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Background: In systems biology, the dynamics of biological networks are often modeled with ordinary differential
equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast,
the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In
this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches
are to perform experimental design to generate more data, and to perform model reduction to simplify the model.
Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive
literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between
the two areas have not been recognized.
Results: Experimental design and model reduction are deeply related, and can be considered as one unified
framework. There are two recent methods that can tackle both areas, one based on model manifold and the other
based on profile likelihood. We use a simple sum-of-two-exponentials example to discuss the concepts and algorithmic
details of both methods, and provide Matlab-based code and implementation which are useful resources for the
dissemination and adoption of experimental design and model reduction in the biology community.
Conclusions: From a geometric perspective, we consider the experimental data as a point in a high-dimensional data
space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a
projection of the data point onto the manifold. By examining the singularity around the projected point on the
manifold, we can perform both experimental design and model reduction. Experimental design identifies new
experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest
boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric
interpretation represents one step toward the convergence of experimental design and model reduction as a unified
framework.
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Author summary: In systems biology, a common challenge is that models are often highly complex while data is almost
always insufficient. Two intuitive strategies to address this challenge are experimental design (obtain more data to improve
parameter estimation) and model reduction (simplify the model to reveal key mechanism). In the literature, those two have
been viewed as distinct areas. We present a geometric framework to connect the two areas. We consider a model as a
manifold, and explore its geometry to perform experimental design and model reduction. This framework is interesting
because of both its mathematical beauty (unifying two seemingly distinct areas) and its potential impact to biology (helping
biologists to design experiments and find important mechanisms).
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INTRODUCTION

Mathematical modeling is undoubtedly an important tool
for understanding complex biological systems, and for
making predictions about system behavior far away from
its nominal operating conditions [1,2]. These models can
take the forms of ordinary differential equations [3],
stochastic differential equations [4], Boolean networks
[5], Bayesian networks [6], Petri net [7], and other
frameworks [8–10] according to properties of the
biological processes they intend to describe. In systems
biology, a popular modeling tool for the dynamics of
biological networks is ordinary differential equations
(ODEs), describing changes of abundance or concentra-
tion of interacting components over time. ODE-based
systems biology models are often constructed by includ-
ing prior knowledge of interactions among individual
genes and proteins in the complex system, resulting in
highly complex models with many unknown parameters,
such as reaction rates, binding affinity, hill coefficient, etc
[11–15]. In general, these unknown model parameters can
be estimated based on the experimentally observed data.
However, compared to the complexity of the models, the
amount of experimentally available data is almost always
limited and not enough to constrain the parameters. As a
result, it is possible that drastically different sets of
parameters can fit the data equally well, which is a
manifestation of an information gap between the model
complexity and the data [16]. Parameter estimation in this
situation is an ill-posed problem, and thus very challen-
ging.
To bridge this gap between high model complexity and

limited available experimental data, one strategy is to
develop better optimization algorithms for parameter
estimation, and investigate sensitivity and identifiability
to evaluate which parameters are accurately estimated and
which ones have large uncertainty. Literature along this
line is voluminous, and most progress took place in the
fields of statistics, machine learning, systems and control
theory [17–21]. An alternative strategy is to make the
problem better conditioned by obtaining more data or
simplifying the model, with methods that are referred to
as experimental design [22–24] and model reduction [25–
28] in the literature. This paper focuses on discussing the
second strategy, from both the experimental design and
the model reduction perspectives.
Experimental design is an intuitive approach to address

the information gap between complex models and limited
experimental data, by performing new experiments to
obtain more data. To design a new experiment, one
typically needs to decide what perturbation (activation or
inhibition) is to be applied to which components (genes
and proteins) in the system, as well as which components

should be measured at which time points. These choices
together constitute the design of a new experiment. The
experimental design question is: given an ODEmodel and
existing experimental data, what additional experiment is
expected to be maximally informative in improving
parameter estimation and reducing uncertainty?
Model reduction is another intuitive approach, which

aims to simplify the complex model to an extent that is
compatible to the available experimental data. For
example, if additional experimental data cannot be
obtained for some practical reasons (e.g., biological
samples are unavailable or experiments are too costly),
the available experimental data is fixed. In this situation, a
highly complex model may be unnecessary to describe
the available data. Model reduction can be applied to
derive simpler models that can describe the data with
fewer parameters. Furthermore, model reduction can lead
to a minimal model that cannot be further reduced without
losing its ability to explain the data, and the minimal
model may elucidate the key controlling mechanisms that
give rise to the data. The challenge is to identify the
appropriate reduction among a huge number of possible
ways to write down reduced models (e.g., remove or
combine parameters or variables). The model reduction
question is: given an ODE model and limited experi-
mental data, how to systematically derive a sequence of
reduced models, each with one fewer degree of freedom,
such that the reduced models retain the ability to fit the
data?
Both these questions have been studied in the literature.

For example, experimental design algorithms have been
developed based on Bayesian posterior sampling [29–32],
information theory [33,34] and sensitivity analysis
[22,35,36]. Model reduction methods have been applied
to complex biological systems by exploiting system
properties, such as time scales [27,28,37–40], modularity
[41–44] and sensitivity [14,45–49]. Although experi-
mental design and model reduction have been largely
considered as distinct problems, these two problems share
deep connections and there exist methods that can tackle
both problems, such as the profile likelihood [50,51] and
the model manifold analysis [52–54]. In the following, we
use a simple dynamical system as an example to illustrate
in details the processes of experimental design and model
reduction using the profile likelihood and model manifold
methods.

