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ABSTRACT 

Sloppy Model Analysis of Buchholtz Neuron Model 

Jonathan Daniel Treter 

Department of Physics and Astronomy 

Bachelor of Science 

 

Neurons are complex physical systems with many interacting components. The 

foundational model of neural behavior is the Hodgkin-Huxley model. It models the cell 

membrane as a capacitor and protein ion channels as voltage-dependent resistors. The membrane 

voltage responds to an applied current and is calculated as a system of differential equations 

using standard circuit analysis. The Hodgkin-Huxley model involves four dynamical variables 

and 26 parameters; however, previous work explicitly constructing a reduced-order 

approximation showed that many of these parameters are irrelevant. A more realistic model from 

Buchholtz et al. expands on the model of Hodgkin-Huxley and involves 14 dynamical variables 

and 68 parameters. We implement the Buchholtz model in the Julia programming language and 

conduct a “sloppy model” analysis of the parameters. We show that this model is sloppy, 

meaning the importance of parameters used to explain the model behavior is exponentially 

distributed. Most of this behavior can be explained by a reduced number of combinations of 

parameters, suggesting that the model can be approximated by a low-order, reduced model. This 

work lays the foundation for a future parameter reduction analysis to find a simplified version of 

the Buchholtz model. 
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1 Introduction 

1.1 Motivation 

First principles neurological models can be extremely complex, relying on many physical 

processes at the cellular level to describe the neurons’ behavior. It is common for models of 

single neurons to involve more than a half-dozen different ionic currents, each of which is 

defined by several parameters that are inferred from data. Combining these single-neuron models 

into models of neurological systems introduces more parameters to describe intercellular 

interactions, which results in computationally intensive models.  Model reduction is therefore an 

important tool for computational neuroscience. 

1.1.1 Emergent Theories in Physics 

To physicists, the complexity of neurological models that arises from building up the 

system from numerous smaller components is reminiscent of statistical mechanics. Physicists 
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commonly face problems in which many interacting entities form a system that depends on a few 

new, emergent parameters rather than on the many parameters of its components. This process, 

known as emergence, is especially clear in kinetic theory. Given a large enough population of 

particles, the behavior of the system as a whole is no longer best described by the speeds, 

separations, and masses of the individual particles, but instead by the emergent temperature, total 

volume and pressure of the whole system. These new combined parameters allow the system, 

though extremely complex at a microscopic level, to be easily described at the macroscopic level 

with startling accuracy. 

1.1.2 Neurological Model Sloppiness 

Modern research into the statistical mechanics of inhomogeneous systems, such as neuron 

models, gives rise to the idea of model ‘sloppiness’. In this idea, parameters and their 

combinations within a model are described as ranging from stiff to sloppy.  Sloppy parameters 

are combinations that can be changed many orders of magnitude while the model’s predictions 

remain mostly unaltered.  Stiff parameters on the other hand have a strong effect on the behavior 

of the model.  Continuing with the example of kinetic theory, temperature would be a stiff 

parameter, while the individual energies of the particles would be sloppy parameters. By forming 

a renormalized combination of sloppy parameters, i.e., averaging together the individual 

energies, a single stiff parameter, temperature, emerges. This new stiff parameter describes the 

system without needing to know the energies of the individual particles. 

There are many reasons why models exhibit sloppiness. Stiff parameters like pressure and 

entropy are more convenient and relevant for describing a system of particles; however, when 

constructing a model from basic components they are not readily apparent. The properties of 
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separate particles are the clear basis to work in to construct the model even though they are not a 

phenomenological basis. As computers advance in memory and processing speed, it becomes 

increasingly practical to handle sloppy models with dozens to hundreds of parameters. 

Neurological models have been shown in many instances to exhibit sloppiness (Ryan N 

Gutenkunst 2007). The goal of this paper is to perform a sloppy model analysis on a model 

proposed by Buchholtz et al. (F. Buchholtz 1992), identify the stiff parameter combinations and 

set the groundwork for future work to redefine the model in terms of these stiff combinations, 

i.e., reduce it to a minimal form. 

1.2 Background 

 Neurons primarily consist of a cell body (soma), dendrites, and an axon (Guy-Evans 

2021). The role of a neuron is to transmit an electrical signal received at the dendrites away 

through the axon. While the cell body and dendrites are close together, the axon can reach from 

0.1 mm to 1 m away from the cell to carry signals. These signals are called action potentials and 

are fluctuations in the electric potential across the neuron’s cell membrane. These potentials are 

facilitated by ion channels and pumps that are distributed across the surface of the cell. The 

channels and pumps allow controlled flow of ions across the cell to detect and transmit potentials 

(Helen C. Lai 2006). The purpose of the conductance-based neuron model that will be analyzed 

in this paper is to describe the action potential by building it up as a system of differential 

equations representing the different ion channels in the cell by treating the channels as 

conductances, the pumps as batteries, and the membrane as a capacitor, and then solving the 

resulting electrical system for the voltage across the membrane. 
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1.3 Previous Research at BYU 

The Transtrum research group at Brigham Young University studies sloppiness in multi-

parameter models and model reduction (Mark K. Transtrum 2015). Previous work on the 

Hodgkin Huxley model (A. L. Huxley 1952), a foundational neuron model describing the giant 

squid axon that won the Nobel Prize in Physiology or Medicine in 1963, has shown it to exhibit 

sloppiness and that it can be approximated with fewer variables by using manifold boundary 

approximation to reduce the model to one based solely on the stiffest parameter combinations 

(Rasband 2021). In this paper, we will begin extending these results to more complex single-

neuron models. 

