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Measurement-Directed Reduction of Dynamic
Models in Power Systems

Mark K. Transtrum, Andrija T. Sarić, and Aleksandar M. Stanković, Fellow, IEEE

Abstract—The paper describes a new model reduction proce-
dure tailored to power systems. It uses measurement data to de-
vise a family of reduced order nonlinear models while retaining
physical interpretability of parameters and equations. The man-
ifold boundary approximation method (MBAM) uses the Fisher
information matrix calculated from measurements to identify the
least relevant parameter combination in the original model. Next,
it numerically constructs a geodesic on the corresponding statis-
tical manifold originating from the initial parameters in the least
relevant parameter direction until a manifold boundary is found.
MBAM then identifies a limiting approximation in the mathemati-
cal form of the model and removes one parameter combination. The
simplified model is recalibrated by fitting its behavior to that of the
original model, and the process is repeated as appropriate. MBAM
is demonstrated on the example of a synchronous generator (SG),
which has been treated extensively in the literature. Implications
of the proposed model reduction procedure on large power system
models are illustrated on a 441-bus, 72-SG dynamical model.

Index Terms—Computational differential geometry, dynamic
equivalent, system identification, information, manifold boundary
approximation method.

NOMENCLATURE

Notation (Vectors and matrices are denoted in bold)
e′′d , e′d Generator subtransient and transient internal

electromotive force in fictitious d-axis, re-
spectively.

e′′q , e′q Generator subtransient and transient internal
electromotive force in fictitious q-axis, re-
spectively.

fd , fq Parameters in fictitious d- and q-axis, respec-
tively.
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f nx -dimensional set of differential equations.
g nz-dimensional set of algebraic equations.
h nm -dimensional set of equations for mea-

sured variables.
id , iq Currents flowing in the fictitious d- and q-

axis armature coils, respectively.
I Fisher Information Matrix (FIM).
J, H Jacobian and Hessian matrices, respectively.
Pg , Qg Generator real and reactive powers, respec-

tively.
Pm0 , Pm Referent mechanical power and mechanical

power inputs, respectively.
T ′′

d0 , T ′
d0 Subtransient and transient time constants in

fictitious d-axis, respectively.
T ′′

q0 , T ′
q0 Subtransient and transient time constants in

fictitious q-axis, respectively.
t Time variable.
V, θ Bus voltage magnitude and angle, respec-

tively.
vf 0 , vf Referent field voltage and field voltage in-

puts, respectively.
vd , vq Voltages across the fictitious d- and q-axis

armature coils, respectively.
x, z, p, u Vectors of state, algebraic, parameter and in-

put variables, respectively.
x′′

d , x′
d , xd Subtransient, transient and steady-state reac-

tances in fictitious d-axis, respectively.
x′′

q , x′
q , xq Subtransient, transient and steady-state reac-

tances in fictitious q-axis, respectively.
y Set of equations for measured variables (sys-

tem measurement vector).
Zf Fault impedance.
τ Space variable (proportional to the arc length

of the geodesic curve).
τm , τe Net mechanical and counteracting electro-

magnetic torques, respectively.
ω, δ Generator speed and generator rotor angle,

respectively.
ωm Rotor shaft mechanical velocity.
ωs Synchronous speed.
λ = σ ± j(2πf) Eigenvalue (λ), damping (σ) and frequency

(f).
ξ Damping ratio.
Γ Christoffel symbol.

Ωb = 2πfb = 2π · 60 = 376.9911
P Probability distribution.
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Abbreviations
DAE Differential-Algebraic Equation.
FIM Fisher Information Matrix.
IVP Initial Value Problem.
MBAM Manifold Boundary Approximation Method.
POD Proper Orthogonal Decomposition.
QoI Quantity of Interest.
REI Radial, Equivalent and Independent.
SG Synchronous Generator.

I. INTRODUCTION

N EW sensing and communication capabilities are key en-
ablers in emerging energy systems.Their promise is to

compensate for contemporary trends that make the power sys-
tem operation and control more challenging:

1) Market-driven operation leads to new flow patterns, unfa-
miliar to the operators.

2) Renewable energy sources, such as solar and wind, lead
to new (and volatile) flow patterns.

In the multifaceted enterprise of power system operation and
control, heterogeneous models have to match different goals
and uses. In a large system with many owners and operators,
models are a key means of exchanging information among vari-
ous parties. They represent evolving summaries of accumulated
knowledge about the system and starting points for future ex-
plorations. This is perhaps best exemplified in the case of funda-
mental components like synchronous generators (SGs), whose
models are used in design, operation, protection, control, and
fault accommodation. A particularly interesting analytical fea-
ture in power systems is that discrete structures, such as graphs,
are strongly blended with continuous (and nonlinear) dynamics,
resulting in network dynamics [1].

