
2, where � is a parameter chosen to

give a good initial function, it results in a wave
function of the form

�� x� � exp� �
�

3 �x2 � ��
3
2�. (13)

When we go on to solve for the first excited state
we make use of the symmetry of the potential and
multiply Eq. (13) by x, changing the even function
into an odd function,

�� x� � xexp� �
�

3 �x2 � ��
3
2�. (14)

In practice, we chose values for � that were not
small, � � {2, 4, 6, 8}, but we were able to find that
these values worked in solving the problem.

4.1. PROCEDURE

For the cases of  � {0.1, 0.2, 0.3} we were able to
find a range of values for � that would give a valid
approximation. The initial function, Eq. (13), did
not work for  � {1, 2, 3}. Equation (13) was used
for values of  up through  � 0.5. The resultant
wave function for  � 0.5 was then used as the
initial function for the case of  � 0.6. The result for
 � 0.6 was then used as the initial function for  �
0.7. This step-up process was used incrementally to
find approximations for the cases with  � {1, 2, 3}.

4.2. RESULTS

While several cases (with different values for 	
and �) were run for each of the systems that were
looked at, we will focus here only on the case that
gave the best approximation for each system. The
choice of the best result was based on the region,
in position space, over which it gave a nearly
constant local energy using Eq. (7). As was stated
in Section 3, the region over which the energy is
constant (or nearly so) is similar to the area over
which the approximation of the wave function
equals the eigenfunction. It should also be noted
that the energy is constant over a region larger
than the classically allowed region; this implies
that the wave function is well approximated over
the region where the particle is most likely to be
found.

Figure 6 shows the approximate wave functions
and energies for the ground state, respectively.

Table III shows quantitatively that the energy is
roughly constant over a range that is around twice
the width of the classically allowed region. We feel
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FIGURE 6. Examples of approximation of the ground
state wave function and energy for different values of 
for the anharmonic oscillator. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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confident that the best approximation of the energy
eigenvalue can be found at the center of the anhar-
monic potential well, in this case at x � 0.

Figure 7 shows the wave functions and the en-
ergy approximations of the first excited state. The
analysis is the same as in the ground state. Table IV
displays the constancy of the energy approximation
with what is the most likely best approximation of
the energy at x � 0.

The second moment for the ground state and
first excited state were calculated using

�x2� � �
	10

10

�*� x� x2�� x�dx, (15)

where ��x� is the solution given by the present
method (see Table V).

4.3. COMPARISON WITH OTHER METHODS

Starting in the late sixties or early seventies after
quantum field theorists started to see the impor-
tance of anharmonic oscillator-like potentials, a
large effort was made in obtaining solutions to the
Schrödinger equation of such systems. Bender and
Wu [9] showed that perturbation theory failed to
converge for any value of . The failure of conver-
gence for the anharmonic oscillator was later
proved by Simon and Dicke [10].

The perturbative energy levels were first found
using Padé approximants by Reid [6]. Numerous
other methods, both analytic and numerical, have
been used in an effort to establish methods for
solving this problem. We will compare our results
with the results of Reid, Biswas et al. [7], and the
effective operator [5]. It can be seen in Tables VI and

VII that the present method is able to give energy
eigenvalues which are in excellent agreement with
those in other methods, with an explicit analytic
form for the approximate wave function.
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FIGURE 7. Examples of the first excited state wave
functions and energy approximations of the anhar-
monic oscillator. [Color figure can be viewed in the
online issue, which is available at www.interscience.
wiley.com.]

TABLE III ____________________________________
Energy approximation, in natural units, for the
ground state at several different points.