1.4 Application to New Model 

 The selected model for this new study is from Buchholtz et al. (F. Buchholtz 1992) in 

describes activation and deactivation of a neuron (stomatogastric ganglion in a rock crab). At 68 

parameters and 14 dynamical variables it is over twice as complex as the original Hodgkin-

Huxley model. The Buchholtz model is a standard model in computational neuroscience that is 

still extensively used in studies of neuronal systems (Fox 2017) (Stein n.d.) (Gorur-Shandilya 

2020). As such, it is an excellent target system to study. The analysis in Chapter 2 will focus on 

the structure of the model, how it describes activation and inactivation of the neuron, and how 

we quantify its sloppiness.  
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2 Methods 

This chapter describes our implementation of the Buchholtz model and the details of the 

sloppy model analysis. The model is formulated as a parameterized dynamical system.  

Dynamical variables represent physical quantities whose value change with time, such as voltage 

across the membrane.   The dynamical variables constitute a system of 14 coupled first-order 

ordinary differential equations that describes the activation and inactivation of the neuron. 

Parameters are constant inputs to the model. The parameters and their importance for explaining 

model behavior are elucidated by sloppy model analysis and are the focus of the present study. 

The exact equations used for the dynamical variables and values of the parameters are presented 

in Tables 1-3. 

2.1 The Buchholtz Model 

2.1.1 Overview 

Buchholtz models the change in voltage across the neuron membrane as the sum of seven 

ionic currents: an external current, which is a control in laboratory conditions or an input from 

another neuron; three currents of K+: a delayed rectifying current, an inward rectifying current, a 

calcium-activated current and an A-type current; a Ca2+ current; a Na+ current; and a leak 

current. Of these, the Na+ current is by far the largest. Each of these currents is in turn described 

by up to three dynamical variables representing activation and inactivation processes. The 

calcium and calcium-activated currents are unique in that they respectively control and depend 

on the Ca2+ concentration in the cell, which has its own dynamical variable depending on the 

calcium current. This gives a total of 14 dynamical variables in the model.  
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The dynamical system is parameterized by 68 different values. These parameters consist of 

the following: a maximum conductance for each current; a reversal potential to determine the 

direction of flow of each type of ion; a rate constant for the change of each dynamical variable; a 

half-maximum potential and step width for each of 17 voltage dependent quantities; the 

membrane capacitance; and several others that influence the calcium concentration and the 

sodium current.  The dynamical system additionally depends on four physical constants: the gas 

constant R, temperature T, Faraday constant F, and the charge of Ca2+ z. 

While these are natural parameter choices for physical measurements and the mathematical 

model, they likely do not correspond to the model’s natural phenomenological basis for the 

resulting behavior.  We expect these many microscopic parameters can be renormalized together 

to determine a reduced basis of effective parameters.  We also expect that this will remove 

dynamical variables. 

2.1.2 Dynamical Variables 

The dynamical variables of the model are presented in Table 1 as they were implemented 

in the model. The primary dynamical variable in the model is the voltage. We sample the 

predicted voltage of the model. We perform our sloppy model analysis with respect to this key 

behavior. The dynamics of the other 13 variables are given by linear differential equations that 

give a rate of change proportionate to the difference between the current value and a target 

steady state value. Both the target steady state and decay rates are nonlinear functions of voltage.  

The calcium concentration rate also includes a term 𝑐𝑖𝐶𝑎 proportional to the calcium current 𝐼𝐶𝑎 . 

Each of the steady-state-seeking variables depends on at least a rate constant parameter, a half-
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maximum potential, and a step width. Several have additional half-maximum potentials and step 

widths to describe voltage-dependent rates or more complex steady states. 

Table 1 – Functions and dynamical variables 

H is used to represent the sigmoid function. 

Voltage 
𝑑𝑉

𝑑𝑡
= (𝐼𝑒𝑥𝑡 − 𝐼𝑑 − 𝐼𝑜(𝐶𝑎) − 𝐼𝐴 − 𝐼𝐶𝑎 − 𝐼ℎ − 𝐼𝑁𝑎)     (1) 

Delayed Rectifier Current 

𝐼𝑑 = 𝑔̅𝑑 ∗ 𝑛4 ∗ (𝑉 − 𝐸𝑘) 

𝑛∞ = 𝐻 (
𝑉 − 𝑉𝑘𝑛

𝑠𝑛
) (2) 

𝑑𝑛

𝑑𝑡
= (𝑛∞ − 𝑛)𝑘𝑛 (3) 

Calcium Activated Outward Current 

𝐼𝑜(𝐶𝑎) = 𝑔̅𝑜(𝐶𝑎) ∗ 𝑎𝑜 ∗ 𝑏𝑜 ∗ (𝑉 − 𝐸𝑘) 

𝑎𝑜∞ = 𝐻 (
𝑉 − 𝑉𝑎𝑜1 − 𝑓 ∗ [Ca]

𝑠𝑎𝑜1
) 

∗ 𝐻 (
𝑉 − 𝑉𝑎𝑜2 − 𝑓 ∗ [Ca]

𝑠𝑎𝑜2
)

[Ca]

𝑐1 + [Ca]
 

(4) 
𝑑𝑎𝑜

𝑑𝑡
= (𝑎𝑜∞ − 𝑎𝑜)𝑘𝑜𝑎 (5) 

 
𝑑𝑏𝑜

𝑑𝑡
= (𝑏𝑜∞ − 𝑏𝑜)𝑘𝑜𝑏 (6) 

𝑏𝑜∞ =
𝑐2

𝑐3 + [Ca]
 (7) 

𝑑[Ca]

𝑑𝑡
= −𝑐𝑖𝐶𝑎 ∗ 𝐼𝐶𝑎 − 𝑘𝐶𝑎 ∗ ([Ca] − 𝐶𝑎𝑜) (8) 