The need to manage model complexity within a physics-
derived class has been present in power systems for a long time.
First notable results of this type were related to structure preserv-
ing models in transient stability, where explicit inclusion of the
network (and load) models resulted in both analytical advances
and industrial relevance [2]. Later, work on model derivation
via singular perturbation theory allowed for an extension of the
notion of multiple time scales to nonlinear models of practical
importance in power systems [3]. The need to further customize
focus of the models has been explored in the frequency domain
within the selective modal analysis, where localizability (inter-
and intra-area) results have been derived for linearized models
[4]. It is typically the case that the modeler has a strong pref-
erence for a class of models (often physics-derived), and the
task is then to select a gray-box model from this class that has
minimal complexity (as measured say by the number of states
or parameters), or has some other desirable feature, such as ease
of integration with models of other components (e.g., physical
network systems [5]). An important trait of model reduction
in large power systems is that it is not just a one-time inter-
action to solve a single abstracted computational problem [6].
Rather, it is a repeated engagement to refine and consolidate
one’s understanding of the model and the system.

Standard model reduction procedures from control theory are
typically based on projection ideas (balanced truncation, Proper
Orthogonal Decomposition (POD), Krylov methods for moment

matching of transfer matrix) and have had limited effectiveness
in power systems in their original form. This is due to their
disregard for the gray-box structure and for the need to return to
the large model. We are focusing on model reduction procedures
that can act on both component and system level. Perhaps the
best known method of this type is based on singular perturbation
theory, and has served as a foundation for a systematic deriva-
tion of a family of SG models [3]. This can be contrasted with
predominantly system-level model reduction that keeps com-
ponent models unchanged, as exemplified by transient stability
studies based on concepts like coherency [7]–[11], synchrony
[12] and modal analysis [13].

Attempts to use on-line data to improve dynamical models
of key components, especially SGs, are a recurrent theme in
power systems. The key difficulty stems from the large number
of parameters in the models of interest and from the fact that
observed signals in any one study are typically not sufficiently
rich to reliably estimate all parameters. First efforts to employ
general dynamical systems concepts like trajectory sensitivity
go back more than a quarter century [14], [15]; that particular
approach has been extended to hybrid systems in [16] with
considerable success. Another influential approach that is based
on local information extracted from the measurement Jacobian is
described in [17]. To deal with ill-conditioning of the parameter
estimation problem, the reference proposes in that a subset of
parameters of the generator model is fixed to prior values, while
estimating the remaining parameters from the available data.

From the large set of power system examples, we comment
on studies with direct relevance to our approach. Ref. [18] uses
a simple, but well matched predetermined model to success-
fully describe oscillations between groups of generators. Ref.
[19] aims to identify models for adaptive protection, and uses
another carefully selected simple model. We are interested in
gray-box models whose very structure depends on the measured
data. Ref. [20] advances the Krylov subspace linear model re-
duction, and explores the applications to a very large system
of over 12,000 buses. Ref. [21] considers interesting and effec-
tive alternatives to coherence-based approaches in linear model
reduction, while [22] establishes links between synchrony and
controllability/ observability. Ref. [23] has pioneered the use of
Krylov techniques, and has generated a copious progeny.

Our procedure addresses nonlinear differential-algebraic
(DAE) models and is aimed at applications in large systems.
The outline of the paper is as follows: Section II describes the
theoretical foundation of physics-based power system model re-
duction; Section III describes the Manifold Boundary Approx-
imation Method (MBAM) for model and its information geo-
metric foundations; Section IV details system-level concerns in
SG model simplification; Section V presents the physics-guided
power system model reduction; Section VI shows results ob-
tained in a 441-bus benchmark example, and Section VII lists
our recommendations and conclusions.

II. PHYSICS-BASED POWER SYSTEM MODEL REDUCTION

In the power systems literature there exists a division be-
tween the model- (or physics-) based approaches and the data-
driven (or measurement-based) procedures. Each thrust has
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its advantages–engineering interpretability and portability to
future studies for physics-based methods versus customizabil-
ity and scalability for the measurement-based ideas. This paper
aims to explore the middle stratum and to establish contact
points between the two classes of methods. Specifically, we re-
evaluate (both locally and globally) physics-based models (with
the SG as our key example) in light of their identifiability from
typical measurements. On the next step, we propose a system-
atic, recursive procedure that removes one individual parameter
which is hardest to identify from available measurements (and
thus reduces and reparametrizes the original model). The re-
duced model is evaluated next in terms of matching the signals
of interest (Quantities of Interest–QoIs), and, if satisfactory, a
new single parameter model reduction is attempted. Our aim
is to avoid “black boxes” whenever possible, as such models
do not explain connections to the underlying physics that guide
engineering, nor provide explanatory insights for future studies.