 Energy x � 0 Energy x � 1 Energy x � 2

0.1 1.065285510 1.065285509 1.065285519
0.2 1.118292650 1.118292661 1.118292701
0.3 1.164047149 1.164047166 1.164047175
1 1.392351640 1.392351641 1.392351647
2 1.607541302 1.607541294 1.607541364
3 1.769588840 1.769588857 1.769584287
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5. Modified Pöschl-Teller

In this section, we will discuss the accuracy of
the energies and wave functions of the MPT poten-
tial well [11]. We chose to study this potential be-
cause its depth is easily varied by adjusting a pa-
rameter , allowing us to investigate how the
accuracy of our results varied by changing the
depth of the well. The MPT has the form

V� x� �
1

2ma2
� � 1�

cosh2�ax�
(16)

where  � 1. Because the Taylor expansion of the
potential produces powers of 1/x we chose to re-
write the potential as

V� x� �
1

2ma2� � 1�tanh2�ax�. (17)

Using natural units the MPT well takes the form

V� x� �


2� � 1�tanh2�x�. (18)

The potential has an absolute minimum at x � 0
(i.e., V(0) � 0) and is bounded above by /2(	1)
which approaches asymptotically as x approaches
�� (see Fig. 8).

The exact energy of the bound states is then
given by

En �
1
2� � 1� � n� � 1 �

n
2� . (19)

Because the energy of a bound state must be less
that 1/2(	1) we can find how many bound states
exist for a given . The result is that there are n � (
	 1), where n is an integer. Notice that there is
always at least one bound state because we have
assumed that  � 1. This method is able to compute
the ground state and first excited states of this

TABLE IV ____________________________________
Energy approximation, in natural units, for the first
excided state at several different points.

 Energy x � 0 Energy x � 1 Energy x � 2

0.1 3.306872014 3.306872004 3.306872008
0.2 3.539005273 3.539005288 3.539005290
0.3 3.732484278 3.732484274 3.732484261
1 4.648812705 4.648812698 4.648812712
2 5.475784528 5.475784532 5.475784586
3 6.086896438 6.086896434 6.086899518

TABLE V _____________________________________
Second moments for the ground state and first
excited state approximations.

 Ground Excited

0.1 0.4690374046 1.263891213
0.2 0.4125253695 1.140746818
0.3 0.3885654659 1.058502237
1 0.3388630869 0.8012563761
2 0.2860134629 0.6628382181
3 0.2536595001 0.5892497696

The moments were calculated using the range x � [	10, 10].

TABLE VI ____________________________________
Comparison of the ground state energies.

 E o �Ĥ�

Effective
operator

[5]
Biswas
et al. [7]

0.1 1.06528551 1.065285509 1.06529 1.06528550954
0.2 1.11829265 1.118292655 1.11831 1.11829265437
0.3 1.16404715 1.164047158 1.16407 1.16404715735
1 1.39235164 1.392351640 1.39238 1.39235164153
2 1.60754130 1.607541303 1.60757 1.60754130247
3 1.76958884 1.769611059 1.76962 1.76958884428

TABLE VII ____________________________________
Comparison of the first excited state energies.

 E o �Ĥ�

Effective
operator

[5]
Biswas
et al. [7]

0.1 3.306872014 3.306872011 NA 3.30687201
0.2 3.539005273 3.539005288 NA 3.53900528
0.3 3.732484278 3.732484272 NA 3.73248427
1 4.648812705 4.648812705 NA 4.64881270
2 5.475784528 5.475784539 NA 5.4757845
3 5.086896438 6.086906450 NA 6.0868964

NA: no results using the effective operator have been re-
ported.
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system. Their respective energies are given by
E0 � 1/2� � 1� and E1 � 3/2� � 2�.

We will also calculate the expectation value of
the Hamiltonian, 	H
, to approximate the energy.
We will use both methods in what follows.

5.1. GENERAL SOLUTION

Before considering how the IO responds to
changes in well depth, we will first discuss the
method of finding a solution to the MPT and the
general properties of the IO observed in finding
these solutions.

For the ground state, we chose our initial func-
tion to be a Gaussian of the form

� � exp� �
1
2��x2�

where � is the coefficient of the x2 term in the
Taylor expansion of the potential well around x �
0. Thus,

� �
1
2� � 1�.

However, after some trial runs we found that this
was not the best initial function. We found that, in
general, the ideal initial function is a Gaussian of
the form

� � exp� � |��x2� (20)

where | is a parameter that varies with well depth
and number of terms kept in the polynomial ap-
proximation.

For the first excited state, we desire an odd initial
function and so we choose xexp��|��x2�, where
again | varies with well depth and the number of
terms in the polynomial.