A-type Current 

𝐼𝐴 = 𝑔̅
𝐴

∗ 𝑎𝐴
3 ∗ 𝑏𝐴 ∗ (𝑉 − 𝐸𝑘) 

𝑎𝐴∞ = 𝐻 (
𝑉 − 𝑉𝐴

𝑠𝐴
) (9) 

𝑑𝑎𝐴

𝑑𝑡
= (𝑎𝐴∞ − 𝑎𝑜)𝑘𝐴 (10) 

𝑏𝐴∞ = 𝐻 (
𝑉 − 𝑉𝐵

𝑠𝐵
) (11) 

𝑑𝑏𝐴1

𝑑𝑡
= (𝑎𝑜∞ − 𝑏𝐴1)𝑘𝐴1 (12) 

𝑏𝐴 = 𝐻 (
𝑉 − 𝑉𝑋

𝑠𝑋
) 𝑏𝐴1 

+ (1 − 𝐻 (
𝑉 − 𝑉𝑋

𝑠𝑋
)) 𝑏𝐴2 

(13) 
𝑑𝑏𝐴2

𝑑𝑡
= (𝑏𝐴∞ − 𝑏𝐴2)𝑘𝐴2 (14) 

𝑘𝐴2 = 𝑐𝐴2 ∗ 𝐻 (
𝑉 − 𝑉𝐴2

𝑠𝐴2
) (15)   

Calcium Current 

𝐼𝐶𝑎 = (𝑔̅
𝐶𝑎1

∗ 𝑎𝐶𝑎1 ∗ 𝑏𝐶𝑎1 + 𝑔̅
𝐶𝑎2

∗ 𝑎𝐶𝑎2) ∗ (𝑉 − 𝐸𝐶𝑎) 
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𝑎𝐶𝑎1∞ = 𝐻 (
𝑉 − 𝑉𝑎𝐶𝑎1

𝑠𝑎𝐶𝑎1
) (16)  

𝑑𝑎𝐶𝑎1

𝑑𝑡
= (𝑎𝐶𝑎1∞ − 𝑎𝐶𝑎1)𝑘𝑎𝐶𝑎1 (17) 

𝑏𝐶𝑎1∞ = 𝐻 (
𝑉 − 𝑉𝑏𝐶𝑎2

𝑠𝑏𝐶𝑎1
) (18) 

𝑑𝑏𝐶𝑎1

𝑑𝑡
= (𝑏𝐶𝑎1∞ − 𝑏𝐶𝑎1)𝑘𝑏𝐶𝑎1 (19) 

𝑎𝐶𝑎2∞ = 𝐻 (
𝑉 − 𝑉𝑎𝐶𝑎1

𝑠𝑎𝐶𝑎1
) (20) 

𝑑𝑎𝐶𝑎2

𝑑𝑡
= (𝑎𝐶𝑎2∞ − 𝑎𝐶𝑎2)𝑘𝑎𝐶𝑎2 (21) 

Inward Rectifier Current 

𝐼ℎ = 𝑔̅
ℎ

∗ 𝑟 ∗ (𝑉 − 𝐸ℎ) 

𝑟∞ = 𝐻 (
𝑉 − 𝑉𝑟

𝑠𝑟
) (22) 

𝑑𝑟

𝑑𝑡
= (𝑟∞ − 𝑟)𝑘𝑟 (23) 

𝑘𝑟 = 𝑐𝑟 𝐻 (
𝑉 − 𝑉𝑘𝑟

𝑠𝑘𝑟
)⁄  (24)   

Fast Sodium Current 

𝐼𝑁𝑎 = 𝑔̅
𝑁𝑎

∗ 𝑚3 ∗ ℎ ∗ (𝑉 − 𝐸𝑁𝑎) 

𝑚∞ =
𝑎𝑚

𝑎𝑚 + 𝑏𝑚
 (25) 

𝑑𝑚

𝑑𝑡
= (𝑚∞ − 𝑚)𝑘𝑚 (26) 

𝑎𝑚 =
𝑐𝑎𝑚(𝑉 − 𝑉𝑎𝑚)

1 − exp (
𝑉 − 𝑉𝑎𝑚

𝑠𝑎𝑚
)
 

(27)   

𝑏𝑚 = 𝑐𝑏𝑚 exp (
𝑉 − 𝑉𝑏𝑚

𝑠𝑏𝑚
) (28)   

ℎ∞ =
𝑎ℎ

𝑎ℎ + 𝑏ℎ
 (29) 

𝑑ℎ

𝑑𝑡
= (ℎ∞ − ℎ)𝑘ℎ (30) 

𝑎ℎ = 𝑐𝑎ℎ exp (
𝑉 − 𝑉𝑎ℎ

𝑠𝑎ℎ
) (31)   

𝑏ℎ = H (
𝑉 − 𝑉𝑏ℎ

𝑠𝑏ℎ
) (32)   

Leak Current 

𝐼𝑙 = 𝑔̅
𝑙

∗ (𝑉 − 𝐸𝑙) 

 

2.1.3 Parameters 

The 68 parameters of the model are given in Table 2 and Table 3. They are organized by 

which dynamical variable they influence. For the purposes of analysis, the rate constants were 
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divided by 1 000 to convert them from Hz to kHz and give time values in milliseconds. 

Otherwise, the parameters were retained as presented in Buccholtz’s model (F. Buchholtz 1992). 