There are several challenges to systematic parameter reduc-
tion. First, it is often parameter combinations rather than indi-
vidual parameters to which the model is insensitive. Typically,
a model is sensitive to all parameters individually and the insen-
sitivity only arises because of their compensatory nature. The
relevant parameter combination typically is a nonlinear function
of individual parameters. Consequently, it depends strongly on
the parameter values, which are in turn very sensitive to noisy
data.

To overcome these challenges, we use an information-
theoretic approach. Consider an arbitrary probability distribu-
tionP (y | p) for observing a vector of random variables y given
a parameter vector p. The range of physically allowed parameter
values describes a family of models. We seek a reduced model
with fewer parameters that can approximate the full family de-
scribed by the original. We anticipate such a reduction to exist
for models with more parameters than “effective degrees of free-
dom” in their observations. Qualitatively, such original models
have more complexity in their description than in their predic-
tions, which leads to large uncertainties in inferred parameter
values.

The sensitivity of model predictions to changes in param-
eters is measured locally by an eigenvalue decomposition of
the Fisher Information Matrix (FIM), Iμν = −〈 ∂ 2 log P

∂pμ ∂pν
〉, where

〈·〉 denotes the expectation. Often models (known as sloppy
models) have eigenvalues exponentially distributed over many
orders of magnitude, quantifying an extreme insensitivity to co-
ordinated changes in the original parameters [24]. The family
described above is equivalent to a manifold of potential models,
known as the model manifold, with metric tensor given by the
FIM. When a model has many more parameters than effective
degrees of freedom in its emergent behavior, the manifold is
bounded with a hierarchy of widths, qualitatively described as a
hyper-ribbon [25], [26]. Indeed, the widths of this hyper-ribbon
are a measure of the number of effective degrees of freedom in
the model. If the narrowest widths are sufficiently small, then it
can be accurately approximated by a low-dimensional, reduced
model, analogous to approximating a long, narrow ribbon by
either a two-dimensional surface, or a one dimensional curve
(see Fig. 1). Note that the model manifold is a statistical mani-

Fig. 1. Approximating the manifold by its boundary [24]. A high dimen-
sional, bounded manifold may be approximated by a low-dimensional manifold.
Parametric degrees of freedom are systematically removed, one at a time, by
approximating the full manifold by its boundary. After several approximations,
the reduced model is represented by a hyper-corner of the original manifold that
preserves most of the original model’s behavior.

fold, i.e., each point on the manifold is a probability distribution
for an observation vector. This is distinct from the slow-manifold
familiar in dynamical systems theory. The slow-manifold aims
to approximate the system with lower dynamical order. Here, we
seek to approximate a system with fewer parameters. Although
distinct, these concepts are not unrelated as we discuss at length
below.

III. INFORMATION GEOMETRY FOR COMPONENT

MODEL REDUCTION

Models of power systems are typically written in DAEs form:

ẋ = f(x,z,p,u, t); (1)

0 = g(x,z,p,u, t), (2)

where x is the vector of (differential) state variables, z are the
algebraic variables, p are parameters, u are inputs (typically
assumed to be known in estimation studies) and t is the (scalar)
time variable.

System measurement vector is assumed to be of the form:

y = h(x,z,p,u, t). (3)

It turns out that the parametric sensitivities have dynamics
described by the following equations (see e.g. [27]):

d

dt

∂x

∂p
=

∂f(x,z,p,u, t)
∂x

· ∂x

∂p
+

∂f(x,z,p,u, t)
∂z

· ∂z

∂p

+
∂f(x,z,p,u, t)

∂p
; (4)

0 =
∂g(x,z,p,u, t)

∂x
· ∂x

∂p
+

∂g(x,z,p,u, t)
∂z

· ∂z

∂p

+
∂g(x,z,p,u, t)

∂p
; (5)

∂h

∂p
=

∂h(x,z,p,u, t)
∂x

· ∂x

∂p
+

∂h(x,z,p,u, t)
∂z

· ∂z

∂p

+
∂h(x,z,p,u, t)

∂p
. (6)
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These equations are linear in terms of sensitivities, but the
matrices involved do vary along a system trajectory. Details
about DAEs modeling of SG are provided in Appendix. Note
that (4)–(6) are derived by differentiating (1)–(3) with respect
to the parameters and applying the chain rule to account for the
implicit dependence of the dynamic, algebraic, and observed
variables on the parameters. We also make use of the second
order sensitivities below, the equations for which can be de-
rived in like manner. The problem of calculating parametric
sensitivities for dynamical systems is well-known, with a long
history [28]. However, deriving expressions for the first and sec-
ond order sensitivities by hand can be tedious and error prone
(particularly for large models). We use automatic differentiation
[29], [30] to simplify the process.

