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Abstract—Load modeling has been extensively studied in
power systems. The problem is intrinsically hard, as a simple
description is sought for a large collection of heterogeneous
physical devices. One aspect of model simplification has to do with
the number of parameters needed to describe a dynamic load.
With the rich tapestry of methods proposed in the literature as a
backdrop, this paper introduces a new approach to simplify the
load models and estimate the parameters. Our method is based on
information geometry which combines information theory with
computational differential geometry to derive global estimation
results and shed a new light on difficulties commonly encountered
when fitting widely used models to the measurement data. The
results are compared with the literature using simulations on the
IEEE 14 bus benchmark system.

Index Terms—Information Geometry, Load Modeling, Power
System Management, Power System Stability

I. INTRODUCTION

Massive blackouts worldwide in the early 21st century
brought attention to the importance of the quantitative under-
standing of power system dynamics [1]. Load characteristics
have an important bearing on a system’s stability. However,
modeling the loads to find such characteristics is complicated
because a typical load bus is composed of a myriad of diverse
components. Furthermore, the load composition changes fre-
quently, depending on many factors including weather condi-
tions, time-scales (am vs. pm, weekdays vs. weekends, summer
vs. winter, etc.) and economic conditions [2]. Therefore, load
modeling and parameter identification is intrinsically a very
challenging task.

Various loads connected to a power system can be modeled
using simplified composite models. A widely used approach
combines two different types of loads: a static load and a
dynamic load. A static load model is expressed as algebraic
functions of the bus voltage magnitude and frequency at a
time and shows the relationship between power and voltage at
that instant [3]. Lights and resistive loads are some examples
of static loads. In addition, a static load model can be time-
varying or stationary, possibly resulting in inaccuracies for
short time modeling [4]. Dynamic load models have been in-
troduced to better capture variations of load powers. Dynamics
that are related to operation of motors fall into this class of
load models. A dynamic load model is typically connected in
parallel to a static load model to form a composite model (see
[5] and references therein).

However, composite load models typically require tuning of
a large number of parameters to properly model the system.
Even extensive field measurement data are often perceived as
insufficiently rich to allow for well-behaved estimation of nu-
merous parameters. Therefore, many papers (nicely reviewed
in [5]) focused on reducing the number of parameters. Studies
suggested that the parameter space is very anisotropic in the
sense that variations in some directions in the parameter space
may have orders of magnitude more effect on the system
response than some other (possibly spatially close) directions.
The effect of elimination of superfluous or less important
parameters on the estimation procedure is often drastic, while
maintaining the response very similar to the one obtained from
the original (unreduced) composite load model.

One broad class of methods for detecting unimportant pa-
rameters is based on sensitivity considerations. The influential
paper [5] calculated the sensitivity along the evolving system
trajectory by utilizing the Jacobian matrix of measurement
data. Another approach presented in [6] used the sensitivity in-
formation derived from the eigenvalues of the Hessian matrix.
Both methods follow the determination of unimportant param-
eters with a separate procedure to tune the remaining (impor-
tant) parameters. Later in this paper, an alternative approach
based on information geometry will be introduced, which
combines information theory with computational differential
geometry. Our approach identifies unimportant parameters one
by one, and re-tunes the remaining parameters at each stage.

The remainder of the paper is organized as follows: Section
II is a brief description of the composite load model struc-
ture and its parameters; Section III discusses the parameter
reduction using local or sensitivity methods, followed by the
information geometry or global approach described in Section
IV; Section V presents simulation results for the two classes
of methods using example from [5], while brief conclusions
and topics for the full paper are outlined in Section VI.

II. COMPOSITE LOAD MODEL

To effectively represent the complex power system com-
ponent, a composite load model, which is a combination of
static and dynamic parts, will be used in this paper. Constant
(real and reactive) impedance (Z), constant (real and reactive)
current (I) and constant (real and reactive) power (P) – also
known as ZIP load – form the static load model. An induction



Fig. 1: Equivalent circuit for composite load model.

machine (IM) is used to capture the dynamic portion. The
overall equivalent circuit for this composite load model is
presented in Fig. 1.