Table 2 - Current parameters 

Current 

Maximum 

Conductance 

(µS) 

Reversal Potential 

(mV) 

Rate Constant 

(Hz) 

Half-

Maximum 

Potential 

(mV) 

Step Width 

(mV) 

Delayed Rectifier, 

Id 
𝑔̅𝑑 = 0.35 𝐸𝑘 = −80 𝑐𝑛 = 180 

𝑉𝑛 = −25 

𝑉𝑘𝑛 = 10 

𝑠𝑛 = −17 

𝑠𝑘𝑛 = −22 

Calcium-Activated 

Outward, 

Io(Ca) 

𝑔̅𝑜(𝐶𝑎) = 3.2 𝐸𝑘 

𝑘𝑜𝑎 = 600 

𝑘𝑜𝑏 = 35 

𝑘𝐶𝑎 = 360 

𝑉𝑎𝑜1 = 0 

𝑉𝑎02 = −16 

𝑠𝑎01 = −23 

𝑠𝑎𝑜2 = −5 

Transient A-type 

 IA 
𝑔̅𝐴 = 2.2 𝐸𝑘 

𝑘𝐴 = 140 

𝑘𝐴1 = 50 

𝑐𝐴2 = 3.6 

𝑉𝐴 = −12 

𝑉𝐵 = −62 

𝑉𝐴2 = −40 

𝑉𝑋 = 7 

𝑠𝐴 = −26 

𝑠𝐵 = 6 

𝑠𝐴2 = −12 

𝑠𝑋 = −15 

Ca2+ 

 ICa 

𝑔̅𝐶𝑎1 = 0.21 

𝑔̅𝐶𝑎2 = 0.047 
𝐸𝐶𝑎 =

𝑅 𝑇

𝑧 𝐹
lo g (

13000

[𝐶𝑎2+]
) 

𝑘𝑎𝐶𝑎1 = 50 

𝑘𝑏𝐶𝑎1 = 10 

𝑘𝑎𝐶𝑎2 = 16 

𝑉𝑎𝐶𝑎1 = −11 

𝑉𝑏𝐶𝑎1 = −50 

𝑉𝑎𝐶𝑎2 = 20 

𝑠𝑎𝐶𝑎1 = −7 

𝑠𝑏𝐶𝑎1 = 8 

𝑠𝑎𝐶𝑎2 = −7 

Inward Rectifier 

 Ih 
𝑔̅ℎ = 0.037 𝐸ℎ = −10 𝑐𝑟 = 0.33 

𝑉𝑟 = −70 

𝑉𝑘𝑟 = −110 

𝑠𝑟 = 7 

𝑠𝑘𝑟 = −13 

Fast Na+ 

 INa 
𝑔̅𝑁𝑎 = 2300 𝐸𝑁𝑎 = 50 

𝑘𝑚 = 10 000 

𝑘𝑛 = 500 

𝑉𝑎𝑚 = −6 

𝑉𝑏𝑚 = −34 

𝑉𝑎ℎ = −39 

𝑉𝑏ℎ = −40 

𝑠𝑎𝑚 = −20 

𝑠𝑏𝑚 = −13 

𝑠𝑎ℎ = −8 

𝑠𝑏ℎ = −5 

Leak 

 Il 
𝑔̅𝑙 = 0.1 𝐸𝑙 = −50    
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Table 3 - Additional Parameters 

Additional Fast Na+ (𝐦𝐕−𝟏) 

𝒄𝒂𝒎 = 𝟎. 𝟏𝟏 

𝒄𝒃𝒎 = 𝟏𝟓 

𝒄𝒂𝒉 = 𝟎. 𝟎𝟖 

[Ca2+] Parameters (mV/µM) 𝑓 = 0.6 

[Ca2+] Parameters (µM) 

𝑐1 = 0.08 

𝑐2 = 0.08 

𝑐3 = 0.08 

[Cao] = 0.05 

[Ca2+] Parameters (µM/nC) 𝒄𝒊𝑪𝒂 =  
1

𝑧 𝐹 𝑉𝑜𝑙
 = 300 

Membrane Capacitance (nF) 𝐶𝑚 = 1.7 

Temperature T = 283 K 

 

2.2 Computational Formulation 

The model was implemented in the Julia environment so that it could be analyzed using 

libraries previously created by the Transtrum group (Transtrum 2021). The Julia model’s purpose 

is to evaluate the voltage of the model at multiple time points (i.e., the “target behavior” 

described below) for a given set of parameter values.  It then calculates the sensitivity of these 

predictions to infinitesimal variations in these parameter values.   

2.2.1 Target Behavior 

The chosen behavior to sample was the voltage response to brief input currents of 

constant magnitude, as shown in Figure 7 of Buchholtz et al. and reproduced in Figure 1 below 
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using our implementation.  Six different magnitudes of the applied input current were sampled 

ranging from 7 nA to -5 nA at 2.5 nA intervals, with positive current flowing into the neuron and 

negative flowing out. This allows us to study how the relative importance of parameters 

combinations depends on the magnitude of the input current. 

There were several reasons for choosing the voltage spiking as the target behavior. First, 

it is most closely related to the primary physiological function of the cell, as it determines how it 

will fire when activated by an input current from another neuron. It is also the behavior most 

Figure 1 - Target Behavior 

The reactions of the voltage (blue) to different input currents (red). This is the behavior 

produced by the Julia model, and reflects closely the behavior shown in the paper by Buchholtz 

et al. 
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thoroughly described by Buchholtz et al. in the original publication on the model. Further, it is 

the most complex behavior in the model since it depends on every parameter. 

To determine the initial conditions of the model, we solved the dynamical system from 

generic initial conditions until it reached a limit cycle. We selected the values of the dynamical 

system from a point on this limit cycle as the initial conditions we use in our subsequent sloppy 

analysis.  More specifically, we selected the values of the dynamical variables when the voltage 

was at a minimum of this limit cycle. 