EXPERIMENTAL DESIGN

Existing experimental design methods

Given an ODE model and limited amount of experimental
data, experimental design aims to identify the experiment
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that is expected to be maximally informative in improving
parameter estimation. Different existing experimental
design methods differ by how “maximally informative”
is defined. For example, methods based on Bayesian
posterior sampling aim to identify experiments which
optimizes the expected value of some objective functions
associated to candidate experiments [29,30,32,50]. Infor-
mation theoretic methods use entropy and mutual
information to quantify the additional amount of
information contained in candidate experiments [33,34].
Methods based on sensitivity analysis aim to find
experiments which can maximally reduce the variance
and uncertainty of the estimated parameters [22,35,52,
55–57].
The Approximate Bayesian Computation method

based on Sequential Monte Carlo (ABC-SMC) is a
powerful approach for parameter estimation and model
selection [58]. The ABC-SMC algorithm can be applied
to sample the parameter space from a posterior distribu-
tion defined based on the fit between parameter values and
experimental data. As an output of this sampling process,
an empirical distribution of the parameters is obtained,
which describes how well the parameters are constrained
by the experimental data. Compared to many parameter
optimization algorithms that provide a point estimate, the
empirical distribution contains richer information, which
can be used for experimental design. In a Bayesian active
learning method [32], this empirical distribution was used
to compute, for each candidate experiment, the expected
value of a loss function defined by the error of the model
predictions, and the expected loss was the criterion for
selecting the optimal experiment to perform next. In
another Bayesian method [30], the empirical distribution
of parameters was used to compute the expected variance
of estimated parameters if the data is augmented by each
candidate experiment, and the expected variance served
as the criterion for experimental design. In the profile
likelihood method [50], a variation of this empirical
distribution was used to calculate the range of model
predictions for each candidate experiment, and suggested
that the optimal experiment should be the one with the
widest spread of predictions.
Information theoretic experimental design approaches

incorporate entropy and mutual information measures
into the Bayesian methods. The typical criterion for
optimal experiment is to maximize the mutual informa-
tion between parameters and candidate experiments, or
more precisely, the Kullback-Leibler divergence between
the prior distribution of the parameters and the posterior
distribution of parameters given data from candidate
experiments [33,34]. The prior distribution of the
parameters encodes either the prior knowledge of the
parameters if no experimental data is available, or the
posterior distribution of parameters given available data

from previously performed experiments, allowing itera-
tive procedures between the computational analysis of
experimental design and the biological efforts of carrying
out the experiments.
Sensitivity analysis examines the derivatives of model

predictions with respect to the parameters, which form the
Jacobian and the Fish Information Matrix (FIM) [59]. For
each candidate experiment, a separate FIM can be
constructed by considering the derivatives of model
predictions associated to the available experiments and
the candidate experiment. When the FIM is evaluated at a
point estimate of the parameters given the currently
available data, the resulting matrix represents a linear
approximation of the model, and the properties of the FIM
provide quantification of parameter uncertainty if the
candidate experiment is performed, which can be used as
criteria for experimental design [60]. One of these criteria
is A-optimality, which minimizes the trace of the inverse
of the FIM, and hence minimizes the variance of the
estimated parameters [52,56]. Another popular criterion is
the D-optimality, which maximizes the determinant of the
FIM [22,35,55,57]. Although the linear approximation
seems insufficient in handling complex nonlinear dyna-
mical models, it has been shown to be an effective method
for experimental design in many systems biology studies,
and is computationally much more efficient compared to
Bayesian approaches.

An example model: sum of two exponentials

To discuss experimental design in details, we introduce a
simple toy example, the sum of two exponentials. Assume
we have a dynamical system that contains two exponen-
tially decaying variables with unknown decay rates.
Assume the two variables cannot be measured separately,
and we can measure the sum of them at time points of our
choosing. For simplicity, we further assume that at t = 0,
the initial values of both variables are 1. This system can
be modeled by the following ODEs in Equation (1),

dx1
dt

=– �1x1

dx2
dt

=– �2x2

x3ðtÞ=x1ðtÞ þ x2ðtÞ

x1ðt=0Þ=1

x2ðt=0Þ=1

,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(1)

where x1 and x2 represent the two dynamical variables,
which exponentially decay at rates �1 and �2, respectively.
x3 represents the sum that can be measured. The
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simplifying assumption is modeled by the initial condi-
tions. Since this ODE system is simple and linear, we can
obtain its analytical solution in Equation (2). However,
this is special to the simple example. For complex systems
biology models, such an explicit analytical solution is
typically unavailable,

x1ðtÞ=e – �1t

x2ðtÞ=e – �2t

x3ðtÞ=e – �1t þ e – �2t

:

8><
>: (2)

To estimate the decay rates, we design an initial
experiment, where we measure the sum x3 at time points t
= 1 and t = 3. The mathematical description of the
experiment is in Equation (3),

obs1=x3ðt=1Þ
obs2=x3ðt=3Þ

:

�
(3)

Assume that after we carry out this experiment, the
observed measurements are 1:10� 10 – 5 and 1:04�
10 – 15 (corresponding to noise-free simulation using true
parameter values �1=14, �2=11:5).
Using this example, we introduce a few terminologies.

Since the system has two unknown parameters �1 and �2,
the parameter space is 2-dimensional. A 45 degree line is
drawn in the parameter space because of the symmetry in
the model. The experiment makes two measurements
obs1 and obs2, and therefore the experimental data is a
point living the a 2-dimensional data space. The
mathematical descriptions of both the system (1) and
the data (3) together constitute the model, which defines a
mapping from the parameter space to the data space. If we
consider all parameter settings in the parameter space and
map them to the data space, we will obtain a collection of
points in the data space that are achievable by the model

(shaded area in Figure 1), which is what we call model
manifold. Typically, the model manifold does not occupy
the entire data space, because of the constraints imposed
by the mathematical structure of the model.
Albeit the simplicity of this example model, the fact of

the experimental measurements being 1:10� 10 – 5 and
1:04� 10 – 15 represents a situation where the data does
not contain enough information compared to the com-
plexity of the model. There are two ways to explain this.
(i) The measured variable x3 is the sum of two exponential
decays that will eventually go down to 0. By the time the
two measurements are taken, x3 is already extremely close
to 0. Because the measurements are taken too late, there is
little information in the observed data to infer the decay
rates. (ii) The observed data corresponds to one point
(star) in the data space, which sits in the bottom left corner
of the model manifold, as shown in Figure 2B. If we
formulate a least squares problem to estimate the
parameters by an optimization algorithm (e.g., gradient
descent, interior point [17]), and set a small error
tolerance threshold of 10 – 5, the optimization algorithm
will stop when it reaches a solution in the red region of the
model manifold in Figure 2B, which is tiny and only
visible in the zoomed-in view in Figure 2C. However, this
tiny red region of the manifold corresponds to a large
region in the parameter space shown in Figure 2A.
Therefore, the estimated parameter can land anywhere in
the red region of the parameter space, far away from the
true parameters indicated by the star, which means large
uncertainty in the estimated parameters. In this example,
parameter estimation is difficult because the available
experiment is performed at an incorrect time scale.
Intuitively, we should measure earlier time points. In the
following, we use two experimental design methods to
identify the appropriate time points we should measure.