A. Static Load Model

The static, or ZIP, load is shown in the left part of Fig. 1
and can be described as in [7]:
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where ph and qh are active and reactive powers, respectively.
pz, pi, pp and qz, qi, qp represent the coefficients for ZIP load
parameters. vh refers to bus voltage magnitude and v0 is the
initial voltage at the load bus.

B. Dynamic Load Model

The dynamic portion of the load, or induction machine, is
pictured in the right part of the Fig. 1, where rS and xS are
the resistance and reactance of the stator, respectively; rR1 and
xR1 are the resistance and reactance of the rotor, respectively;
xm is magnetizing reactance; σ is the slip in p.u., satisfying
σ = 1−ω, while ω is the speed of the machine. e′d and e′q refer
to d− and q− axis transient EMF. The equivalent induction
machine can be written as [7]:
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(3)

α, β and γ are the coefficients for the mechanical torque,
which satisfy α + β + γ = 1; Hm is the machine rotor
inertia constant; Ωb is the base synchronous frequency in rad/s.
Finally, active and reactive powers of the induction machine
can be derived using following equations:

vd − e′d = rSid − x′iq
vq − e′q = rSiq + x′id

(4)

ph = −(vdid + vqiq)

qh = −(vqid − vdiq)
(5)

where vd = −vh sin θ and vq = vh cos θ represent d− and q−
axis bus voltages; id and iq refer to d− and q− axis stator
currents.

From (1)-(3), the total number of parameters that need to
be identified is eleven: pz, pi, pp, qz, qi, qp from the ZIP load
and rS , xS , rR1, xR1, xm from the induction machine.

III. PARAMETER REDUCTION - LOCAL SENSITIVITY

Load characteristics are generally written in the differential-
algebraic equation (DAE) form as:

ẋ = f(x, z, p, t)

0 = g(x, z, p, t)
(6)

where x are state variables, z are the algebraic variables, p are
parameters, and t is the time variable. Next, parameters are to
be estimated from the measurements (y) below:

y = h(x, z, p, t) (7)

Sensitivity is then found by calculating the Jacobian matrix J =
∂h(t)/∂p, which is the first partial derivatives of measurement
vector with respect to each parameter.

Reference [8] presented one of the first complete local
analyses that utilized the sensitivity to select the parameters for
model reduction. The so called subset selection for parameter
estimation is achieved by partitioning the parameters into well-
conditioned parameters and ill-conditioned parameters prior to
estimation. The exclusion of ill-conditioned parameters (fixed
to priors) from the estimation makes the procedure much better
conditioned (at a price of a possible bias).

To sort the parameters into well- and ill-conditioned, the
Hessian matrix (H)1 should be computed first. For small
residuals or increments, Hessian can be expressed as H(θ) ≈
J′(θ)J(θ) where θ is the parameter vector. This Hessian matrix
(H) is (i) symmetric and positive semidefinite (eigenvalues
thus being real and non-negative); and (ii) usually nearly
singular, implying that the matrix has very large condition
number κ(H).

To separate the parameters, eigenvalues are found using
eigendecomposition of H by H = VΛV′. Then, the matrix
V is partitioned into V = [Vρ Vn−ρ] where Vρ includes the
first ρ columns of V. Here, ρ is the number of eigenvalues
that are much larger than the remaining n−ρ ones. Then, QR
decomposition is performed to find the permutation matrix (P).

V′ρP = QR (8)

The permutation matrix (P) is used to reorder the parameters
so that the parameters can be divided into the well-conditioned
(first ρ) and ill-conditioned (last n − ρ) parameters. Finally,
additional processes such as nonlinear least squares parameter
estimation approach are required to estimate the ρ “good”
parameters [9].