In this section, the goal is to construct a physically meaning-
ful representation that reveals the simple ‘theory’ that is hidden
in the model. The Manifold Boundary Approximation Method
(MBAM) [24] is an approach to model approximation whose
basic idea is to approximate a high-dimensional, but thin model
manifold by its boundary. The boundary is identified by numer-
ically computing a geodesic on the model manifold and using
the information from this calculation to identify an approximate
model with fewer parameters.

Central to the MBAM procedure is computational differential
geometry in the form of numerical geodesics. Geodesics are
the analogs of straight lines generalized to curved surfaces,
and are calculated numerically as the solution to a second order
ordinary differential equation in parameter space (while utilizing
quantities from the data space):

∂2pi

∂τ 2 =
∑

j,k

Γi
jk

∂pj

∂τ
· ∂pk

∂τ
; Γi

jk =
∑

�,m

(I−1)i� ∂ym

∂p�
· ∂2ym

∂pj∂pk
,

(7)
where Γ are the so-called Christoffel symbols [31], containing
curvature information about the mapping between parameter
space and data space, which are expressed in terms of the first
and second order parametric sensitivities (4)–(6) and I is the
FIM (introduced in Section II). The parameter τ parameterizes
the geodesic and is proportional to the arc length of the geodesic
as measured on the model manifold, i.e., in data space. Solving
(7) gives a parameterized curve p(τ) in parameter space that is
used to reveal a limiting behavior in the model as we demonstrate
below.

Equation (7) is an ordinary differential equation that we solve
as an Initial Value Problem (IVP). Here, we take the model’s
“true” parameter values as the starting point of the geodesic.
The initial “velocity” is taken to be the least sensitive parameter
direction as measured by the FIM, as we describe below. As an
aside, solving multiple geodesics (using different starting points
and directions) is an efficient and informative way of globally
characterizing the parameter space.

The MBAM procedure can be summarized as a five step
algorithm. Here, we describe the algorithm and give a summary
in Fig. 2. We give relevant equations and technical details below,
followed by an illustrative example.

Step a: The least sensitive parameter combination is
identified from an eigenvalue decomposition of the FIM

Fig. 2. Flow-chart summarizing the steps of the MBAM algorithm as
described in the text.

which becomes the initial geodesic velocity, ∂p/∂τ .
The geodesic acceleration ∂2p/∂τ 2 is given by (7). If∑

i (∂pi/∂τ)(∂2pi/∂τ 2) < 0, then reverse the initial veloc-
ity: ∂p/∂τ → −∂p/∂τ . This heuristic resolves the ambiguous
direction associated with the eigenvalue.

Step b: A geodesic on the model manifold is constructed by
numerically solving (7) using the “true” parameter values and
the velocity ∂p/∂τ calculated in Step a as initial conditions.
The limiting behavior of this curve identifies the boundary of
the model manifold, as we illustrate with examples below.

Step c: Having found the edge of the model manifold, the
corresponding model is identified as an approximation to the
original model. By inspecting which values of the parameter
vector become infinite, we identify the boundary as a limiting
approximation in the model. We evaluate this limit to construct
the approximate model with a reduced parameter count.

Step d: The parameter values for this approximate model are
calibrated by fitting the approximate model to the behavior of
the original model by least squares regression.

Step e: The procedure is repeated until the reduced model is
unable to approximate quantities of interest.

The MBAM process is described in detail and several exam-
ples are given in references [24]–[26]. Here, we briefly illustrate
with a simple power systems example. Consider a model of a
SG with two parameters that makes predictions for generator
rotor angle, generator speed, real and reactive powers at several
times after some disturbance. (In order to focus on the MBAM
procedure, we postpone specific details of this simulation, such
as the nature of the disturbance, until the next section.) We take
as parameters the transient time-constants in the d- and q-axes.