2.2.2 Julia Module 

The model was implemented as a Julia function (Appendix) that takes a set of parameter 

values, solves the corresponding system of differential equations, and returns the resulting 

voltage sampled for two thousand ms at 8.33 kHz for each of the six input currents. This 

implementation allows analysis of the model in parameter space in addition to solution space 

since the solution can be solved and sampled while varying the values of parameters. To ensure 

that parameters are only varied within their physical ranges we performed a parameter 

transformation.  Parameters that are restricted to positive values were first log-transformed.  A 

log-transform also removes dependence on units.  For parameters that can take on any real value, 

we use an inverse sinh transform.  The inverse sinh is log-like for large parameter values, so it 

also removes the effect of units. 

2.3 Analysis Methods 

The core of the analysis method is to shift from a solution as a function of time to a 

solution as a function of parameters.  This is facilitated by selecting the target behaviors, 
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described above, i.e., sampling voltage at predetermined time points.  With this set of target 

behaviors, the model becomes a mapping from parameters to predictions. This view of the model 

as a mapping from parameters to solution enables us to study how the parameters affect the 

target behaviors and which combinations of parameters are the natural basis for controlling the 

target behaviors. The stiff parameter combinations are those that most strongly influence the 

solution and give the steepest gradients in parameter space. 

2.3.1 Fisher Information 

The behavior of the model in parameter space can be described by the Fisher information. 

This information is the matrix 𝐽𝑇𝐽 where 𝐽 is the Jacobian matrix of the model function 

for y being the time samples of the model and 𝜽 being the parameters. The Jacobian is therefore 

an M X N matrix where M is the number of time samples and N the number of parameters. 

The eigenvectors of the Fisher information matrix (FIM) form a basis in parameter space, 

with each vector being a combination of parameters. The eigenvalues give the relative 

importance of these combinations for controlling the target behavior, indicating their stiffness or 

sloppiness. 

2.3.2 Singular Value Decomposition 

To obtain this same information, the Jacobian of the model from the solution samples to the 

parameters was taken at each input current value. Next, the singular value decomposition (SVD) 

of the model was taken. The SVD separates the model into three parts as  

𝐽𝜇𝜈 =
𝜕𝑦𝜇

𝜕𝜃𝜈
 (33) 
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where S is a diagonal matrix containing the singular values of J and α are the singular values. 

These singular values are equal to the square roots of the eigenvalues of the FIM. The rows of V 

are called the right singular vectors and represent combinations of parameters or directions in 

parameter space, sharing this role with the eigenvectors of the FIM. The rows of U are the left 

singular vectors and are proportionate to the derivative of the solution with respect to the 

parameter combination in the corresponding right vector. The left singular vectors are additional 

information from the SVD over the FIM and reveal the roles of the new parameter combinations 

in the right vectors. The results drawn from studying these six SVDs are described below in 

Chapter 3. 

  

𝐽μν = ∑ 𝑈μα𝑆α𝑉να

α

 (34) 
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3 Results and Conclusions 

The analysis of the model showed that the Buchholtz model is indeed very sloppy. Only 

around a third as many parameters should be necessary to approximately describe the system. 

Future work may apply the Manifold Boundary Approximation Method (Mark K. Transtrum 

2015) to explicitly construct a reduced-order model in terms of these parameters. 

3.1 Singular Values 

The squared singular values of the model, corresponding to the eigenvalues of the FIM, are 

shown in Figure 2. Each of these eigenvalues represents the stiffness of a particular combination 

of parameters as a value proportionate to the number of sample points squared, plotted as the 

purple dashed line. This number is the rough cutoff between stiff and sloppy directions. At the 

stiffest input current of 7.5 nA there are only 22 directions above this line. Theoretically then, the 

model could be refactored to create a remarkably close approximation using only about 22 new 

parameters. 

An important feature of the following analysis of the left singular vectors is that the model 

was decomposed separately at each input current. This means that the highest eigenvalue for one 

current may not correspond to the same parameter combination as for another. Indeed, analysis 

of the right singular vectors shows that they do vary and that the stiffest parameters are therefore 

not the same at each current. These differences for each current are not just a mathematical quirk 

of the SVD, but rather indicate that different physical properties of the cell become more or less 

important to spiking depending on the input that the cell receives. 
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Figure 2 - Eigenvalues of FIM 

The dashed purple line indicates the rough cutoff between stiff and sloppy directions. Most 

directions fall under this line, in the sloppy region. 
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Figure 3- Right Singular Vectors 

These plots show the magnitude of each parameter in the right singular vectors for sample 

eigenvalues. The vectors correspond to the directions in parameter space for the first and fourth 

stiffest parameter combinations. 

The first is roughly the same combination for each input current, but as early as early as the 

fourth vector the stiffest combinations vary and split into three distinct trends – one for negative 

current, one for positive and one in between them for zero. 
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3.2 Singular Vectors 

 The singular vectors allow us to visualize how movement in parameter space affects the 

model. The left vector represents the strength of that point’s model response to changes in 

parameters in the direction of the corresponding right singular vector.  The singular value is the 

strength of the response in parameter space. 

Figures 3 – 7 plot the model solution against  

𝑽𝑠𝑐𝑎𝑙𝑒𝑑 = 1 000 ∗  𝑽 + 𝒚 (35) 

where V is the left singular vector and y is the 

solution. Peaks in the singular vector are places 

in the solution that would change the most if that 

combination of parameters were altered. The first 

few vectors shown here are the stiffest 

combinations corresponding to the largest 

singular values and give insight into how these 

emergent parameters describe the model.   

