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The purposes of this paper are (a) to examine the effect of calorimeter time constant (s) on heat rate data
from a single enzyme injection into substrate in an isothermal titration calorimeter (ITC), (b) to provide
information that can be used to predict the optimum experimental conditions for determining the rate
constant (k2), Michaelis constant (KM), and enthalpy change of the reaction (DRH), and (c) to describe
methods for evaluating these parameters. We find that KM, k2 and DRH can be accurately estimated with-
out correcting for the calorimeter time constant, s, if (k2E/KM), where E is the total active enzyme concen-
tration, is between 0.1/s and 1/s and the reaction goes to at least 99% completion. If experimental
conditions are outside this domain and no correction is made for s, errors in the inferred parameters
quickly become unreasonable. A method for fitting single-injection data to the Michaelis–Menten or Brig-
gs–Haldane model to simultaneously evaluate KM, k2, DRH, and s is described and validated with exper-
imental data. All four of these parameters can be accurately inferred provided the reaction time constant
(k2E/KM) is larger than 1/s and the data include enzyme saturated conditions.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mass-action kinetic models, of which Michaelis–Menten (or
Briggs–Haldane) is one example, Eq. (1),

dS=dt ¼ �k2ES=ðKM þ SÞ ð1Þ

describe the kinetics of reactions catalyzed by a single enzyme and
provide an approximation to the kinetics of processes involving a
network of enzymes [1]. These models express the reaction rate
as a function of the total concentration of active enzyme (E) and
the concentration of substrate (S) with rate constants (k2 or kcat in
some literature) and mass-action constants (KM) as parameters to
be evaluated from the data. These functions do not have a simple
closed form for the expression for dS/dt = f(t) where f(t) is a function
of time. Therefore, equations with rate expressed as a function of
time, which is the data form produced by heat-conduction and
power-compensation isothermal titration calorimetry (ITC), cannot
be obtained. This makes ITC data analysis with mass-action kinetic
models particularly challenging.
Two ITC methods for determining enzyme kinetics have been
described in the literature [2–4]; a multiple-injection method
and a single-injection method. In the multiple injection method,
the steady-state heat rate is measured after each injection of sub-
strate into an enzyme solution. The data produced is a plot of heat
rate versus concentration of substrate, typically with (20–40) data
points. Since each data point takes 3–5 min, a single experiment
takes 1.5–3.5 h. For this method to work, concentrations of enzyme
and substrate must be adjusted so that heat rates change signifi-
cantly with each injection of substrate but are also constant after
each injection. The inverse titration is not practical because of leak-
age of enzyme from the burette after the first injection. In addition
to the step-wise heat rate measurements, an additional single
injection experiment must be done to determine the enthalpy
change for the catalyzed reaction (DRH). Because s does not enter
into the calculation, after correction for the baseline and determi-
nation of DRH, evaluation of KM and k2 from multiple-injection data
can be done in a spreadsheet by the traditional methods used with
the Michaelis–Menten model.

In the single-injection method, a single injection of enzyme is
made into a solution of substrate with the substrate concentration
adjusted so that the substrate is mostly consumed in 30 min to an
hour. The data produced thus consists of several hundred measure-
ments of heat rate versus time. Data from a single injection exper-
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iment are shown by the solid line in Fig. 1. Since only one injection
is necessary, leakage from the burette prior to injection can be pre-
vented by filling the tip with a small amount of buffer. Although
the single-injection method requires only one experiment, is sig-
nificantly faster, and requires less enzyme, it has been little used
because data analysis is significantly more challenging than analy-
sis of multiple-injection data. Accurate analysis of single-injection
data requires recursive, simultaneous fitting of the entire curve
with KM, k2, DRH, s and possibly the baseline heat rate, /B, as fitting
parameters.