When determining which result is the best ap-
proximation to the actual solution, there are several
factors to consider. First, we consider how closely
the local E(0) and 	H
 approximate the actual en-
ergy. Second, we consider the size of the region in
which our approximation is valid. This region is
estimated by the region over which the energy is
constant. Because solutions to the MPT well are
known, we can compare directly the approximate
wave function with the exact solution. In particular,
we will compare the ratio of the approximate solu-
tion to that of the exact solution. In the region
where this ratio is �1, the approximated solution is
valid.

Consider the specific well depth given by  � 3.
This has a ground state energy of E0 � 1. In this
case, when retaining a polynomial of degree x44, we
found that the best solution was obtained by p � 2.1
� 0.05 (see Table VIII). We observe that for values
of | less than this the wave function has anomalies.
Specifically, it has “bumps” on the wings of the
decaying exponential (see Fig. 9). Because this be-
havior is not physical, we know that this result is
not valid. It turns out that this is a general result;
the best value of | is the smallest value for which
the wave function is well behaved.

As we compare the values of the energy (both
E(0) and 	H
) we find that for values of | greater

FIGURE 9. Example of an approximate wave function
that is incorrect, when  � 3, | � 1.9, with the trunca-
tion at x44. The bumps on either side of the maximum
are unphysical.

FIGURE 8. Examples of the modified Pöschl-Teller
potential for different values of  � 2, 3, 4, 5. [Color
figure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]
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than the ideal, both approximations are greater
than the exact energy. As | decreases, the approx-
imated energies also decrease. As | decreases be-
low its ideal value, the E(0) approximation de-
creases much more rapidly and is less than the
exact energy, indicating that we have crossed the
ideal value. This is not true for 	H
 because it is
always above the exact energy, as expected. This
result is also general.

As we keep larger polynomials in our approxi-
mation we find that the ideal value of | changes. A
larger polynomial always requires a larger value of
| (see Table VIII). As a general rule, keeping a
larger polynomial does not correlate to a more ac-
curate energy approximation. It seems that the key
to having a good approximation of the energy is the
proper initial function. This sensitivity of the final
result on the initial function was not expected.

All of these results are valid for calculations of
either the ground state or the first excited state.

As we investigate the range over which the wave
function is valid, we find that the wave function
with the most accurate energy approximation has
the greatest range of validity (see Fig. 10). Thus, our
two criteria for evaluating the accuracy of our ap-
proximations can both be met simultaneously.

TABLE VIII ___________________________________________________________________________________________
Results for ground state energy using � � exp[�|��x2], � � 3 (exact energy � 1.0).

xf | Energy E(0) % Error �H� % Error Comments

44 1.9 0.971089 	2.8911 1.132384 13.2384 Bumps
44 2.0 0.994280 	0.5720 1.004474 00.4474 Small bumps
44 2.1 1.000102 0.0102 1.000415 00.0415
44 2.2 1.001876 0.1876 1.000927 00.0927
44 2.3 1.002747 0.2748 1.001354 00.1354
48 2.0 0.953635 	4.6364 1.383053 38.3054 Bumps
48 2.1 0.990169 	0.9831 1.015881 01.5888 Small bumps
48 2.2 0.998958 	0.1042 1.000463 00.0463
48 2.3 1.001301 0.1301 1.000691 00.0691
48 2.4 1.002212 0.2212 1.001110 00.1110
52 2.1 0.925836 	7.4164 1.948836 94.8836 Bumps
52 2.2 0.983606 	1.6394 1.052664 05.2664 Small bumps
52 2.3 0.997363 	0.2637 1.001380 00.1380 Small bumps
52 2.4 1.000711 0.0711 1.000487 00.0487
52 2.5 1.001775 0.1775 1.000910 00.0910
56 2.3 0.972942 	2.7058 1.164430 16.4430 Bumps
56 2.4 0.994946 	0.5054 % Small bumps
56 2.5 1.000011 0.0011 1.000350 00.0350
56 2.6 1.001385 0.1385 1.000733 00.0733
56 2.7 1.001981 0.1981 1.001039 00.1039

FIGURE 10. Ratios of the approximate wave function
to the exact wave function. Observe that the range of
validity increases as the accuracy of the approximate
energy increases.
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5.2. SENSITIVITY TO WELL DEPTH

Now considering various well depths we can see
that for a given order polynomial, the ideal value of
| decreases as the depth of the well increases (see
Table X).