Figure 1. The parameter space and the model manifold in the data space for the sum-of-two-exponentials example.
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Experimental design algorithm based on
uncertainty reduction

We previously developed an experimental design algorithm
based on sensitivity analysis and uncertainty quantification
[52]. The key idea behind this algorithm is to identify the
experiment that maximally reduces the uncertainty of the
estimated parameter. The algorithm is as follows:
1. Set up a least squares cost function for parameter

estimation c=0:5�
X

i
ðobsi – predið�ÞÞ2: Perform

parameter estimation and obtain the best estimate based
on currently available data.
2. Compute the Jacobian matrix Ji,j=∂predið�Þ=∂�j at

the best estimate. Compute the Fisher Information matrix
I=JTJ , which is an approximation of the Hessian of the
cost function at the current best estimate. Compute the
parameter uncertainty: D=traceðI – 1Þ.
3. For each candidate experiment, compute the

extended Jacobian, which is the Jacobian in step 2
appended by the partial derivatives of the model
predictions of the candidate experiment with respect to
the parameters. Compute parameter uncertainty based on
the extended Jacobian. Suggest the experiment with
smallest uncertainty as the next new experiment.
4. Carry out the suggested experiment to obtain new

data.
5. Iterate through steps 1‒4 to suggest new experiments

until uncertainty cannot be reduced.
Given the data from the initial experiment x3ðt=1Þ=

1:10� 10 – 5 and x3ðt=3Þ=1:04� 10 – 15 , we formulate
the least squares cost function in step 1, and optimize it
using the Levenberg-Marquardt algorithm implemented
in Matlab. The estimated parameter values are [10.70,
10.70]. Although the initial experimental data corre-
sponds to noise-free simulation of the true parameter, the
optimization algorithm stops early before reaching the
true parameter due to numerical imprecision. However,
the optimization actually performs well and achieves a
very small value of 1:16� 10 – 9 for the least squares cost.
This disconnection between low cost and incorrect
parameter is a manifestation of the fact that the data is
limited compared to the complexity of the model.
In step 2, we compute the Jacobian matrix which is

composed of derivatives of experimental observations
with respect to the parameters, evaluated at the estimated
parameter. In this example, these derivatives can be
written analytically in Equation (4),

J=

∂x3ðt=1Þ
∂�1

∂x3ðt=1Þ
∂�2

∂x3ðt=3Þ
∂�1

∂x3ðt=3Þ
∂�2

2
664

3
775= – e – �1 – e – �2

– 3e – 3�1 – 3e – 3�2

� �
:

(4)

Figure 2. Small region of the manifold can map to large region in the parameter space.
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After evaluating the Jacobian at the current estimated
parameter [10.70, 10.70] and computing the Fisher
Information Matrix and its trace, we can see that the
uncertainty of the estimated parameter is huge 4:93�
1044 . In complex models where the analytical solution of
the Jacobian is not available, the derivatives in the
Jacobian can be approximated by finite differences or the
sensitivity equations [61].
At this moment, although we notice the huge

uncertainty associated with the estimated parameter,
since the least squares objective is very small, we do
not have evidence against the estimated parameter. In
other words, we do not have reasons to suggest the
estimated parameter is incorrect, and we just do not have
much confidence in it. Therefore, we assume the
estimated parameter is correct, and design a new
experiment that maximally increase our confidence by
reducing the uncertainty. When the new experiment is
carried out, we may realize that our assumption is wrong,
and we can perform parameter estimation again based on
the current and additional data to update the estimated
parameter.
In this example, the collection of all possible new

experiments is defined as measuring x3 at another time
point. For each possible new experiment (a candidate time
point), we compute the Jacobian associated to the existing
experiments and the new experiment, evaluate it at the
current estimated parameter, and compute the trace of the
Fisher Information Matrix to quantify the parameter
uncertainty if the new experiment is performed. Figure 3
shows the resulting uncertainty at each candidate time
point. The peak at t = 1 shows that repeating a previous
measurement does not efficiently reduce the uncertainty.
The flat region after t = 3 indicates that measuring any

time points after t = 3 does not reduce the uncertainty
at all. Because t = 3 is already too late with observed
x3 (t = 3) extremely close to 0, any time point after that is
even closer to 0, which does not provide any additional
information about the underlying parameter. The lowest
uncertainty is achieved at t = 0.0008, which is the new
experiment that our algorithm suggests.
After the suggested experiment is performed, the

mathematical description of the experiment becomes
obs1 =x3 (t = 1), obs2 =x3 (t = 3), and obs3 =x3 (t = 0.0008),
and the experimental data becomes [1:10� 10 – 5,
1:04� 10 – 15, 1.9797]. Repeating the parameter estima-
tion and uncertainty quantification in steps 1 and 2, the
estimated parameter becomes (13.85, 11.65), which is
closer to the true parameter and has smaller uncertainty
3:30� 1010.
Repeating step 3 leads to the design of the next

experiment. In Figure 4A, we can see that the uncertainty
landscape changes. Very early time points are no longer
very useful, because we already have a measurement
taken at t = 0.0008. The uncertainty score after t = 1 is flat,
indicating that a new time point between 1 and 3 is not
useful any more. The maximal uncertainty reduction
occurs at t = 0.46, which is in a gap between the available
time points. After the suggested experiment is carried out,
the entire experimental design process can iterate to
suggest new time points as shown in Figure 4B‒4D.
Figure 5 shows a summary of five iterations of the

experimental design algorithm based on uncertainty
reduction. Figure 5A shows the suggested time point at
each iteration. Figure 5B shows that the estimated
parameter is almost identical to the true parameter after
the second experimental design iteration. Interestingly in
Figure 5C, after the second iteration is completed,

Figure 3. Uncertainty profile for experimental design. In the first experimental design iteration, parameter uncertainty at each
candidate time point. The time point t = 0.0008 is chosen for the next experiment because it leads to lowest uncertainty.
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Figure 4. Parameter uncertainty at each candidate time point in iterations 2–5. The selected time points are 0.4589,
0.011309, 0.2576 and 0.0277, respectively.