The traditional method for correcting for instrument time con-
stant by use of the Tian equation, e.g. [5,6],

/corrected ¼ /measured þ sðd/measured=dtÞ ð2Þ

where s is defined by the function 1 � e�t/s for an increasing
response and e�t/s for a decreasing response and / is heat rate, pre-
supposes an accurate value for s that is not easily measured in heat-
conduction and power-compensation calorimeters [7]. There is no
universal value of s for a particular calorimeter design, and since
s depends on the mixing time, thermal conductivity of the solution,
and thermal time constants of all the parts of, and connections to,
the reaction vessel, the value of s is not the same for all calorimeters
of the same design, and can vary from experiment to experiment
even in the same calorimeter. Determination of s by injection of
methanol in a separate experiment or with a heater pulse prior to
or post experiment produce values that differ significantly from
the applicable value of s. For example, a heater pulse in the ITC
model 2G used to collect the data in Fig. 1 gives s = 12 s, but anal-
ysis of the data by fitting to the model gives s = 37 s. In another
example, the ‘‘high feedback response time’’ in the specifications
for the MicroCal ITC 200 is 10 s (i.e., s = 2 s), but Burnouf et al. [8]
report finding s = 3.5 s which gives a 99% response time of 18 s.
Demarse et al. [9] found s = 14.5 s by fitting single injection data
for sucrose–invertase from a NanoITC Low Volume instrument,
but electrical heater pulse gave s = 2.2 s. Note that in every case,
the value of s obtained from a heater pulse is significantly shorter
than the value of s obtained from fitting kinetic data.

The mathematics necessary for multi-parametric fitting of sin-
gle-injection data to a Michaelis–Menten model, Eqs. (3)–(6),

/rðtÞ ¼ �DRHVk2ESðtÞ=½KM þ SðtÞ� ð3Þ

�KM ln S� S ¼ k2Et � KM ln S0 � S0 ð4Þ

tðSÞ ¼ �ðk2EÞ�1½ðS� S0Þ þ KM lnðS=S0Þ� ð5Þ

/calðtÞ ¼ s�1e�t=s
Z

eS=s/rðSÞdS ð6Þ
Fig. 1. Solid line – heat rate data from a single injection of 10 lL of 511 nM trypsin
into 950 lL of 144 lM N-a-benzoyl-L-Arginine Ethyl Ester (BAEE) in 200 mM Tris–
HCl buffer pH 8.0, 50 mM CaCl2, and 0.2% PEG-2000 in an ITC model 2G (TA
Instruments, Lindon, UT) [4]. Dashed line – fit to the data with Eqs. (3)–(6).
where /r is the heat rate from the reaction and /cal is the heat rate
measured by the calorimeter, has been published [7,9] along with
the process for use of these equations. The model in Eqs. (3)–(6)
is fit to data by nonlinear least squares. First, the parameters k2,
KM, |DRH|, and s are log transformed. This guarantees that the
parameter values remain positive and improves the efficiency of
the fitting procedure. The resulting model is fit using the geodesic
Levenberg–Marquardt algorithm [10,11]. The data to be fit do not
contain error bars since each point consists of a single measure-
ment. Assuming the error in each data point is from a Gaussian dis-
tribution with variance r2, we estimate r using a maximum
likelihood method. If SS represents the sum of squares error from
fitting the model, r2 = SS/M, where M is the number of independent
data points in the sample. We find that r � 0.05 for the data in
Fig. 1. An alternative to this method uses the Lambert W(x) (or
Omega) function [12].

Use of ITC for determination of the kinetics of enzyme catalyzed
reactions is increasing [13], but programming this process is chal-
lenging. The purposes of this paper are (a) to examine the effect of
calorimeter time constant on single-injection ITC kinetic data, (b)
to provide the user with information that can easily be used to pre-
dict the experimental conditions for optimum results, and (c) to
describe methods and software for evaluating model parameters
in mass-action kinetic models.
2. Effect of calorimeter time constant

The rate at which heat is generated by the reaction (/r) is
directly proportional to the reaction rate with DRH as the propor-
tionality constant. Observation of this heat rate by the calorimeter
is delayed due to the effects of the time constant of the instrument
as illustrated in Fig. 2. This delay manifests itself as the rising curve
at small times and an elongation of the curve’s tail at long times.
For instruments with small time constants, this initial rise is sharp
and brief and the exponential tail is mostly unaffected. However,
for large time constants the initial rise can take a much longer
time, resulting in a large elongation of the curve’s exponential tail.