The process begins by numerically solving both the model
equations (1)–(3) and the sensitivities (4)–(6) to construct
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Fig. 3. Solving the geodesic equation (7) generates a sequence of parameter
values as a function of τ (top panel) that parameterizes a curve through parameter
space (middle panel). This curve corresponds to a path on a model manifold
(bottom panel) that is approximately a straight line. This curve encounters
a singularity near τ = 1.8 that corresponds to the boundary of the model
manifold (black line in bottom panel).

the Jacobian matrix, Jp(t) = ∂h(t)/∂p and the FIM matrix,
I = JT

p Jp (Step a).
Next, we numerically solve (7) (Step b); a solution requires

an initial condition and initial derivative. We take these to be
the “true” parameter values and the eigenvector of the FIM with
smallest eigenvector, respectively, found in Step a. The proce-
dure generates a sequence of parameter values as a function of τ
(Fig. 3, top panel), that parameterize a curve through parameter
space (Fig. 3, middle panel). Colors in Fig. 3, middle panel rep-
resent contours of least squares cost measuring deviation of the
model behavior from the true parameter values. Notice how the
geodesic naturally curves through parameter space to construct
the path of smallest least squares cost. This path can similarly
be interpreted as a path on a manifold (Fig. 3, bottom panel). In
this example, the model manifold is a two-dimensional surface
(corresponding to the 2 parameters of the model) embedded in

a 1680 dimensional space (1680 = four measurements at 420
time points each). In order to visualize this manifold, we have
(somewhat arbitrarily) chosen three axes corresponding to three
measurements (reactive power at t = 1, real power at t = 2,
and rotor angle at t = 4). These measurements were selected in
order to make features of the manifold visually clear. Colors on
the model manifold match the corresponding parameter values
in the middle panel.

Notice that the geodesic is approximately a straight line
through the data space (bottom panel in Fig. 3), where the length
of this curve is proportional to τ . The model manifold has a
boundary (black curve, bottom panel). Notice that the geodesic
equation exhibits a singularity at a finite value of τ (near 1.8)
that corresponds to the geodesic encountering this boundary.
Inspecting the top and middle panels in Fig. 3, we infer that this
boundary corresponds to the limiting approximation T ′

q0 = 0.
Evaluating this limit in the model (Step c) is equivalent to a sin-
gular perturbation analysis, and removes one dynamical variable
along with the parameter.

Having found the functional form of the reduced model, pa-
rameter values are determined by fitting the behavior of the ap-
proximate model to that of the original model by least squares
(Step d). For concreteness, let p′ denote the parameters in
the reduced model, so that yp and yp′ are the predictions of
the original and approximate models respectively, then we se-
lect p′ to minimize

∑
(yp′ − yp)2 . This step both determines

the new parameter values while answering the larger question:
“How accurate is the reduced model?” In practice, we iterate
MBAM (Step e) as long as the sum of squares error between
true and approximate models is “acceptably small”. What con-
stitutes “acceptably small” depends on the context and appli-
cation, but a convenient stopping criterion is when the error in
the approximation is comparable to the experimental noise in
measurements.

In general, having models with many parameters prevents vi-
sualizations, such as in Fig. 3, but the basic procedure can be ex-
ecuted to identify a sequence of simplifying limits. These limits
need not always correspond to singular perturbations, however.
Indeed, the limits and the process for evaluating them will vary
with each iteration of the process and require some theoreti-
cal work (motivated by insights from computational differential
geometry) to construct the simplified model.

Notice how the model provides the connection between the
parameter space and data space through the Jacobian matrix
Jp(t) = ∂h(t)/∂p as calculated in (4)–(6). Further note that
the Christoffel symbols [Γ in (7)] involve the second order sen-
sitivities that are found by taking another derivative in (4)–(6).
We omit an explicit formula for these sensitivities as the deriva-
tion is straightforward and the result is lengthy and not illumi-
nating. Because we evaluate these sensitivities using automatic
differentiation [29], [30], these expressions are not explicitly
needed. There is a technical subtlety in the evaluation of (7)
that is critical for our approach to be tractable for large models.
Because the second derivative of the observation vector is con-
tracted twice with the geodesic velocity vector (i.e., the sums
over indices j and k in (7) form two “dot products” with the
geodesic velocities and the array of second derivatives), only a
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Fig. 4. Time responses of state variables for SG in bus 2 for different model
orders.

Fig. 5. Measurements compared with the 3- and 5-parameter models.

directional second derivative is needed, which can be calculated
efficiently as in [24]–[26].

Solutions to the geodesic equation (7) are calculated using
standard methods for numerically integrating IVPs, as we have
done to generate Figs. 3 and 6 later [24]–[26]. The geodesics
tend to be highly nonlinear (reflecting the incompleteness of
the local analysis), but align with the local curvature of the cost
surface. In this way, the geodesics systematically explore the
non-local structure of the parameter space.

By constructing several orthogonal geodesic paths, one can
identify different cross sections of the model manifold and use
the geodesic distance (τ ) to measure the width of the manifold.
For many models, including those considered here, it is empir-
ically observed that the entire manifold is bounded, and often

Fig. 6. Top: Parameter values along geodesic path for the 6-parameter model;
the fifth parameter (T ′

d0 ) initially becomes large, the geodesic then rotates to
give fd = 0 at the manifold boundary.
Bottom: Components of the initial and final geodesic velocities; the initial
geodesic velocity dominated by T ′

d0 rotates to reveal the limit fd = 0.

highly anisotropic with widths typically forming an exponen-
tial hierarchy, reminiscent of the hierarchy of FIM eigenvalues
revealed by the local analysis [25], [26].