Figure 5. Summary of five iterations of experimental design based on uncertainty reduction.
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subsequent iterations only lead to moderate amounts of
reduction in parameter uncertainty, suggesting that the
experimental data after the second iteration becomes
sufficient compared to the complexity of the model, and
the subsequent iterations are unnecessary.
In this example and the subsequent examples, no

experimental noise is included in the simulations,
although noise is an important aspect that affects
uncertainty quantification and experimental design. This
is mainly because operationally, with or without experi-
mental noise, the algorithm is exactly the same: use the
experimental data to perform parameter estimation, use
the estimated parameter to quantify uncertainty, evaluate
all possible new experiments to identify the one that leads
to the most amount of uncertainty reduction, and select
that one as the new experiment to perform next.
Therefore, noise is not necessary for the purpose of
illustrating how the algorithm works. Experimental noise
in the data affects parameter estimation, which subse-
quently affects uncertainty quantification at the estimated
parameter and the selected experiment. In an extreme case
where the noise is so large that the estimated parameter is
completely wrong, it is possible that the selected new
experiment is not useful in reducing the parameter
uncertainty. However, data from the new experiment,
together with the previous data, will be able to help us to
perform parameter estimation better. With the increased
amount of data, the newly estimate parameter will move
toward the true parameter, making the next iteration of
uncertainty quantification and experimental design more
meaningful. To investigate the impact of noise on a
specific experimental design problem, we only need to
include one more operation in this example, adding
experimental noise right after the noise-free experimental
data is simulated.

Experimental design algorithm based on profile
likelihood

Experimental design of the sum-of-two-exponentials
model can be performed using another algorithm based
on the profile likelihood. In Ref. [50], the likelihood is
defined with a Gaussian assumption,

Likelihoodðobsj�Þ=∏
i

1ffiffiffiffiffi
2π

p
�i
e
–
ðobsi – predið�ÞÞ2

2�2
i , (5)

where �i represents measurement noise. If we assume all
measurements are equally accurate, the negative loglike-
lihood can be simplified as the following:

NegativeLogLikelihoodðobsj�Þ=0:5

�
X
i

ðobsi – predið�ÞÞ2, (6)

which is the same as the cost function used in the
experimental design algorithm based on uncertainty
reduction. The likelihood function in Equation (5) or
the negative loglikelihood cost function in Equation (6)
can be used to define the profile likelihood.
The profile likelihood for each parameter is a function

of the parameter, defined by solving many optimization
problems. Take parameter �1 as an example. If we fix �1 to
be a certain value (e.g., 0.123), we can optimize the
negative log-likelihood cost function with respect to the
remaining parameters (�2, ..., �d if there are d unknown
parameters), which identifies the best cost function value
and the estimated values for the remaining parameters. If
we vary the value of �1 across its feasible range and
perform the optimization for each possible value of �1, we
obtain two curves: one is the optimal cost as a scalar
function of �1, and the other is the optimal values for the
remaining parameters as a vector function of �1. The first
of the two curves is the profile likelihood of �1. The
profile likelihood of �1 characterizes the optimal cost
function values when �1 is fixed. The same analysis can
be performed for each parameter, obtaining a total of d
profile likelihoods, where d is the number of parameters.
For each profile likelihood, for example the one of �1,

we can identify the minimal, which indicates the best
value to fix �1. We can also define a confidence interval
around the best value of �1. For example, a generous
definition would be a threshold at the 90 percentile of the
optimized cost function values, which exclude 10 percent
of possible �1 values with optimized cost function larger
than the threshold. The accepted �1 values and the
corresponding estimated values for the remaining para-
meters form a collection of acceptable parameter settings
derived from the profile likelihood of �1. If we perform
the same analysis for the profile likelihood of all the
parameters, we will obtain a larger collection of
acceptable parameter settings.
These acceptable parameter settings can then be used

for experimental design. For one candidate experiment,
we can use these acceptable parameter settings to simulate
the experiment, and examine the range of the simulated
data. If the range is small, all these acceptable parameters
lead to similar predictions of the data that will be
generated by the candidate experiment, which means this
candidate experiment does not have the ability to
differentiate the acceptable parameters. However, if the
range is large, this candidate experiment is able to
differentiate acceptable parameters and further constrain
the parameters. Here is an algorithm for performing
experimental design based on the profile likelihood:
1. Compute profile likelihood for each parameter.

Basically, pick one parameter and vary its value in the
feasible region. For each feasible value of the picked
parameter, perform optimization to estimate the other
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parameters. The optimization objective is a least squares
cost function c=0:5�

X
i
ðobsi – predið�ÞÞ2.

2. Define thresholds to obtain the collection of
acceptable parameter settings from the profile likelihood
of each parameter.
3. For each candidate experiment, simulate the model

using all the acceptable parameter settings, and compute
the range of the simulated predictions. Suggest the
experiment with the largest range as the next new
experiment.
4. Carry out the suggested experiment to obtain new

data.
5. Iterate through steps 1‒4 to suggest new experiments

until some stopping criterion (the profiles become very
sharp, or the range of simulated predictions becomes very
tiny).
In the sum-of-two-exponentials example, given the

data from the initial experiment x3 (t = 1) = 1.10�10–5 and
x3 (t = 3) = 1.04 � 10–15, we formulate the negative
loglikelihood cost function in step 1 and compute the
profile likelihood for each parameter using the Leven-
berg-Marquardt optimization algorithm implemented in
Matlab. We first fix �1 at different values, optimize the
cost function with respect to �2, and generate the profile
likelihood for �1 shown in Figure 6A. In Figure 6A, when
�1 is fixed at small values, the optimized cost function is
large because it is impossible to tune �2 alone to achieve
small cost function value. Correspondingly in Figure 6C,
the optimized �2 exhibits a strange oscillating pattern
when �1 is fixed at small values, which is likely caused by
numerical issues of the optimization algorithm. Since the
two parameters are symmetric, the profile likelihood of
the two parameters are identical, and therefore Figure 6B
and 6D are identical to Figure 6A and 6C.
To define acceptable parameter settings in step 2, we