 In Figure 4 the first of the left singular 

vectors is shown. The increasing spikes at each 

peak indicate that this parameter combination 

controls the frequency of the solution: as the 

solution progresses in time, the phase difference 

from a change in frequency grows, and this manifests 

as growing peaks. Since the oscillation stops at 

Figure 4 – Left Singular Vector 1 

The first left singular vector in orange 

and the original sampled values in blue 

This vector controls the overall 

frequency. 
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negative input currents, this offset disappears and 

only begins to grow again after the current is 

removed. For positive input currents the offset is 

able to build up during the faster oscillations and 

stays large even after the current is stopped. This 

vector has much less effect on the negative input 

currents because there are no oscillations for most 

of the solution time. This is reflected in the much 

lower first eigenvalue for these currents in Figure 

2. 

The second vector shown in Figure 5 is also 

related to frequency, as shown by the increasing 

magnitude of the spikes. This direction has a 

weaker effect during the rapid oscillations of 

positive input current and a stronger effect without 

the current, indicating that it primarily controls the 

resting frequency when the input current is zero. 

The third vector in Figure 6 shows different effects for positive currents than negative 

currents. The stiffest parameter combinations are no longer the same, and the change in behavior 

here reflects that. For negative currents what is most important at this level is the reactivation 

after the current is removed, while for zero current it is the initial peak and for positive current it 

is the frequency before and after the current is applied. In the fourth vector, Figure 7, the 

differences are just as pronounced. 

Figure 5 – Left Singular Vector 2 

This vector controls the frequency 

without input current. 
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These stiffest directions’ effects are clearly reflected in the behavior of the model – 

frequency responses, spiking during activation and deactivation, and total amplitude. These are 

traits that more naturally define the resulting model, though they do not have a clear relation to 

the individual currents and parameters (see the actual combinations in Figure 3 – they are very 

complex in terms of the original parameters of the model). Contrast the 68th singular vector - the 

Figure 7 – Left Singular Vector 4 

This vector affects the frequency of induced 

oscillations. 

Figure 6 – Left Singular Vector 3 

This vector affects the amplitude of induced 

oscillations. 
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most sloppy combination - in Figure 8 where the 

effects are much smaller and are spread out across 

the entire solution. Most of the spikes are 

proportionate to the actual solution at that point. This 

combination has the weakest effect on the model’s 

target behavior and does not correspond well to any 

particular defining trait of the solution. 

It is clear from these analyses that the model 

exhibits high sloppiness but that there do exist 

certain parameter combinations that influence key 

properties of the solution voltage. These emergent 

parameters more clearly and simply describe the 

model. It is also clear that not all input currents are 

governed by the same set of these stiff parameters. 

3.3 Future Work 

 The existence of these emergent properties in 

the singular vectors is encouraging as it demonstrates 

the possibility of simplifying the model to rely on these combinations of parameters to describe 

the model at a higher level. The task of redefining the model in terms of these new combinations 

and performing the reduction will require extensive future work using the manifold boundary 

approximation (Mark K. Transtrum 2015). This technique involves viewing as possible models 

as a manifold in n-dimensional parameter space. Since the manifold is thin along sloppy axes it 

Figure 8 – Left Singular Vector 68 

This vector is included as an example of a 

sloppy parameter combination without a 

weaker and less clear effect. 
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can be approximated by its boundary, removing that thin dimension, and fitting the resulting n-1 

dimensional model to the parameter again. Repetition of this process allows each sloppy 

dimension to be removed until a much stiffer approximation is reached. Julia code for 

constructing geodesics to find the manifold boundary and perform this process is available on the 

Transtrum group modeling repository (Transtrum 2021). Comparing the resultant model to 

previous work on reducing the model by other methods (David Golomb 1993) may show 

agreement on which parameters form a phenomenological basis. 

 The effects of the input current will likely be an important obstacle to overcome in 

performing this reduction, since the SVD yields different stiff parameters depending on the 

current. One potential solution could be parameterizing the input current rather than viewing it as 

constant and varying the input current through many values to get a single Jacobian rather than 

six. Another possible solution would be to sample the solution with a more complex function of 

input current, such as an input involving positive and negative gaussian pulses rather than a step 

function, so that the SVD would produce singular vectors that are stiff across the whole range of 

inputs. 

 Comparing the resulting model’s parameters to the physical neuron should yield insights 

into what physical aspects of it are most important to its function. The traits that correspond to 

stiff parameters are likely the most strictly bound, while sloppier parameters would be able to 

vary widely and still effectively transmit action potentials. This could enhance understanding of 

why the neuron in this model is structured the way that it is. 

 With the goal of understanding physical effects of the stiff neuron attributes, future study 

of the model could also include parameterizing temperature and observing the effect on the 
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original and reduced models. Unfortunately, the data in the original paper from Buchholtz et al 

(F. Buchholtz 1992) was collected at 283 Kelvin and therefore the model will likely not represent 

the effects of temperature fluctuation. A different temperature-dependent version of the model 

would therefore be needed in order to treat temperature as anything but constant. 

3.4 Conclusion 

 The Buchholtz model exhibits high sloppiness, and the extra complexity from the sloppy 

parameters makes implementing the model cumbersome. While this sloppiness does not reduce 

the accuracy of the model, it does make the model difficult to understand and implement. 