The geodesics give a global characterization of the model
behaviors. When geodesic curves extend parameter values to
zero or infinity in a finite distance on the model manifold, i.e.,
finite value of τ , the corresponding parameter combination is
susceptible to identifiability problems. These limiting cases cor-
respond to boundaries of the model manifold that are structurally
simpler models. Furthermore, these reduced models are a feature
of the model manifold that are invariant to certain changes in
the observation vector that we discuss later, giving a topological
(i.e., global) description of the manifold [32].

The result of the 5-step procedure removes the single least-
identifiable parameter combination from the model. Iterating
MBAM therefore produces a series of models of decreasing
complexity that explicitly connect the microscopic components
to the macroscopic behavior. These models correspond to hyper-
corners of the original model manifold.

MBAM is a very general approximation scheme, making no
assumptions about the mathematical form of the model, or un-
derlying physics of the system. It requires only that the model
manifolds have a hierarchy of boundaries. The existence of
these edges was first noted in the context of data fitting [33]
and Markov-Chain Monte Carlo sampling of Bayesian poste-
rior distributions [24]–[26]. It was noted that algorithms tend
to ‘evaporate’ parameters, i.e., allow them to drift to extreme,
usually infinite, values. These parameter values correspond to
limiting behaviors in the model, i.e., manifold boundaries, which
we use as reduced models.
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IV. MODEL REDUCTION FOR SYNCHRONOUS GENERATOR (SG)

We have developed a Matlab-derived and PSAT-based sim-
ulation environment built around the IEEE 14-bus test system
(see [34, Fig. 2.4 and Appendix D] for detailed input data). The
test system is modified to include direct-drive SG (used by in-
dustry to model solar plants and a new generation of wind) in
bus 6, doubly-fed induction generator (capturing prevalent type
of wind plants today) in bus 8 and SGs in buses 1, 2 and 3
(describing conventional units and interconnections).

We have added our code for evaluation of measurement sen-
sitivities and for computational differential geometry (in Julia).
Our Matlab code is fully general in the sense that it allows for
a variety of measurements (generator rotor angle and generator
speed, nodal active and reactive power injections, nodal volt-
age magnitude and angle, branch active and reactive flows, and
branch current magnitude). The right-hand sides of the sensitiv-
ity equations are found using Julia’s “DualNumbers” package
for forward automatic differentiation [35]. The differential equa-
tions for both the model (1)–(6) and the geodesic (7) are solved
using the legacy FORTRAN solver VODE [36].

MBAM takes a parameter-centered approach in which there
are the following SG’s electrical parameters in the model (the
models are named after the number of state variables):

6-order (A1a-d): x′
d , x′

q , xd , xq , T ′
d0 , T ′

q0 , T ′′
d0 , and T ′′

q0 .
4-order (A1a-c): x′

d , x′
q , xd , xq , T ′

d0 , and T ′
q0 .

3-order (A1a-b): x′
d , x′

q , xd , xq , and T ′
d0 .

2-order (A1a): x′
d , x′

q , xd , and xq .
We take as measured QoI for our model to be the genera-

tor rotor angle (δ), generator speed (ω), real (Pg ) and reactive
powers (Qg ), and seek an approximate model that preserves
the predictions of the original parameter model but with fewer
parameters. Our analyses are performed on SG connected to
bus 2 in IEEE 14-bus test example [27], [34]. For simplicity,
we assume that interface variables for SG in bus 2 (Pm2 , vf 2 ,
V2 and θ2) are known functions of time, but independent of
the parameters considered. This, of course, is an approximation
for a multi-generator system, but it allows direct comparison
with numerous references that focus on a single SG. This exam-
ple of single-machine multi-bus system can be compared with
examples in [3], [38], [39].

In Fig. 4 time responses of state variables for SG in bus 2
are shown for different model orders (the interface variables
are held constant). The responses were obtained for three-phase
short circuit in bus 4 in t = 0.1 s, cleared after 150 ms.

Depending on the model order (from 2- to 6-order) the follow-
ing differential equations are used, respectively: (A1a) + (A1b)
+ (A1c) + (A1d). Similarly, the following algebraic equations
are used: (A2a)+(A2b’) [or (A2b”), or (A2b”’)]. Depending
on the model order, the initial conditions (and transients) are
different.