need to choose a threshold. In this example, the threshold
is defined as 90% of the best likelihood in Equation (5).
The corresponding threshold on the profile likelihood is
shown by the horizontal line in Figure 6A and 6B. This is
a generous threshold, accepting many parameter settings
along the profile likelihood. The acceptable parameter
settings are shown in black in Figure 6C and 6D, whereas
gray indicates the parameter settings that are not accepted
according to the threshold.
In step 3, the model is simulated using the acceptable

parameter settings to obtain the range of predicted data for
all candidate experiments (time points). Figure 6E shows
the range of x3’s behaviors across the acceptable
parameter settings. The time point t = 0.0135 is suggested
as the new experiment, because it corresponds to the
largest range, and hence has the most discriminating
power among the acceptable parameter settings.
After the suggested experiment is performed, the

experimental data becomes [obs1,obs2,obs3]= [x3 (t = 1),

x3 (t = 3), x3 (t = 0.0135)] = [1.10 � 10–5, 1.04 � 10–15,
1.6851]. With the new experimental data, if we perform
parameter estimation again, the estimated parameter
becomes [14.3431, 11.1697], closer to the ground truth.
We can perform a second iteration of the experimental
design algorithm to suggest the next time point. In the
second iteration, the updated profile likelihood is shown
in Figure 7A and 7C. The sharp peaks indicate that the
current data is already able to constrain the parameters
close to the true parameter values. In Figure 7E, we can
see that the simulated behaviors of x3 still exhibit large
range at late time points, and the algorithm suggests t =
0.2899 as the next time point to measure.
A summary of the first five iterations of the profile

likelihood based experimental design is shown in
Figure 8. Figure 8A shows the suggested time points in
each iteration. After the second iteration, the algorithm
stops exploring the new time points. This coincides with
Figure 8B, showing that the error in the estimated
parameters approaches 0 after the second iteration.
Although profile likelihood does not consider parameter
uncertainty, the suggested time points do lead to great
reduction of parameter uncertainty along the process, as
shown in Figure 8C.

Geometric interpretation of experimental design

In each iteration of the experimental design process, a
new experiment is suggested and performed. More
available data means that the dimension of the data
space is increased. Since the number of parameters stays
the same, the intrinsic dimension of the model manifold
does not change. Therefore, increasing the data by new
experiments will expand the data space by adding new
dimensions, and deform the model manifold into the new
dimensions, but will not change the dimension of the
model manifold itself.
Figure 9 illustrates how experimental design changes

the geometry of the model manifold using the sum-of-
two-exponentials example. With the initial experimental
design obs =[x3 (t = 1), x3 (t = 3)], the model manifold is a
2D object (2 parameters) that lives in the 2D data space,
shown in Figure 9A. The manifold is colored by the sum
of the two parameters. The upper right corner (blue)
corresponds to both parameters being small. The bottom
left corner (red) corresponds to both parameters being
large. The data of the initial experiment sits in the bottom
left corner of the manifold. After the first iteration of
experimental design based on uncertainty reduction, a
third observation x3 (t = 0.0008) is made, and the model
manifold becomes a 2D object in the 3D data space shown
in Figure 9B, colored in the same way. If we look at the
model manifold in Figure 9B from top to down, we will
see the exact same figure as the 2D version in Figure 9A.
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From the color, we can see that the new experiment
expanded the bottom left corner (red region) of the model
manifold and stretched that region downwards, while the
rest of the model manifold (blue region) is less affected.
This is because the new experiment is designed to
improve parameter estimation of the data that sits at the
bottom left corner. Figure 9C shows the geometry of the
model manifold after the first iteration of the experimental
design algorithm based on profile likelihood, which is
qualitatively the same as Figure 9B. As the experimental
design algorithm iterates, the model manifold is expanded
to higher dimension. The manifold region around where
the experimental data sits is expanded more than the rest
of the manifold.
When applied to the sum-of-two-exponentials example,

the above experimental design algorithms show similar

performance. In both cases, the first two suggested time
points are sufficient in constraining the parameters, and
therefore, the subsequent iterations are actually unneces-
sary. The two algorithms are comparable in terms of the
error and the uncertainty in the estimated parameters. We
implement the experimental design process of the sum-of-
two-exponentials example in Matlab, and provide the
code and documentations at http://pengqiu.gatech.edu/
software/model_manifold/html/publish_model_mani-
fold.html.
In this example, we assume the collection of all

possible new experiments is defined by measuring x3 at
any time point. This is certainly unrealistic, because
getting data very frequently at highly precise time points
is very difficult experimentally. In reality, the collection of
all possible and realistic new experiments is typically a

Figure 6. The first iteration of profile likelihood based experimental design.
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smaller set due to experimental and technical constraints,
and the uncertainty quantification for experimental design
should only consider the realistic experiments.

MODEL REDUCTION

Existing model reduction methods

Given an ODE model and a limited amount of
experimental data, model reduction aims to derive
reduced models that can fit the data with fewer
parameters, and identify the minimum model to elucidate
the key mechanisms that give rise to the experimental
observations. The challenge is to identify the appropriate
reduction among a huge number of possible ways to write
down reduced models (e.g., remove or combine para-

meters or variables). Most existing model reduction
methods follow a two-step process: first identify which
part of the model should be simplified by exploiting
special properties and sensitivities of the model, and then
write down the mathematical form of the simplified model
using ad hoc rules or biological insights. Useful properties
for model reduction include separation of time scales
[27,28,37–40,62], clustering and lumping of variables
into modules [42–45], and insensitive parameters or
variables [14,45–49]. Methods exploiting these properties
are summarized in a recent survey on model reduction
[63].
Biological systems often contain processes that occur

in different time scales [64]. Compared to the experi-
mentally observed behavior, processes that occur much
faster can be assumed to be in the steady state and