Reducing sloppiness helps to improve understanding of the model, find emergent stiff parameter 

combinations and lower computation time when using it. Reducing this complexity will not only 

simplify computations of the model but will also help to identify the stiff parameter 

combinations that form a more natural basis for the model. This basis may also form a more 

natural means of describing other neurological models and help to advance our understanding of 

neurons. 
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Appendix 

Julia Module 

module Buchholtz_Model 

import Models 

using ParametricModels 

import JSON 

 

inputCurrent = 7.5 

 

RelaxationRateUnit = 1/1000; 

@parameterspace mutable struct Buchholtz 

    R = 8.3145, constant 

    z = 2, constant 

    F = 96485.3364, constant 

    T = 283, constant 

    Cao = .05, constant 

    V0 = -47.31873839514293, constant 

    n0 = 0.7426884387628095, constant 

    aA0 = 0.37055833789764714, constant 

    bA10 = 0.026891249304544403, constant 

    bA20 = 0.03974799915442218, constant 

    aCa10 = 0.2716649180541391, constant 

    aCa20 = 0.10131106656511829, constant 
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    bCa10 = 0.24815067665480262, constant 

    Ca0 = 2.5565502265201756, constant 

    ao0 = 0.0015380660813823332, constant 

    bo0 = 0.44831495326463255, constant 

    r0 = 0.01713064244099982, constant 

    m0 = 0.015537113804810612, constant 

    h0 = 0.31037170208728354, constant 

    gd = .35, exp 

    EK = -80, sinh 

    cn = 180*RelaxationRateUnit, exp 

    Vn = -25, sinh 

    Vkn = 10, sinh1 

    sn = -17, sinh 

    skn = -22, sinh 

    gCaO = 3.2, exp 

    koa = 600 * RelaxationRateUnit, exp 

    kob = 35 * RelaxationRateUnit, exp 

    kCa = 360 * RelaxationRateUnit, exp 

    Vao1 = 0, sinh 

    Vao2 = -16, sinh 

    sao1 = -23, sinh 

    sao2 = -5, sinh 

    f = .6, exp 

    c1 = 2.5, exp 

    c2 = .7, exp 

    c3 = .6, exp 

    ciCa = 300, exp 
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    gA = 2.2, exp 

    kA = 140 * RelaxationRateUnit, exp 

    kA1 = 50 * RelaxationRateUnit, exp 

    cA2 = 3.6 * RelaxationRateUnit, exp 

    VA = -12, sinh 

    VB = -62, sinh 

    VA2 = -40, sinh 

    Vx = 7, sinh 

    sA = -26, sinh 

    sB = 6, sinh 

    sA2 = -12, sinh 

    sx = -15, sinh 

    gCa1 = .21, exp 

    gCa2 = .047, exp 

    kaCa1 = 50 * RelaxationRateUnit, exp 

    kbCa1 = 16 * RelaxationRateUnit, exp 

    kaCa2 = 10 * RelaxationRateUnit, exp 

    VaCa1 = -11, sinh 

    VbCa1 = -50, sinh 

    VaCa2 = 22, sinh 

    saCa1 = -7, sinh 

    sbCa1 = 8, sinh 

    saCa2 = -7, sinh 

    gh = .037, exp 

    Eh = -10, sinh 

    cr = .33 * RelaxationRateUnit, exp 

    Vr = -70, sinh 
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    Vkr = -110, sinh 

    sr = 7, sinh 

    skr = -13, sinh 

    gNa = 2300, exp 

    ENa = 50, sinh 

    km = 10000 * RelaxationRateUnit, exp 

    kh = 500 * RelaxationRateUnit, exp 

    Vam = -6, sinh 

    Vbm = -34, sinh 

    Vah = -39, sinh 

    Vbh = -40, sinh 

    sam = -20, sinh 

    sbm = -13, sinh 

    sah = -8, sinh 

    sbh = -5, sinh 

    cam = .11, exp 

    cbm = 15, exp 

    cah = .08, exp 

    Cm = 1.7, exp 

    gl = .1, exp 

    El = -50, sinh 

end 

 

#Returns ICs 

function ic(ps::Buchholtz{T}) where T <: Real 

    return T[ps.V0, ps.n0, ps.ao0, ps.bo0, ps.Ca0, ps.aA0, 

ps.bA10, ps.bA20, ps.aCa10, ps.aCa20, ps.bCa10, ps.r0, ps.m0, 

ps.h0] 
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end 

 

#Helper Functions 

H(V,V2,s) = 1/(1+exp((V-V2)/s)) 

 

#External Current 

Iext(t) = ((t > 500 && t < 1500) ? inputCurrent : 0) 

 

#Actual diffeq 

function rhs(ps::Buchholtz{TT}, t, u, du) where TT <: Real 

    V,n,ao,bo,Ca,aA,bA1,bA2,aCa1,aCa2,bCa1,r,m,h = u 

    #Physical constants 

    R = 8.3145 

    z = 2 

    F = 96485.3364 

    T = 283 

 

    #Parameters 

    gd = ps.gd 

    EK = ps.EK 

    cn = ps.cn 

    Vn = ps.Vn 

    Vkn = ps.Vkn 

    sn = ps.sn 

    skn = ps.skn 

    gCaO = ps.gCaO 

    koa = ps.koa 
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    kob = ps.kob 

    kCa = ps.kCa 

    Vao1 = ps.Vao1 

    Vao2 = ps.Vao2 

    sao1 = ps.sao1 

    sao2 = ps.sao2 

    f = ps.f 

    c1 = ps.c1 

    c2 = ps.c2 

    c3 = ps.c3 

    ciCa = ps.ciCa 

    Cao = ps.Cao 

    gA = ps.gA 

    kA = ps.kA 

    kA1 = ps.kA1 

    cA2 = ps.cA2 

    VA = ps.VA 

    VB = ps.VB 

    VA2 = ps.VA2 

    Vx = ps.Vx 

    sA = ps.sA 

    sB = ps.sB 

    sA2 = ps.sA2 

    sx = ps.sx 

    gCa1 = ps.gCa1 

    gCa2 = ps.gCa2 

    kaCa1 = ps.kaCa1 
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    kbCa1 = ps.kbCa1 