A. 4-Order SG Model

We start with the 4-order (two-axis, d-q, two electrical states,
6-parameter) model, as it is very widely used in power system
analyses. It is also the model considered in the seminal refer-
ence on singular perturbation-based SG model derivation and

reduction [3]. We consider a more detailed 6-th order model
(with two damper windings) later. Throughout the model reduc-
tion we enforce the constraints arising from the physical nature
of parameters, namely xq > x′

q and xd > x′
d by introducing the

parameters fq and fd defined by the relation x′
q = xq/(1 + fq )

and similarly forfd . We use fq and fd (which are positive) as
parameters in place of x′

q and x′
d .1 The QoI during the transient

of interest are shown in Fig. 5.
Iteration 1: We first calculate the FIM and consider its eigen-

values and eigenvectors. The eigenvector with smallest eigen-
value is aligned primarily with the fifth parameter, which is T ′

d0
(see Fig. 6). This direction becomes the initial parameter space
velocity of the geodesic.

The geodesic initially moves toward the limit in which T ′
d0

becomes infinite. Inspecting the equations, however, reveals that
in this limit the variable e′q becomes constant and the parameter
combination xd − x′

d no longer appears in the model. Therefore,
as T ′

d0 becomes very large, the parameter combination xd − x′
d

becomes the least identifiable parameter combination and the
geodesic appropriately rotates to give the limit in which fd

becomes zero, so that xd = x′
d at the manifold boundary.

Please note that the computational effort is reasonable–the
geodesic shown in Fig. 6 took 182.5 sec to calculate and all
geodesics together took 329.43 sec2. Also, the calculation scales
favorably with system size and can be efficiently parallelized on
large models.

In the next step (Step d), the remaining parameters are re-
tuned, and the only notable differences are the 14% reduction
of xd (effectively taking the previous value of x′

d ) and a very
large increase in the value for T ′

d0 . The fit of this model is very
good (as seen on Fig. 5), with notable discrepancies only in the
reactive power measurement.

Iteration 2: On the second iteration of MBAM, the geodesic
reveals the manifold boundary to be T ′

d0 becoming infinite. The
resulting 4-parameter (xd , xq , x′

q , and T ′
q0) model has 3 dif-

ferential equations (δ, ω and e′d ), and the parameter retuning
with the largest change coming from parameter xd , which es-
sentially takes on the previous value of x′

d . The fit for this model
is practically indistinguishable from the fit shown in Fig. 5.

Iteration 3: On this iteration of MBAM, the geodesic re-
veals the manifold boundary to be xq → x′

q . At this point, the
differential equation for e′d becomes autonomous, with the right-
hand side equal to e′d/T ′

q0 . The parameter recalibration results
in largest changes in T ′

q0 (nearly 98% reduction). The fit for this
model is, however, not nearly as good, as can be seen in Fig. 5.

Iteration 4: The geodesic identifies the next limit as T ′
q0 → 0,

which results in the so-called classical SG model (2-order),
with only mechanical states retained. When recalibrated, the
remaining two parameters (xd and xq ) do not change much

1The positivity of fd and fq is a way to enforce the physical constraints
xq > x′

q and xd > x′
d . Without this contrivance, the procedure may veer into

non-physical parts of the parameter space. Equations with fd and fq appear
even more nonlinear, but are better suited to our method. The model manifold
and geodesics are invariant to re-parameterization such as this.

2Intel(R) Core(TM) i7-3520M CPU @2.90GHz, 64-bit Operating System,
16 GB RAM.
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TABLE I
PARTICIPATION FACTOR MATRIX

Eigenvalue δ ω e ′
q e ′

d

λ 1 0.04 0.04 0.92 0.00
λ2 , 3 0.48 0.48 0.04 0.00
λ 4 0.00 0.00 0.00 1.00

from the previous iteration, and the match is similar to the one
in Fig. 5, with even more pronounced oscillations.

B. Discussion of the Two-Axis Model Reduction

Our results suggest that, for the available measurements, the
four parameter model (obtained after Iteration 2) offers a good
tradeoff between model complexity and response fidelity. How-
ever, this is not the “single-axis” model obtained via singular
perturbation [3] which keeps the dynamics of the slow electri-
cal variable e′q , while e′d becomes an algebraic quantity. This
discrepancy has several contributing factors:

1) Our transients are 10 sec long, but most of the transient
is over in 7−8 sec. Note that that the “true” value of T ′

d0
(used in Fig. 4) is 6.1 sec, thus quite close to the effec-
tive duration of the transient. Thus, e′q does not change
appreciably, and approximating it as constant is not
unreasonable.