1Either the Jacobian or Hessian matrix can be used but [8] adopted the
Hessian since eigenvalues and eigenvectors are more familiar than the singular
values and singular vectors



IV. GLOBAL SENSITIVITY VIA INFORMATION GEOMETRY

The premise of our approach is that a model with many
parameters is a mapping from a parameter space into a data
or prediction space. Recent study [10] suggested that the
model with multiple parameters are usually sloppy, which is
a term to explain a complex model exhibiting large parameter
uncertainty when fit to data. A key difficulty in dealing with
models of complex systems is the highly anisotropic mapping
between the parameters and data spaces, meaning that small
variations in parameter space may lead to dramatic changes
in the measurement (data) space while other variations in
parameters can lead to no discernible change in the model
behavior.

The information geometry approach explores the
anisotropies in the parameter space by focusing on a
data (measurement) space and by quantifying the model
manifold (corresponding to predictions for all allowed
parameter variations) in that space [10]. It turns out that the
manifold is typically bounded, with a hierarchy of widths
that generalizes the hierarchy of eigenvalues of the Hessian
matrix (H). The approach has a number of useful properties
for nonlinearly parametrized models including [11]: (i) the
model manifold retains all the information – it is equivalent
to the original model mathematically; (ii) the model, which is
the manifold embedded in data space, is separated from the
particular data point being fit; (iii) since the parameters will
work as local coordinates on the manifold, no matter how
the model is re-parameterized, the set of points on the model
manifold remains the same; (iv) the Riemannian distance
metric on the model manifold is the Fisher Information
Matrix (FIM). Information geometry therefore serves as a
natural bridge between the local analysis and the global
analysis.

A key tool for studying the model manifold are geodesic
curves – analog of straight lines on curved surfaces. They
are calculated numerically as the solution to a second order
ordinary differential equation in parameter space that involves
first and second order sensitivities [12]. Derivation of these
expressions by hand can be tedious and error prone (particu-
larly for large models). Automatic differentiation was used to
simplify the process.

Our model reduction procedure applies the manifold bound-
ary approximation method (MBAM) procedure from [13].
Parametric degrees of freedom are systematically removed,
one at a time, by approximating the full manifold by its bound-
ary. For n parameters, the manifold will be an n-dimensional
surface. The key point in this MBAM is that the boundaries
of an n-dimensional manifold are themselves actually (n−1)-
dimensional manifolds. The boundaries represent a model with
one parameter less. After several approximation steps, the
reduced model is represented by a hyper-corner of the original
manifold that, if successful, preserves most of the original
model’s behavior.

Reaching the boundaries from an initial point in the shortest
path on the curved manifold implies motion along a geodesic

which is a solution to the following second-order differential
equations:

d2xk

ds2
+ Γkij

dxi
ds
· dxj
ds

= 0 (9)

where Γkij is the Christoffel symbol that contains curvature in-
formation about the mapping between the parameter space and
data space. Whether the geodesic has reached the boundaries
or not can be determined by the parameter velocities, a rate
of change of the parameters with respect to s, the geodesic
“time.” When the geodesic reaches the boundary, then the
parameter velocities either increase or decrease significantly,
as shown in Fig. 2.

V. SIMULATION RESULTS

The standard simulation environment was built on IEEE 14-
bus test system (Fig. 3) in Matlab. PSAT, a Matlab toolbox for
power system analysis and simulation, was used to calculate
the system’s sensitivities and outputs. Details of the PSAT
can be found in [14]. Julia was used for differential geometry
computation.