Often, only the decaying portion of the data in curves such as
those in Fig. 2 have been analyzed to obtain kinetic constants with
DRH being determined from the area under the curve [2,4–6,8,14].
Only the exponential tail of the curve is fit because the instrument
time constant is necessary to replicate the initial rising portion of
the curve. This practice introduces new complications: How does
one determine which data to ignore? And how much does the time
constant affect these data where the signal is changing relatively
rapidly? We illustrate this dilemma in Table 1 in which different
portions of the real data in Fig. 1 are fit to Eqs. (3)–(6) with s
included or excluded as a fitting parameter. The second column
Fig. 2. Simulated Michaelis–Menten data for a single injection experiment in
calorimeters with different time constants. Eqs. (3)–(6) were used to generate the
curves.



Table 1
Inferred parameter values for the data in Fig. 1 for three different fitting schemes. Uncertainties are a 95% confidence interval derived from a maximum likelihood estimation of
the noise in the data.

Parameter All data (Fit with s as a fitting parameter) Data for t > 500 with s = 0 Data for t > 1800 with s = 0

k2 (s�1) 16.49 ± 0.04 16.290 ± 0.006 16.27 ± 0.06
KM (lM) 4.02 ± 0.14 4.28 ± 0.02 4.07 ± 0.10
DRH (kJ mol�1) 29.3 ± 0.4 29.45 ± 0.08 30.8 ± 1.0
/B

a (lW) 0.078 ± 0.026 0.0266 ± 0.0050 0.014 ± 0.056
s (s) 37.1 ± 1.2 n/a n/a

a /B is the baseline heat rate which was used as a fitting parameter in these calculations.
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in Table 1 gives the results of fitting the data with the methods of
references [7,9] in which the correction for the instrument time
constant is explicitly included as a parameter. The third column
gives the results of fitting with s = 0 and ignoring all data before
the decaying part of the curve (i.e. at times >500 s, after the
observed maximum heat rate). The last column gives the results
of a more conservative fit using data only at times >1800 s (i.e.,
after the inflection point). The results from Table 1 indicate that
inferred values of k2 and KM vary with the subjective choice of
which data to include. In particular, in this example KM changed
by 5%. And, although k2 changed by less than 1%, this change cor-
responds to >9 statistical standard deviations. Furthermore,
Fig. 3. Percent error in inferred parameters when fitting with s = 0. The line plots i
because the ratio k2/KM is small, the trypsin–BAEE system is a par-
ticularly forgiving system.

Fig. 3 explores the errors in inferred parameters for a range of
values of k2, KM, DRH, and /B as functions of the fraction of comple-
tion of the reaction, a. Artificial data are generated (without noise)
for a fixed value of the instrument time constant. Data in the expo-
nential tail are fit to Eqs. (3)–(6) with s = 0, thus ignoring the
effects of instrument time constant. The y-axis is the dimensionless
time scale of the Michaelis–Menten reaction, k2sE/KM, in units of
the instrument time constant.

Notice in Fig. 3, a narrow, horizontal band of experimental con-
ditions (defined primarily by the error in KM) exists between 0.1/s
n the fifth panel show a slice through each of the other four panels at a = 99%.
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and 1/s in which s has negligible effects on all the parameters, k2,
KM, DRH, and /B. This band corresponds to (0.1/s) < (k2E/KM) < (1/s)
with the reaction running to >99% completion (a limit set by error
in DRH). Within this band of conditions, k2, KM, DRH, and /B can all
be estimated with <1% error without correction for s. For experi-
mental conditions outside of this band, the error in the inferred
parameters grows quickly to unreasonable levels.

Returning to the experimental data in Fig. 2 and inferred
parameter values in Table 1, the parameter that characterizes the
reaction rate (k2E/KM) has a value of 0.82, placing it near the upper
boundary of acceptable conditions, consistent with the observa-
tions in Table 1. Had the experiment been conducted with a smal-
ler enzyme concentration, thus reducing the reaction rate relative
to the instrument time constant, the errors in the inferred param-
eters could have been reduced.