Figure 7. The second iteration of profile likelihood based experimental design.
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processes that occur much slower can be approximated as
constants [65]. In an analysis of the Wnt/b-Catenin
signaling pathway [37], the experimental observations are
made on a time scale of hours. Since separate experiments
observed no detectable degradation of several proteins in
the pathway in several hours, the concentration of these
proteins are assumed to be constants, so that the
corresponding differential equations are converted into
algebraic equations, reducing the number of dynamical
variables. In addition, a few reversible binding reactions
are known to occur much faster, which lead to quasi-
equilibrium approximations that turn reaction rates into
ratios, reducing the number of parameters [37]. For
complex models, computational singular perturbation
analysis can be applied to systematically identify
processes or transformations associated to fast and slow
time scales, which lead to model reduction [27,38–40,62].
Lumping methods for model reduction aims to remove

dynamical variables from the system and replace them by
new lumped dynamical variables that represent affine
combinations of the removed variables [41,42]. Variables
to be lumped can be identified by either biological
intuition of the structural properties of the model
[26,43,66–68], or systematic algorithms based on princi-
ple component analysis [69,70], greedy iterative forward
selection [45] and decomposition algorithms [13]. One
special case of lumping methods is called proper lumping,
where each variable in the system contributes to only one
of the new lumped variables. This constraint allows the
interpretation of the reduced model to be clearly
connected to the interpretation of the original variables
[13,43,44].
Sensitivity analysis is another popular approach for

model reduction. In complex models with limited
experimentally observed data, there typically are para-
meters or parameter combinations that are not important
for the observed data. In sensitivity analysis, the
insensitive model parameters that affect the dynamics
the least are eliminated [45–47]. The insensitive para-
meters can be identified by principal component analysis
of the Jacobian [14,49] and flux analysis of the
stoichiometry [48].

The sum-of-two-exponentials example for model
reduction

Similar to the discussion of experimental design, we use
the sum-of-two-exponentials model to illustrate model
reduction algorithms. The model reduction problem starts
with the mathematical model in Equations (1) and (3).
Similar as before, we assume the true underlying
parameter values are �1 = 14, �2 = 11.5, and the experi-
mental data are obs1 =x3 (t = 1) = 1.10 � 10–5 and obs2
=x3 (t = 3) = 1.04 �10–15 . Therefore, the model and data
together represent a situation where the data is not enough
to constrain the model parameters, making this problem
amendable to model reduction. In the following, we apply
two model reduction methods to derive reduced models
for this example.

Model reduction based on manifold boundary
approximation method (MBAM)

The manifold boundary approximation method (MBAM)
[53] performs the model reduction by manifold bound-
aries. The basic idea is to view the experimental data as a

Figure 8. Summary of five iterations of experimental design based on profile likelihood.
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point in the data space, project it on the model manifold,
and identify the nearest manifold boundary. This manifold
boundary corresponds to a reduced model with one fewer
degree of freedom, and is able to better fit the data than
other reduced models corresponding to other boundaries

of the manifold.
In the sum-of-two-exponentials model, the model

manifold has three boundaries, which are highlighted in
Figure 10. Starting from the original model in Equations
(1) and (2), if �1 is set to infinity, the solution of the model
becomes x3ðtÞ= e – �2t, as the exponential term corre-
sponding to infinite �1 decays to 0 instantaneously. Given
the same initial experiment that makes two measurement,
the model manifold for the reduced model becomes a 1D
object in the 2D data space, which is the blue boundary of
the original model manifold in Figure 10. Setting �1 is
close to 0 leads to another reduced model x3ðtÞ
= e – �2t þ 1, whose corresponding model manifold is
the green boundary in Figure 10. Lastly, if the two decay
rates are equal �1 =�2, the original model reduces to x3ðtÞ
=2e – �2t, and the model manifold reduces to the red
boundary. This example shows the boundaries of the
original model manifold correspond to reduced models
that can be derived by physically meaningful limits of the
parameters.

Motivated by the correspondence between manifold
boundaries and reduced models, we developed the
MBAM algorithm for model reduction [53]. The
MBAM algorithm is as follows:
1. Based on the current model, set up a least squares

cost function for parameter estimation c=0:5�
X

i

ðobsi – predið�ÞÞ2. Perform parameter estimation and
obtain the best estimated parameter based on the data,
which corresponds to the projection of the experimental
data onto the model manifold.
2. Identify the manifold boundary nearest to the

experimental data by numerical integration of the
geodesic equation, using the estimated parameter as the
0-th order initial condition and the least sensitive

Figure 9. Geometry of model manifold is changed by the
experimental design process. (A) Initial experimental design.

(B) Third time point at 0.0008. (C) Third time point at 0.0135.

Figure 10. Model manifold boundaries.
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parameter directions from the Fisher Information Matrix
as the first order initial condition. The geodesic equation
is a set of N nonlinear second-order differential equations:
d2��

dτ2
þ
X

α,β
Γ�
α,β

d�α

dτ
d�β

dτ
=0, where μ runs from 1

to N, indexing the parameters. Γ�
α,β is known as

the connection coefficient. Γ�
α,β=

X
v,m

g�v
∂predm
∂�v

�

∂2predm
∂�α∂�β

Þ where, g�v=
X

m

∂predm
∂��

∂predm
∂�v

� � – 1

is

the (�,v) element of the inverse of the Fisher Information
Matrix. In the summations, α, β, v run from 1 to the
number of parameters, andm runs from 1 to the number of
experimental observations. If we set q (τ = 0) to be the
estimated parameter and set θ′(τ = 0) to be the eigenvector
of the smallest eigenvalue of the Fisher Information
Matrix (the least sensitive parameter direction), solution
to the geodesic equation is a nonlinear curve in the
parameter space which maps to a “straight” line on the
model manifold, leading to the boundary closest to where
the projection of the experimental data sits.
3. As the geodesic path approaches a boundary, the

Fisher Information Matrix becomes singular, and certain
parameters approach to limiting values (such as 0,1). We
evaluate the limits and manually write down the
mathematical form of a reduced model.
4. With the reduced model, go through steps 1–3 to

derive further model reductions, until the reduced model
cannot fit the experiment data well.
The most challenging step of MBAM is the numerical

integration of the geodesic equation, which is a set of
second-order differential equations. To use existing
differential equation solvers to perform numerical inte-
gration, we turn the geodesic equation into the following
first-order form:

d

dτ
ð��Þ= d��

dτ

� �
,  �=1, 2, :::,N ,

d

dτ
d��

dτ

� �
=–

X
a,β

Γ�
α,β

d�α

dτ
d�β

dτ
,  �=1, 2, :::,N ,

(7)

Denote
d��

dτ
as new variables [d��], Equation (7) becomes

clearer,
½ _���=½d���,

½d _���=–
X
α,β

Γ�
α,β½d�α�½d�β�:

(8)

where each “[...]” represents one variable in the first-order
form of the geodesic equation, and the dot above
represents the first order derivative with respect to t.
Numerical integration of Equation (8) requires the
connection coefficients Γ�

α,β, which are functions of the

parameters q. As mentioned in step 2 of MBAM,
calculating the connection coefficients involves the first-
and second-order partial derivatives of the model
predictions of the experimental data with respect to the
parameters, which can be computed by finite differences
or the sensitivity equations [61]. Overall, the process of
integrating the geodesic equation is the following: first
specify an initial parameter and initial velocity, numeri-
cally compute the connection coefficients at the initial
parameter, inch forward both �� and d�� using Euler
formula, then recompute the connection coefficient at the
new ��, inch forward again, and keep repeating this
process to obtain the geodesic path in the parameter space.
Since MBAM uses manifold boundaries to derive

reduced models, it requires the model manifold to be
bounded and requires the model to be differentiable. In
systems biology, models are usually constructed with
biological assumptions and constraints such as bounded
production, exponential decay and mass conservation,
which often make the model manifold bounded. There-
fore, MBAM is generally applicable to models in systems
biology. The manifold for the sum-of-two-exponentials
example is obviously bounded, and hence can be
analyzed using MBAM. In the sum-of-two-exponentials
example, the decay parameters are non-negative. Many
models in systems biology also involve non-negative
constraints on the parameters. For such constraints, one
neat trick is to modify the model to work with log-
parameters, which are unconstrained because the expo-
nentiation automatically takes care of the non-negative
constraints. The modified model in log-parameters is
shown in Equation (9):

x3ðtÞ=e – te
log�1 þ e – te

log�2

obs1=x3ðt=1Þ
obs2=x3ðt=3Þ

,

8<
: (9)

where the two parameters are log�1 and log�2.
In this example, we assume the parameter estimation in

step 1 is perfectly accurate, and use the true parameter as
the initial parameter for integrating the geodesic equation,
log�� =[log(14), log(11.5)]′ = [2.6391, 2.4423]′. The
initial velocity dlog�� is the least sensitive parameter
direction. To obtain the initial velocity, we compute the
Jacobian matrix J at the initial parameter, compute the
Fisher Information Matrix J′J , and find its eigenvalues
and eigenvectors. The eigenvector corresponding to the
smallest eigenvalue is the initial velocity direction.
Equivalently, the initial velocity direction can be defined
by the right singular vector of J that corresponds to J’s
smallest singular value. The eigenvector (or the singular
vector) is not the initial velocity yet, there is still
ambiguity about the direction, because the opposite
direction of an eigenvector is also an eigenvector
corresponding to the same eigenvalue. To determine the
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direction, we compute the right hand side of the [dlog��]
equation in Equation (8), which defines the acceleration.
If the inner product of the eigenvector and the acceleration
is positive, we define the initial velocity to be the
eigenvector itself. If the inner product is negative, we
define the initial velocity to be the negative of the
eigenvector. In this case, the initial velocity is [ – 0.9950,
0.0994]′.
After determining the initial conditions of the geodesic

Equation (8), we numerically integrate it to identify the
nearest boundary. Figure 11A shows the trajectory
obtained by integrating the geodesic equation, the log-
parameter values as functions of τ which parameterizes
the geodesic path. We can see that the two parameters
gradually approach each other and become almost the
same. In Figure 11C, we show the geodesic path in the
original parameter space, overlaid with the least squares
cost surface. We can see that the geodesic path starts from
the initial parameter we specified, and moves along the

canyon of the cost surface until some limit is achieved. As
shown in Figure 11D, the accelerations of both parameters
grow very large. This is an indication that the identified
boundary corresponds to a limit that involve both
parameters. Since the two parameters gradually approach
each other along the geodesic path, the limit involving
both parameters corresponds to the symmetry of the
model, where the two parameters are equal. Evaluating

this limit leads to a reduced model x3ðtÞ=2e – te
log�2 ,

corresponding to the bottom-right boundary (red) of the
original model manifold shown in Figure 10.
After presenting one geodesic path in the parameter

space, natural next questions are how about its corre-
sponding image in the data space on the model manifold,
and how does the geodesic path look like given different
starting points? To answer these questions, we compute
initial velocities corresponding to various initial log-
parameters that map to different points on the model
manifold, and map the initial velocities of the log-

Figure 11. Geodesic path obtained in the first iteration of MBAMmodel reduction for the sum-of-two-exponentials model.
(A) The log-parameter values along the geodesic path. (B) The deviation of log-parameter from the initial point. (C) The geodesic
path in the original parameter space overlaid with the cost surface contours. (D) The velocity of the log-parameters along the

geodesic path.

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 301

Experimental design and model reduction



parameters to directions on the model manifold. The
mapped velocities on the manifold are visualized as a
vector field on the model manifold in Figure 12. From this
vector field, it is easy to imagine the trajectory of the
geodesic paths on this model manifold, and map out
regions on the manifold that lead to each boundary.

After the first iteration of MBAM, the model reduces to

x3 (t)=2e
– telog�2 with only one parameter. If we perform a

second iteration of MBAM with the initial log-parameter
log�2 = log(11.5) = 2.4423, the initial velocity is+1, and
the geodesic path leads to the limit of log�2 !1.
Evaluating this limit further reduces the model to a
constant of x3 = 0, which corresponds to the bottom-left
corner of the original model manifold.

Model reduction based on the profile likelihood
method

The profile likelihood approach for experimental design
can also be applied to perform model reduction [51]. The
idea is related to the manifold boundary approximation
method, but has notable differences. As mentioned in the
discussions of experimental design, the profile likelihood
of one parameter is a function of the parameter and is
defined by solving many optimization problems with the
parameter fixed at various values. The optimized values
for other parameters along the profile likelihood form a
trajectory in the parameter space, along a canyon defined
by cross-sections of the cost surface at various values of
the fixed parameter. The profile likelihood approach
examines these canyons associated with the profile
likelihood of all the parameters, and suggest appropriate

limits to derive reduced models. Here is a simplified
procedure for model reduction based on profile like-
lihood:
1. Compute profile likelihood for each parameter.