We would like to compare the accuracy of the
results obtained for different well depths. To do
this, we must define a suitable measure for com-
paring approximations among different well
depths. We have noted that for any well depth,
the accuracy of the approximation is dependant
on the initial function and not on the size of the
polynomial. However, because there was some
variation in accuracy as the size of the polyno-
mial is adjusted, we will compare calculations
using the same degree polynomial in the approx-
imation.

We will also only compare the best results at
each depth to the best results at any other depth.
Having noted that the final result depends on a
correct choice of initial function, this standard in
the comparison deserves further comment. Clearly,
finding the best result corresponds to finding the
ideal value of |, which, as noted, decreases with the
depth of the well. Naturally, we will not require
that the same value of | be used at each depth. For
each depth we found the ideal value of | within an
error of 0.1.

Finally, because a more accurate energy always
correlates to a larger range of validity, we will
compare the range on which the approximate wave
functions are valid for different well depths. This
facilitates a simple graphical comparison. By plot-
ting the ratio of the approximate solution to the
exact solution, we simply need to compare the
range over which the ratios are �1.

With this criterion established we can easily see
that as the depth of the well increases, the accuracy
of the approximate wave function increases (see
Fig. 10 and Table IX).

As previously mentioned, we found the unex-
pected result that the accuracy of the resultant wave
function had a strong dependence on the initial
function, or | value. By comparing the data in Table
X, we can see how this dependence varies with well
depth. Clearly, for deeper wells, we see that the
same change in the value of | results in a smaller
change in the final result, particularly for values of
| near the ideal. Thus, we conclude that for deeper
potential wells, the final result is less dependent on
the initial function.

6. Two-Dimensional SHO

Compared with the SHO in one-dimension, the
2D SHO is the most studied two-dimensional prob-
lem. We choose to study it here as proof of concept.

The potential for the 2D SHO may be defined as

V� x,y� �
1
2x2 �

1
2y2. (21)

The ground and first excited state energies are
E � 1 and E � 1.5, respectively. The first excited
state is doubly degenerate coming from a mirror
symmetry of the potential across the origin.

To solve for the ground state we chose initial
functions of the form

�initial � exp� � �x2 � �y2� (22)

where � ran from 0.2 to 2.

6.1. RESULTS FOR THE 2D SHO

Figure 11 gives an example of the resultant wave
function, the corresponding energy, and a graph of
�approx/�exact, where � � 0.6.

Results were also obtained for asymmetric initial
functions. For example, the following initial func-
tion was used in one instance,

�initial � y exp� � 0.6�x2 � y2��, (23)

which resulted in obtaining the energy E �
2.000000002. Other trial functions were used and all
of them found the expected energy values (see Ta-
ble XI).

TABLE IX ____________________________________
Results for ground state energy using
� � exp[�|��x2] for various well depths using
polynomial degree x56 and using the ideal value of
| [exact energy � (� � 1)/2].

 |
Energy

E(0)
%

Error �H� % Error

3 2.5 1.000011 0.0011 1.000350 00.0350
4 2.0 1.500015 0.00099 1.500022 0.00146
5 1.8 2.000023 0.00116 2.000008 0.00039
6 1.6 2.500003 0.00013 2.500003 0.00010
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6.2. THE ADDITION OF AN ASYMMETRIC
POTENTIAL

We also included different polynomial functions
Ṽ�x,y�, of order equal to or less than 2, which are
added to the 2D SHO potential. A list of the func-
tions Ṽ�x,y� and the resultant energies is given in
Table XII. The resultant wave functions are
stretched and contracted according to the way in
which the potential is changed (see Fig. 12).

6.3. OBTAINING BETTER INITIAL
FUNCTIONS

An interesting feature of the IO is that as the
iteration coefficient increases, to somewhere
around 	 � 0.005, the energy draws closer to the
ground state eigenvalue. Table XIII gives an exam-
ple of how the energy decreases as the iteration
coefficient increases. It appears that this is a general
pattern. Another related feature is that the energy
increases as 	 increases when the Gaussian coeffi-
cient 
 � 1/2 and the energy decreases as 	 in-
creases when 
 � 1/2.