3. Selection of optimum conditions

Fig. 3 can be used to select the experimental conditions under
which k2, KM, DRH, and /B can be accurately inferred from the
decaying portion of the data without correcting for s. As a general
rule, the reaction should be run to at least 99% completion and the
value of k2E/KM, which can be experimentally controlled by varying
Fig. 4. Uncertainties in inferred parameters when including s as a fitting parameter. The fi
The error bar estimated for the data in Fig. 1 is used for the parameter uncertainty for the
inferred provided the experiment is run long enough.
the concentration of the injected enzyme, must be chosen to lie
within the optimal band of 0.1/s and 1/s. However, application of
this rule is complicated by the need to have reasonable a priori esti-
mates of k2, KM, and s. Furthermore, there are no rigorous checks to
determine if the inferred parameters are biased by the instrument
time constant or the subjective choice of data.

A more rigorous approach is to explicitly include the effects of
the instrument time constant in the model and include s as an
additional fitting parameter as described in references [7,9]. This
procedure was used to calculate the values in the second column
in Table 1. This mathematical model fits both the rising and falling
parts of the observed heat rates (as in Fig. 2) and simultaneously
provides estimates of all the relevant parameters (including the
effective instrument time constant). With this model, standard sta-
tistical techniques can be applied to estimate the uncertainties in
the inferred parameters. For example, the error bars for the
inferred parameters can be found from the square roots of the
diagonal entries of the inverse Fisher Information Matrix. Other
techniques such as Bayesian MCMC or profile likelihoods can also
be applied. These techniques overcome the problems described
above by providing an explicit confidence interval for all the
parameters, including the unknown effects of the instrument time
constant.
fth panel shows line plots of a slice through each of the other four panels at a = 99%.
artificial data in Fig. 4. We do not include the baseline parameter as it is accurately



Fig. 6. Joint confidence regions for k2 and KM. (A) Statistical uncertainty from fitting
the two data sets with sucrose concentrations of 0.25 and 2.5 mM. Any values of k2

and KM with a ratio within the white area of the figure will fit these data, thus
showing that accurate, independent values of these parameters cannot be obtained
from these data. (B) Statistical uncertainty from a global fit to all six data sets with
sucrose concentration P0.025 mM, showing that unique values of k2 and KM can be
obtained when data from an enzyme saturated condition are included.
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Repeating the process used to generate Fig. 3, but including the
effects of the instrument time constant obviously allows the model
to perfectly fit the simulated data. However, the previous analysis
can be extended to estimate the statistical uncertainties in the
inferred parameter values from the Fisher Information Matrix.
The results are presented in Fig. 4 that shows the statistical uncer-
tainties from noise in the data. In contrast, Fig. 3 illustrates the
bias, i.e., errors, in k2, KM, DRH, and /B caused by use of an inaccu-
rate model.

Note that Fig. 4 is unlike the conditions in Fig. 3. When s is
ignored, the optimal design corresponds to only a narrow band
of reaction rates. Fig. 4 shows that the only condition that prevents
obtaining good results is running the reaction at too fast a rate
which causes the uncertainties in the inferred parameter values
to become very large, i.e., the black regions in Fig. 4. In this regime,
the temporal effects of the instrument time constant are function-
ally equivalent to changes in the reaction rate, leading to co-linear-
ity among the parameters and large uncertainties. These large
uncertainties are a feature rather than a problem of the present
analysis. Experiments conducted in this regime are uninformative
because they cannot discriminate between the kinetic properties
of the reaction and the dynamical properties of the instrument.
This fact cannot be seen unless the effects of the instrument time
constant are explicitly included in the model.

Note that the plots in Figs. 3 and 4 represent two very different
(but often conflated) ideas. Fig. 3 illustrates what we have called
‘‘error’’, that is, the systematic bias introduced to the parameter
estimates because an inaccurate model was used. Fig. 4 illustrates
what we have called ‘‘statistical uncertainty’’, and is the expected
unbiased random errors introduced by fitting noisy data.