    kaCa2 = ps.kaCa2 

    VaCa1 = ps.VaCa1 

    VbCa1 = ps.VbCa1 

    VaCa2 = ps.VaCa2 

    saCa1 = ps.saCa1 

    sbCa1 = ps.sbCa1 

    saCa2 = ps.saCa2 

    gh = ps.gh 

    Eh = ps.Eh 

    cr = ps.cr 

    Vr = ps.Vr 

    Vkr = ps.Vkr 

    sr = ps.sr 

    skr = ps.skr 

    gNa = ps.gNa 

    ENa = ps.ENa 

    km = ps.km 

    kh = ps.kh 

    Vam = ps.Vam 

    Vbm = ps.Vbm 

    Vah = ps.Vah 

    Vbh = ps.Vbh 

    sam = ps.sam 

    sbm = ps.sbm 

    sah = ps.sah 

    sbh = ps.sbh 
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    cam = ps.cam 

    cbm = ps.cbm 

    cah = ps.cah 

    Cm = ps.Cm 

    gl = ps.gl 

    El = ps.El 

 

    # Substitutions 

    kn = cn * H(V,Vkn,skn) 

    nf = H(V,Vn,sn) 

    IKd = gd * n^4 * (V - EK) 

    aof = H(V,Vao1-f*Ca,sao1) * H(V,Vao2-f*Ca,sao2) * (Ca / (c1 

+ Ca)) 

    bof = c2/(c3 + Ca) 

    ICaO = gCaO * ao * bo * (V - EK) 

    kA2 = cA2 * H(V, VA2, sA2) 

    aAf = H(V,VA,sA) 

    bAf = H(V,VB,sB) 

    bA = H(V,Vx,sx) * bA1 + (1 - H(V,Vx,sx)) * bA2 

    IA = gA * aA^3 * bA * (V - EK) 

    ECa = (R * T) / (z * F) * log(max((13000/Ca),0)) * 1000 

    aCa1f = H(V,VaCa1,saCa1) 

    aCa2f = H(V,VaCa2,saCa2) 

    bCa1f = H(V,VbCa1,sbCa1) 

    ICa = (gCa1 * aCa1 * bCa1 + gCa2 * aCa2) * (V - ECa) 

    rf = H(V,Vr,sr) 

    kr = cr / H(V,Vkr,skr) 

    Ih = gh * r * (V - Eh) 
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    am = cam * (V - Vam) / (1 - exp((V - Vam)/sam)) 

    bm = cbm * exp((V - Vbm)/sbm) 

    mf = am/(am + bm) 

    ah = cah * exp((V - Vah)/sah) 

    bh = H(V,Vbh,sbh) 

    hf = ah/(ah + bh) 

    INa = gNa * m^3 * h * (V - ENa) 

    Il = gl * (V - El) 

 

    #Voltage 

    du[1] = (Iext(t) - IKd - ICaO - IA - ICa - Ih - INa - Il)/Cm 

     

    #Delayed Rectifier Pottasium Current IKd 

    du[2] = (nf - n) * kn 

    #Calcium Activated Outward Pottasium Current ICaO 

    du[3] = (aof - ao) * koa 

    du[4] = (bof - bo) * kob 

    du[5] = -ciCa * ICa * RelaxationRateUnit - kCa * (Ca - Cao) 

    #Transient A-like Current IA 

    du[6] = (aAf - aA) * kA 

    du[7] = (bAf - bA1) * kA1 

    du[8] = (bAf - bA2) * kA2 

    #Calcium Current ICa 

    du[9] = (aCa1f - aCa1) * kaCa1 

    du[10] = (aCa2f - aCa2) * kaCa2 

    du[11] = (bCa1f - bCa1) * kbCa1 

    #Inwardly Rectifying Potassium Current Ih 



 
33 

 

 

    du[12] = (rf - r) * kr 

    #Fast Tetrodotoxin-Sensitive Sodium INa 

    du[13] = (mf - m) * km 

    du[14] = (hf - h) * kh 

    nothing 

end 

#Returns voltage from the solved problem 

function obs(ps::Buchholtz{T}, _t, _x) where T <: Real 

    return T[_x[1]] 

end 

function obs_states(ps::Buchholtz{T}, _t, _x) where T <: Real 

    return _x 

end 

import Sundials 

import DifferentialEquations 

alg = Sundials.CVODE_BDF() 

BuchholtzVoltage(ps::Buchholtz, t) = 

ParametricModels.solve_ode(ps, ic, rhs, obs, t, alg, abstol= 1e-

8, reltol = 1e-8, stops = [500, 1500]) 

dt0 = 5.0 

dt75 = .12 

t = 0:dt75:2000 

y = BuchholtzVoltage(Buchholtz(), t) 

data = ParametricModels.OLSData("Buchholtz", 

ParametricModels.ModelArgs(t), y) 

pmodel = PModel(Buchholtz, parameter_transforms, 

BuchholtzVoltage, data) 

model = Models.Model(pmodel, "Buchholtz") 

modelbare = Models.Model(pmodel, "Buchholtzbare"; bare = true) 
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xi = ParametricModels.xvalues(pmodel) 

 

function setInputCurrent(current) 

    global inputCurrent = current 

    global y = BuchholtzVoltage(Buchholtz(), t) 

    global data = ParametricModels.OLSData("Buchholtz", 

ParametricModels.ModelArgs(t), y) 

    global pmodel = PModel(Buchholtz, parameter_transforms, 

BuchholtzVoltage, data) 

    global model = Models.Model(pmodel, "Buchholtz") 

    global modelbare = Models.Model(pmodel, "Buchholtzbare"; 

bare = true) 

    global xi = ParametricModels.xvalues(pmodel) 

    return y, xi 

end 

 

end # module 
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