Knowing that the energy follows this general
pattern may be of use in obtaining a better initial
function. In the case of the 2D SHO the change of
energy acts as a pointer to the actual value of �. If
for some system where we do not know the form of
the eigenstates we can find a parameter (or set of
parameters) that causes the energy to act in this
manner, then we can use this to obtain better values
for these parameters.

7. Conclusion

We have shown that with the use of the present
method we are able to obtain accurate approxima-
tions to the ground state and first excited state wave
functions and energy eigenvalues. The quality of
the result depends most heavily upon the initial
function but also depends on the number of terms
kept in the expansion and on the iteration coeffi-
cient. Assuming a good initial function, the area
over which the resultant function shows a high
correlation to the eigenfunction is limited by the
number of terms kept in the expansion. It appears
that with the ability to keep more terms the result
can be as accurate as desired.

Appendix: Example Calculations

ONE-DIMENSIONAL CASE

We will perform an example calculation to show
how the IO works in practice. The system which we
will look at is the SHO. We will use units of � �
m � � � 1 throughout the rest of this work.

The IO has the form

Îp � �1 �
	

2
d2

dx2 �
	

2x2� p

. (A1)

We will assume an initial function of the form

�� x� � exp� � 0.4x2�. (A2)

TABLE X _____________________________________________________________________________________________
Results for ground state energy using � � exp[�|��x2], polynomial degree x52 (exact energy � 1.5).

 | Energy E(0) % Error �H� % Error Comments

4 1.7 1.493155 	0.45635 1.570634 4.70891 Bumps
4 1.8 1.499090 	0.06065 1.500839 0.05593 Small bumps
4 1.9 1.500003 0.00025 1.500023 0.00153
4 2.0 1.500208 0.01386 1.500074 0.00493
4 2.1 1.500322 0.02148 1.500118 0.00786
4 2.2 1.500444 0.02960 1.500168 0.01121
5 1.5 1.999546 	0.02272 2.001458 0.07288 Small bumps
5 1.6 1.999965 	0.00173 2.000005 0.00024 Small bumps
5 1.7 2.000023 0.00115 2.000007 0.00037
5 1.8 2.000047 0.00235 2.000016 0.00079
5 1.9 2.000075 0.00375 2.000020 0.00099
5 2.0 2.000114 0.00569 2.000032 0.00161
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The IO is implemented on the computer in a loop
similar to the following pseudo code:

PSI_INITIAL:�exp( � 0.4*Xs2̂)

PSI: � PSI_INITIAL

ALPHA:�0.001

FOR I�1 TO 20

PSI � 


TRUNCATE_IN_X[

�

PSIALPHA/2*DIFF(DIFF(PSI,X),X)

	ALPHA/2*X2̂*PSI

)/PSI_INITIAL

]

}*PSI_INITIAL

END FOR

After the first iteration,

FIGURE 11. Normalized resultant wave function,
energy, and fitness for the case where �(x,y) �
exp(	0.6 (x2 � y2)) and 	 � 0.002.

TABLE XI ____________________________________
Results of the iteration operator acting on the initial
function �initial � g(x,y)exp[�0.6x2], with the iteration
coefficient � � 0.006.

g(x, y) Energy (natural unit)

x3y 3.000000004
xy 3.000000007
	xy 3.000000002
x 2.000000004
y 2.000000002
x2y 2.000000003
xy2 2.000000002
x2y2 1.000000000

TABLE XII ____________________________________
Results for the potential V(x,y) � 1/2(x2 � y2) � Ṽ(x,y)
with the initial function �(x) � exp[�0.6(x2 � y2)] and
the iteration coefficient � � 0.004.

Ṽ�x,y� Energy (natural unit)

0.2x2 1.091607978
0.2xy 0.994936153
0.5x2 1.207106781
2x2 1.618016108
x 0.500001014
x2 1.366025355
x  y 0.9999999995
xy 0.9999999995

JUNKERMEIER, BERRONDO, AND TRANSTRUM

996 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 109, NO. 5



�� x� � �0.9996 � 0.00018x2�exp� � 0.4x2�.