Fig. 4 can be used to determine optimal experimental condi-
tions for inferring parameter values with s as a fitting parameter.
Fig. 4 indicates that all parameters can be accurately inferred pro-
vided the reciprocal of the reaction time constant (k2E/KM) is larger
Fig. 5. Solid line – heat rate data from a single injection of 2 or 3 lL of buffer followed by 5 lL of invertase (grade VII from bakers yeast, Sigma, St. Louis, MO, 270 kD) into
164.5 lL of sucrose (EMD, Gibbstown, NJ) at 25 �C in 100 mM sodium acetate (minimum 99.0% Sigma, St. Louis, MO) buffer at pH 5.6. Data were collected with a NanoITC Low
Volume calorimeter (TA Instruments, Lindon, UT). Dashed line – fit to the data with Eqs. (3)–(6). Values of DRH calculated from integration of the data, and /B and s from the
global fit for each experiment are given in Table 3. The top inset plot of maximum heat rate versus sucrose concentration demonstrates the enzyme was not substrate
saturated at sucrose concentrations 62.5 mM. In contrast, the bottom inset showing maximum heat rate versus invertase concentration demonstrates that saturation was
achieved in the three experiments with sucrose concentration >50 mM.
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than 1/s. After values of k2, KM, DRH, and s have been determined
by fitting the data curve with Eqs. (3)–(6), the value of DRH
obtained can be verified by comparison with DRH determined from
the area under the curve.

In choosing optimal conditions, a further condition that must be
satisfied is that data must be obtained so that the entire parameter
space is adequately sampled. Consider two conditions, one where
the enzyme is substrate-saturated (i.e., S� KM) and another where
S� KM. The equations representing these two cases are

dS=dt ¼ �k2E or /rðtÞ ¼ �DRHVk2E ð7Þ

and

dS=dt � �k2ES=KM or /rðtÞ � �DRHVk2ES=KM ð8Þ

Eq. (7) shows that the measured heat rate depends only on �DR-

H, k2 and E under saturating conditions. Eq. (8) shows that the heat
rate at half the maximum depends on �DRH, k2, E and the value of
KM. Note that conditions where S << KM are sampled only during
Table 3
Conditions for sucrose–invertase experiments. All experiments were run at 25 �C in 100 m
The value of DRH for individual experiments is calculated from integration of the area unde
mol from [17]. Values of s and /B in the table are from the global fit of data from all six
Uncertainties are given as 95% confidence intervals computed from the shape of the surfa

[invertase] in
buret (nM)

[invertase] in
cell (nM)

[sucrose] before
injection (mM)

[sucrose] after
injection (mM)

lmole
sucros

3.7 0.112 0.025 0.02394 0.00
3.7 0.112 0.25 0.2394 0.03
3.7 0.112 2.5 2.394 0.39
0.37 0.0112 53 50.44 8.29
3.7 0.112 52 49.49 8.13
6.16 0.187 79 75.19 12.36

a A blank correction of 12.16 lJ determined by injection of 3 lL of buffer followed by

Table 2
Comparison of results from this study with results from the literature. Statistical uncerta
around the minimum.

Reference �DRH
(kJ mol�1)

k2 (s�1) KM (lM�1) s (

Trypsin/BAEE This work, fit to data
from [4]

29.3 ± 0.3 16.48 ± 0.03 4.02 ± 0.05 37

[4] 26.5 17.8 4.17

[2] 47.9 15 4

[15] 22 5

Invertase/
sucrose

Global fit, this work 12.4 ± 0.01 647,000 ± 3000 37,500 ± 400 See
Ta

[9] 13.4 221,000 16,300 14
[16] 15.4 46,000
[17] 14.93
[18] 49,000
[19] 25,000
[20] 52,900
[21] 28,000

[22] 331,000

[23] 367–450 64,000–
110,000

[24] 28,700
[25] 140,000

[26] 140,000
[27] 160,000
[28] 16,700
the decaying portion of the data. To separate k2 from KM and thus
avoid the correlation between these parameters, requires the
experiment to sample data from both conditions.