A. Local Sensitivity

The parameters are shown in the vector below:

θ = [rS xS rR1 xR1 xm pz pi pp qz qi qp]
′ (10)

In order to find the eigenvalues and permutation matrix
(P), eigendecomposition is applied to the Hessian matrix (H).
Resulting eigenvalues are presented below:

8.39e−15 2.42e−13 3.65e−13 8.53e−13 1.35e−11

1.63e−7 8.59e−6 1.01e−2 7.12e−1 3.22 8.20e3
(11)

(a) After first iteration: fourth parameter (xR1) reaches limit in negative region

(b) After fifth iteration: third parameter (xm) reaches limit in positive region

Fig. 2: Initial and final velocity for each component



Fig. 3: IEEE 14-bus system - Static and dynamic loads are
connected to bus #14

This matrix is extremely ill-conditioned, since the condition
number κ(H) is 9.78e17. The first five eigenvalues (n − ρ)
are relatively smaller than the remaining six eigenvalues (ρ),
implying that five parameters can be fixed and remaining six
parameters are to be estimated. To match the parameters with
eigenvalues for partitioning, parameter vector θ is rearranged
using the permutation matrix (P) by applying to θ̃ = P′θ.

θ̃ = [xS rS pi pp qz rR1 | pz xR1 xm qi qp]
′ (12)

In the rearranged parameter vector θ̃, the following five
parameters, pz, xR1, xm, qi, qp at the end of the vector are
to be fixed to priors. A separate computation is required to
estimate the well-behaved parameters.

B. Global Sensitivity via Information Geometry

The procedure starts by finding the initial direction of
the parameter variation and solving for the geodesic using
the FIM. Eigenvectors of the FIM point out directions and
eigenvalues are utilized to determine the velocity (rate of
change, in log coordinates) of each parameter.

After the first iteration, the velocity components for each
parameter are shown in Fig. 2a. From this, it can be concluded
that the fourth parameter, xR1, has reached the limit in the
negative (log) region, thus becoming zero. On the other hand,
if the final velocity of the components reaches the limit in
the positive region like in Fig. 2b, then it means that the
corresponding parameter tends to infinity, resulting in open
circuit.

The simulations were performed for two different situa-
tions with faults occurring at bus #4 and bus #5 in Fig. 3.
Both simulations have shown that the suggested information
geometry approach was able to reduce five parameters –
rS , xR1, xm, pi, qi, while largely tracking the original
eleven-parameter model output as in Fig. 4. Removing one
more additional parameter showed visible difference in the

Fig. 4: Outputs for composite load model (including both static
and dynamic load model) after parameter reductions with fault
at bus #5. Numbers indicate the remaining parameters.

output, that can be captured, for example, by mean squared
errors are shown in Table I and the new parameters for the
reduced model are shown in Table II.

It is instructional to interpret our results in terms of the
equivalent circuit in Fig. 1 using (1). Since both pi and
qi are reduced, remaining components from ZIP load are
expected to have larger influence as a result, which is indeed
the case. Also with xm open, it is reasonable to think of
equivalent impedances in the remaining branch, thus leaving
one resistance (rR1) and one reactance (xS).

When the results from local analysis are compared with the
results from global analysis, they are consistent in the terms
of numbers of parameters to be reduced (five in both), and
largely in parameters to be reduced (three out of five are the
same - xR1, xm, qi). Interestingly, five out of six of our
“good” parameters are also contained in the somewhat more
optimistic list of eight “good” parameters in [5]. We are also
encouraged by the robustness of our procedure in terms of
fault locations used to initiate the transients.

C. Sub-models

Simulation results presented in this paper were so far based
on composite load models, which includes both static and
dynamic load models. Now, the simulations for each load
sub-model were tried to see how the information geome-
try approach will work on each case. In case of dynamic
load model (induction machine), the results showed that this
method could reduce two parameters (xR1 and rS) from five
parameters while still maintaining the original characteristics
(Fig. 5). Meanwhile, for static load model (ZIP load), also
two parameters (pi and qi) can be reduced from original six