After the second iteration,

�� x� � �0.99919998 � 0.000359568x2

� 3.24 � 10	8x4�exp� � 0.4x2�. (A3)

We have decided to keep terms up through order
x2, and thus we divide Eq. (A3) by exp[	0.4x2],
leaving

�� x�

exp� � 0.4x2�
� �0.99919998 � 0.000359568x2

� 3.24 � 10	8x4�.

Then truncating the polynomial,

�0.99919998 � 0.000359568x2 � 3.24 � 10	8x4�

3 �0.99919998 � 0.000359568x2�,

after which we multiply the exponential back onto
the truncated polynomial

�� x� � �0.99919998 � 0.000359568x2�

exp� � 0.4x2�.

After the third iteration the wave function has
the form

�� x� � �0.99879994 � 0.0005387047x2

� �9.70056 � 10	8x4�exp� � 0.4x2�

Again we divide off the exponential, truncate the
remaining polynomial, and multiply the exponen-
tial back on, leaving the approximate wave function
in the form

�� x� � �0.99879994 � 0.0005387047x2�

exp� � 0.4x2�.

This is used in the next iteration, the result of which
is used in the next, and so on. After 20 iterations
(p � 20) the wave function is of the form

�� x� � �0.9919966979 � 0.003518678753x2�

exp� � 0.4x2�.

TWO-DIMENSIONAL CASE

Suppose now that we have a system that has a
potential V�x�� that is functionally symmetric, in the
sense that if V�x�� has a term such as

V� x� � � . . .gx4y2. . ., (A4)

then there is also a corresponding term

V� x� � � . . .gx2y4. . .. (A5)

If we have such a potential then the ground state
of the system will also be functionally symmetric.

Because truncations can only be made in one
variable at a time, functional symmetry is lost if we

TABLE XIII ___________________________________
The computed energy of the approximation draws
closer to the ground state eigenvalue as the
iteration coefficient increases with 	 � 0.6.

Iteration
coefficient Energy

0.00002 1.129782752
0.00004 1.085169262
0.00006 1.056295463
0.00008 1.037384696
0.0002 1.003330308
0.0004 1.000060612
0.0006 1.000001102
0.0008 1.000000019
0.002 1.000000000

FIGURE 12. Resultant wave function for the added
potential Ṽ(x,y) � 2x2. [Color figure can be viewed in
the online issue, which is available at www.
interscience.wiley.com.]
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use Eq. (5) and then truncate the result of each
iteration first in x and then in y. Thus Eq. (5) needs
to be symmetrized, once with truncating in x first
and then truncating in y. The second use of Eq. (5)
reverses the order truncation. After both are done
we add the two results together.

PSI_INITIAL:�exp� � 0.4*�X2̂ � Y2̂��

PSI:�PSI_INITIAL

ALPHA:�0.001

FOR I�1 TO p

PSI�{

TRUNCATE_IN_Y(

TRUNCATE_IN_X[

�

PSIALPHA/2*(DIFF(DIFF(PSI,X),X)

DIFF(DIFF(PSI,Y),Y))

V(X,Y)*PSI

)/PSI_INITIAL

]

)

�

TRUNCATE_IN_X(

TRUNCATE_IN_Y[

�

PSIALPHA/2*(DIFF(DIFF(PSI,X),X)

DIFF(DIFF(PSI,Y),Y))

V(X,Y)*PSI

)/PSI_INITIAL

]

)

}*PSI_INITIAL

END FOR

As an example of such an operation we will
perform the first few iterations of the 2D SHO cal-
culation. We will use the following forms for the IO
and initial function:

Ip � �1 �
	

2� �2

� x2 �
�2

� y2� �
	

2 � x2 � y2�� p

, (A6)

� � exp� � ��x2 � y2��. (A7)

If we set 	 � 0.002 and � � 0.6, the first two
iterations are

�1 � �0.9976 � 0.00044x2 � 0.00044y2�

exp� � 0.6x2 � 0.6y2�,

�2 � �0.99520752 � 0.000875776x2

� 0.000875776y2

� �3.872 � 10	7� y2x2 � �1.936 � 10	7� x4

� 1.936 � 10	7y4)exp� � 0.6x2 � 0.6y2�.

A three-dimensional system would work simi-
larly.
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