Achieving enzyme saturated conditions is particularly challeng-
ing for systems with a large value of k2/KM. Therefore we chose the
invertase–sucrose system to further test the single injection
method. Fig. 5 shows the results from injection of varying amounts
of invertase into sucrose solutions with concentrations of sucrose
ranging from 0.025 to 79 mM. Data were first collected at 0.025,
0.25, and 2.5 mM sucrose and 3.7 nM invertase in order to estab-
lish conditions for optimum results. Analysis of these data showed
that saturation conditions were not sampled, see the inset in Fig. 5
that shows a linear dependence on sucrose concentration for these
three experiments as required by Eq. (8). Thus k2 and KM were not
separable as shown by Fig. 6A. Fig. 6B explores the statistical
uncertainty in the results from the global fit of all six data sets.
Table 3 gives the experimental conditions for all six experiments
and results for DRH from integration of the area under each curve.
M acetate buffer at pH 5.6 with a 5 lL injection of invertase into 164.5 lL of sucrose.
r the curve with /B = 0. The% error in DRH is calculated assuming a value of �14.93 kJ/
experiments allowing for differing values for these parameters among experiments.
ce around the minimum.

e
mJ from
integrationa

�DRH (kJ mol�1)
sucrose

% error
in DRH

s (s) /B (lW)

3937 – – – 330 ± 1 0.004 ± 0.000
937 0.5215 13.24 �11 208 ± 1 0.006 ± 0.001
37 5.444 13.83 �7 199 ± 1 �0.09 ± 0.01
4 114.7 13.83 �7 90 ± 1 �1.38 ± 0.04
8 110.3 13.55 �9 75 ± 1 0.12 ± 0.07

153.6 12.43 �17 75 ± 2 �0.33 ± 0.01
Mean
�DRH = 13.4 ± 1.2
Global fit
�DRH = 12.4 ± 0.01

5 lL of invertase into buffer was subtracted from the total heat.

inties are given as 95% confidence intervals computed from the shape of the surface

s) Conditions

.1 ± 0.4 5.4 nM trypsin, 200 mM Tris–HCl, pH 8.0, 50 mM CaCl2, 0.2% PEG-2000,
25 �C, 144 lM BAEE
5.4 nM trypsin, 200 mM Tris–HCl, pH 8.0, 50 mM CaCl2, 0.2% PEG-2000,
25 �C, 144 lM BAEE
9.6 nM trypsin, 200 mM Tris–HCl, pH 8.0, 50 mM CaCl2, 0.2% PEG-8000,
25 �C, 171 lM BAEE
pH 8, 50 mM CaCl2, 25 �C

ble 3
100 mM acetate buffer, pH 5.6, 25 �C. See Table 3 for other concentrations

.5 5 nM invertase, 100 mM acetate buffer, pH 5.65, 25 �C, 5 mM sucrose
50 mM acetate buffer, pH 4.6, 25 �C
100 mM acetate buffer, pH 5.65, calorimetric determination
100 mM acetate buffer, pH 4.5, 40 �C, (25, 50,1 00, and 200) mM sucrose
0.1 or 0.05 lg/mL invertase, 200 mM acetate buffer, pH 4.9, 37 �C
5–700 mM sucrose, 100 mM acetate buffer, pH 4.7, 30 �C
0.1 l/mL invertase, 25 mM acetate buffer, pH 5.0, 50 mM NaCl, 2 mM
NaN3

(10, 6.67, 5, 3.33, 2.5) g/dL sucrose, 22 �C, 132 mM phosphate buffer, pH
7.0
Acetate buffer, pH 4.9

From literature
(0.100, 0.271, 0.427, 1.36, 1.50, 2.00) M sucrose, 25 �C, citrate buffer, pH
5.0
0.1–1 M sucrose, 25 �C, pH 5
0.04–2.06 M sucrose, 25 �C, phosphate buffer, pH 5
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A global fit of the data with sucrose concentrations from 0.025 to
79 mM produces values of k2, KM and DRH with small statistical
uncertainties, see Table 2.