Basically, pick one parameter and vary its value in the
feasible region, and for each value perform optimization
to estimate the other parameters. The optimization
objective is a least squares cost function c=0:5�

X
i

ðobsi – predið�ÞÞ2. Perform the same analysis for each
parameter.
2. Define thresholds for acceptable likelihoods.
3. Examine the shapes of the profiles with respect to the

threshold and decide on the limits to simplify the model.
If both ends of a profile exceed the threshold, the
corresponding parameter is considered to be identifiable
and thus cannot be reduced. If neither ends of a profile
exceed the threshold, the corresponding parameter is
unidentifiable and can be fixed to an arbitrary value. If one
end exceeds the threshold and the other stays below it, the
corresponding parameter can be taken to the limit
associated to the end that stays below the threshold.
The profile likelihood of the sum-of-two-exponential

model is already presented in Figure 6A and 6B, along
with thresholds for acceptable likelihoods. For both
parameters, the profile likelihood exceeds the threshold
on the left end, and stays below the threshold on the right
end, indicating that both parameters can be taken to+1
without making the profile likelihood unacceptable. Since
the model is symmetric with respect to the two
parameters, an appropriate reduction should take either
one parameter to+1, or both parameters to+1. The
corresponding reduced model is either x3 (t) = e – �2t, or a
constant model x3 (t) = 0, corresponding to the bottom-left
boundary (blue) or the bottom-left corner of the original
model manifold in Figure 10. Both are reasonable reduced
models for this example because the observed data sits
close to the bottom-left corner of the original model
manifold.

Remarks on manifold boundary and profile
likelihood for model reduction

As shown in this example, both manifold boundary and
profile likelihood methods perform model reduction by
generating parameter trajectories that follow canyons on
the cost surface, and both algorithms generate reasonable
reduced models, which correspond to sub-manifolds
(boundaries and corners) close to where the experimental
data sits. We implement the model reduction process of
this sum-of-two-exponentials example in Matlab, and
provide the code and documentations. In addition, we
provide model reduction analysis of enzyme catalyzed
reaction dynamics, which is a larger model containing

Figure 12. The initial velocities in the data space at the
starting points of geodesic paths corresponding to initial
parameters that map to various regions on the model

manifold.

302 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Jenny E. Jeong et al.



four variables and three parameters. The Matlab code,
documentations and additional example are available at
http://pengqiu.gatech.edu/software/model_manifold/
html/publish_ model_manifold.html.
One key difference between the two algorithms is the

computational complexity. Each iteration of the manifold
boundary approximation method involves one run of
parameter optimization, and computation of the connec-
tion coefficient along the geodesic path, which means
calculation or approximation of the first-and second-order
derivatives of the model predictions with respect to the
parameters along the geodesic path. The profile likelihood
method is more computationally expensive. Each iteration
of the profile likelihood method involves computation of
N profiles. Each profile is computed by many runs of
parameter optimization, with one parameter fixed at
various values. Since parameter optimization is typically
the most time consuming operation in these analyses, the
difference in the number of parameter optimization runs
suggests that the manifold boundary method is more
computationally efficient compared to profile likelihood.
On the other hand, the parameter estimations required in
profile likelihood can be achieved by relatively standard
optimization procedures, whereas the numerical integra-
tion of geodesics in the model manifold approach requires
more sophisticated mathematical machinery and higher
numerical precision. For very complex models, it is
possible that the profile likelihood approach works but the
model manifold approach fails because of numerical
issues with the geodesic integration.
Another key difference between the two algorithms is

whether parameter symmetry is considered. The profile
likelihood can identify limits that involve taking indivi-
dual parameters to their limits (0 or �1), and can also
identify combinations of parameters that go to their limits
together. However, profile likelihood is not able to
identify limits related to symmetry in the system, for
example the limit of �1 ! �2 in the sum-of-two-
exponentials example. In contrast, the manifold boundary
approximation method is able to identify limits associated
to parameter symmetry and derive the corresponding
reduced models. This kind of symmetry is actually quite
common in systems biology and also in other engineering
practices. For example, nearly all machine learning
models in regression analysis and neural networks have
lots of internal symmetries.

CONCLUSIONS

Mathematical modeling is a crucial tool for studying
complex biological processes. In systems biology,
mathematical modeling often faces the situation of highly
complex models and insufficient data, making it challen-
ging to perform parameter estimation and obtain insights

into the underlying biological mechanisms that give rise
to the data. Two intuitive approaches to address this
challenge are experimental design and model reduction.
Given a complex model and limited data, these two
approaches aim to answer what additional experiment is
maximally informative, and what is the simplest mechan-
ism to explain experimentally observed behaviors. These
are problems that biologists consider on a daily basis.
Although experimental design and model reduction have
been largely considered as distinct problems in the
literature, these two problems share deep connections
that can unified them into a common framework. Here, we
focus on the model manifold method and the profile
likelihood method, which can tackle both problems by
exploring their connections.
From the model manifold perspective, we consider a

mathematical model as a manifold living in a data space,
and consider the observed experimental data as a point in
the data space. Parameter estimation can be viewed as
projecting the data point onto the manifold. By examining
the singularity around the projected point on the manifold,
we can perform both experimental design and model
reduction. Experimental design is to identify new
experiments that expand the manifold and remove the
singularity to reduce parameter uncertainty. Model
reduction is to identify the nearest boundary, which is
the nearest singularity that suggests an appropriate form
of a reduced model.
From the profile likelihood perspective, we consider a

mathematical model and observed experimental data
together as an optimization problem. We can use
parameter estimation techniques and sampling techniques
to obtain a collection of acceptable parameters, all of
which fit to the data decently well. By examining this
collection of acceptable parameters, we can perform both
experimental design and model reduction. Experimental
design examines model predictions of new experiments
based on the acceptable parameters, and identifies the new
experiment with largest variations in the model predic-
tions. Model reduction examines the range of the
acceptable parameters, and identifies which parameters
can be taken to the limits and hence removed, while still
maintaining a decent fit.
To demonstrate how these methods work, we introduce

a sum-of-two-exponentials model, and present details of
both methods applied to both problems in lengthy details,
along with Matlab code and documentations at a
supplemental website http://pengqiu.gatech.edu/soft-
ware/model_manifold/html/publish_model_manifold.
html. The sum-of-two-exponentials model is simple
enough to be tractable but complicated enough to be
interesting. The detailed presentations are helpful for the
dissemination of experimental design and model reduc-
tion ideas in the biology community, and are resources for
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interested researchers to generalize these approaches to
other systems.
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