TABLE I: Mean square error (MSE) for reduced parameter model, ×e−4

Number of remaining parameters

10 9 8 7 6 5

Fault at Bus #4

Ph (Active Power)
0-10 sec (with transient) 45 45 47 59 55 1054

0-5 sec (without transient) 89 89 93 118 110 1461

Qh (Reactive Power)
0-10 sec (with transient) 114 114 115 111 129 342

0-5 sec (without transient) 227 226 228 231 236 611

Fault at Bus #5

Ph (Active Power)
0-10 sec (with transient) 38 36 39 52 47 172

0-5 sec (without transient) 75 72 77 103 94 332

Qh (Reactive Power)
0-10 sec (with transient) 109 109 109 106 96 1485

0-5 sec (without transient) 217 217 218 211 192 2274

TABLE II: Estimated parameters after information geometry approach

Parameters pz pi pp qz qi qp rS xS rR1 xR1 xm

Initial condition (eleven parameters) 0.333 0.333 0.333 0.333 0.333 0.333 0.010 0.150 0.050 0.150 5.000

After simulation (six parameters)
Fault at Bus #4 0.489 ≈ 0 0.502 0.658 ≈ 0 0.514 ≈ 0 0.325 0.077 ≈ 0 ≈ ∞
Fault at Bus #5 0.485 ≈ 0 0.506 0.667 ≈ 0 0.515 ≈ 0 0.328 0.076 ≈ 0 ≈ ∞

parameters (Fig. 6). Reduced parameters were all part of the
five parameters that were derived for composite load models.
Notice that if the IM sub-model analysis were performed
separately, xm still remains. This can be interpreted from
a circuit point of view – in the case of the full composite
model, even after reducing the xm, remaining parameters
(pz, pp, qz, qi) could match the response (Fig. 1). However,
in the IM dynamic load only sub-model, there is no other
reactance shunt component that can perform that role.

Also, in the Fig. 5 and 6, the dynamic loads have sharper
fluctuations, which are largely absent for the static loads
sub-model. These features indirectly support the practice of
combining static and dynamic sub-models to describe the
actual loads.

D. Mismatches Among Model Classes
This is an important practical issue, as there is often con-

siderable uncertainty about the nature of the load. The effects
of model mismatches have been explored through simulation.
It is clear from the preceding analysis that simply adopting
the most detailed model is not a wise strategy given the
concomitant parameter uncertainty.

Simulation results are presented in Table III, where ©
represents the parameters that are suggested for reduction and
× shows the parameters whose additional removal leads to
unacceptable match between the (reduced) model response
and the recorded transient, thus stopping the overall model
reduction procedure. Case #5 is the matching classes model
(the most detailed model) that was discussed in previous
subsection V-B for comparison.

It is clear that our conclusions about model structure are
remarkably robust, as the list of “well behaved” parameters
remains largely unchanged (Table III) and the outputs from the
“reduced class” model show strong similarities to the “most
detailed” model (composite load model) as shown in Fig. 7.

Fig. 5: Outputs for dynamic load sub-model (induction ma-
chine) after parameter reduction, with fault at bus #5. Numbers
indicate the remaining parameters.

VI. CONCLUSION

This paper introduces a new approach for load model reduc-
tion that is based on information geometry. It produces useful
practical results that complement and extend the local analysis
for composite load models. Data collected online and real-time
can be used to examine the situation more quickly by using
the reduced load model. The procedure is applicable to other
forms of load models (e.g., exponential recovery) and benefits
from wider availability of wide-bandwidth recording devices
such as Phasor Measurement Units (PMUs). The influence



TABLE III: Parameters eligible for reduction among mismatching model classes

Case True Model Assumed pz pi pp qz qi qp rS xS rR1 xR1 xm

#1 ZIP & IM ZIP × © © ©

#2 ZIP & IM IM © × ©

#3 ZIP ZIP & IM © × © © © ©

#4 IM ZIP & IM © © × © © ©

#5 ZIP & IM ZIP & IM © © © × © ©

Fig. 6: Outputs for static load sub-model (ZIP load) after
parameter reductions with fault at bus #5. Numbers indicate
the remaining parameters.

of the types of transient recordings available remains to be
quantified, and we hope that the global parameter identification
procedure will remain effective and robust.
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