Conditions that would provide a long, relatively flat plateau
region, as in Fig. 1 for trypsin–BAEE, are not accessible for the
invertase–sucrose system because enzyme concentrations below
3.7 nM gave too small heat rates and sucrose concentrations above
79 mM were too viscous. Therefore we chose to demonstrate that
saturation was achieved by demonstrating a linear relation
between maximum heat rate and invertase concentration as
required by Eq. (7), see the inset in Fig. 5. When sucrose concentra-
tion is P50 mM the linear relation shows that saturated conditions
were sampled, i.e., Eq. (7) indicates that the maximum heat rate
depends only on the enzyme concentration and has no dependence
on substrate concentration.

4. Results and discussion

The possibility of product inhibition at high concentrations of
sucrose was examined with a global fit of the six data sets in
Fig. 5A with Eq. (9).

dS=dt ¼ �½k2ES=ðKM þ SÞ� þ ½kiðS0 � SÞ� ð9Þ

The results gave ki = 0, showing the absence of product inhibi-
tion in these experiments. These results differ from some results
in the literature because of differences in conditions or invertase
preparation.

Note that s in Table 3 is much larger for the three experiments
with low sucrose concentrations than for the three runs with high
sucrose concentrations although all six experiments were done in
the same calorimeter. The difference in the value of s is a conse-
quence of differing relative densities of the solutions in the cell
and in the burette. The density of the titrant is higher than the den-
sity of the sucrose solution at low concentrations of sucrose and
mixing time is increased because the titrant flows to the bottom
of the cell before being mixed. At high concentrations of sucrose,
the titrant is less dense than the sucrose solution, flows upward
through the stirrer as it is injected, and therefore mixing time is
greatly shortened. This result further demonstrates that s is not a
constant and cannot be determined with a heater pulse or metha-
nol injection.

Table 2 compares the results from this study with previously
published results on trypsin–BAEE and invertase–sucrose. The only
notable difference between our results on trypsin–BAEE and liter-
ature results is the DRH value reported by Todd and Gomez [2], DR-

H = �47.9 kJ/mol, which is approximately double the DRH values
reported by other workers. Todd and Gomez [2] state ‘‘the raw
data. . . were corrected for the instrument response time’’ which
‘‘had a small effect on rate values’’ but give no details, and further
state ‘‘the time course over which the enzyme reaction rate decays
to zero is much larger than the instrument time constant (typically
10–20 s)’’ which implies that only the decaying portion of the data
was analyzed for kinetic parameters and DRH was obtained by
integration of the area under the curve. For the invertase–sucrose
system, the most accurate value for DRH is probably that of Gold-
berg. Compared with Goldberg’s value, the DRH values from this
study and from Demarse are both about 10% low, and that of Hüttl,
about 3% high. Note that the values of DRH from area integration
and from the global fit are in agreement. The low value of DRH from
this study is likely caused by errors in the baseline correction
(�8%) and in the calibration of the very small cell volume (�2%).
Differences in k2 and KM values in Table 2 are likely caused by dif-
ferences in conditions and invertase preparations.

5. Conclusions

In conclusion, assuming that a correct and complete model for
all of the reactions in the system is applied and that optimal exper-
imental conditions are chosen, fitting single injection kinetic data
with the method described in this paper produces accurate results
for k2, KM, DRH, s and /B. The two systems included in this study
represent extreme cases for the ratio of k2/KM; this ratio equals
4 s�1/lM�1 for the trypsin–BAEE system and 17 s�1/lM�1 for the
invertase–sucrose system. Enzyme saturated conditions are easily
achieved with systems with a small value of this ratio, but only
with difficulty for systems with large values of this ratio. Enzyme
saturated conditions must be achieved in order to obtain accurate
values for k2 and KM, otherwise these two parameters are highly
correlated and data can be fit with any values that provide the ratio
required by the minimum in the fitted surface.
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