2) This reasoning can be made quantitative locally using
modal analysis and participation factors. The eigenval-
ues do not vary much during the transient, and approx-
imately are at λ 1 = −0.37, λ 2,3 = −0.73 ± j9.46 and
λ 4 = −3.58, with the participation factors matrix shown
in Table I. This table clearly identifies the state e′q as the
dominant contributor to the slowest eigenvalue λ 1 . At the
same time, the sensitivity of λ 1 to parameter T ′

d0 is 0.066,
which is about 200 smaller than the sensitivity of λ4 to
“its” time constant T ′

d0 that equals 12.966.
3) Another view is that the MBAM results can be obtained

from the analysis of the measurement Hessian [17], [27].
Starting with the Jacobian matrix, Jp(t) = ∂h(t)/∂p,
first partial derivatives of system measurement vector (3)
with respect to the parameter vector (p), and consider-
ing the Hessian matrix, Hp(t) = JT

p (t)Jp(t) (for small
increments), we calculate the eigenvalues (for the whole
transient). We find a wide spread of the eigenvalues–the
condition number is 347430.1, and the smallest eigenvalue
is 8.36. Parameter T ′

d0 has the highest participation in this
eigenvalue (0.41). This validates the conclusion that T ′

d0
is hard to estimate from the transient considered. Interest-
ingly, the second parameter with second highest partici-
pation in small eigenvalues of the Hessian is xd , which is
evaporated in the first iteration. Notice that the local sen-
sitivity analysis incorrectly ranks the order of importance
for the parameters T ′

d0 and xd , a problem remedied by the
non-local geodesic analysis.

4) The composition of the measurement set (QoI) also influ-
ences the MBAM procedure. A closer examination of the

two-axis model reveals that Pg , δ and ω are all strongly
affected by e′d , while only Qg is affected by e′q . Indeed,
if only the reactive power (Qg ) is used as QoI, then our
MBAM procedure evaporates T ′

q0 first, and essentially re-
peats the steps of a model reduction based on singular
perturbation [3]. For all other choices of QoI, the model
reduction retraces the steps outlined previously.

C. 6- and 3-Order SG Models

In the case of a 6-order SG model (one damper winding in
each of d- and q-axis), the MBAM procedure starts by evaporat-
ing the time constants corresponding to damper windings. This
reduces the model to the 4-order and is consistent with singular
perturbation. Later, the process follows steps described earlier
in this section.

When starting with a 3-order model (δ, ω, and e′q –see Fig. 4),
MBAM first evaporates the time constant T ′

d0 corresponding to
the electrical equation, and reduces the model to the classical
one [only mechanical differential equations (A1a)]; this is also
consistent with singular perturbation.

D. Sensitivity to Types of Transients

We have considered the case when SG models in one node
are varied, while the rest of the system remains unchanged. To
explore how our results depend on specific details, we have re-
peated our calculation for a variety of conditions. Specifically,
we repeated our calculations from several choices of “true” pa-
rameter values and for different transient dynamics (generated
by different locations of short circuit, locations of SG for reduc-
tion, power system’s loading levels, and contingencies), always
observing generator rotor angle, generator speed, and real and
reactive powers. This is a fairly standard set for identification
studies; in practice, the generator rotor angle is estimated from
other local measurements, such as the terminal current and volt-
age. In all cases, MBAM has resulted in the same sequence of
parameter evaporations and consequent model reduction, so we
do not show the detailed results for these different transients.

The general dependence of MBAM on the choice of QoIs as
has been explored theoretically in [32]. Changing the QoIs will
change the FIM and by extension the geometric properties of
the manifold. In many cases, such as changing the measurement
times or input functions, these changes effectively “stretch” or
“compress” portions of the manifold, i.e., transform the model
manifold in a differentiable way-transformation, known as
diffeomorphisms. The manifold boundaries are invariant to dif-
feomorphisms, because boundaries are characterized by singu-
larities in the FIM. In other words, the boundaries are a feature
of the differential topology of the family of manifolds generated
by varying the QoIs. Therefore, the reduced models identified
by MBAM are generally robust to changes in the QoIs, because
it is exploiting a topological invariant of the model.

More extreme changes in the QoIs, such as ignoring a dy-
namical variable altogether can lead to more drastic changes
in the model manifold that do affect the boundary structure,
a phenomenon described as manifold collapse. Because they
change the topological structure of the manifold, variations in
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QoIs that lead to manifold collapse can also lead to different
reduced MBAM models. These different reduced models allow
different effective relationships among the observations.

V. PHYSICS-GUIDED POWER SYSTEM MODEL REDUCTION

Our strategy for extending the MBAM approach to large
systems combines linearized model of the interconnection with
non-linear component models:

Step 1: Determination of key modes to be included in the sys-
tem model with key states (via participation factors of the system
matrix). These tend to be well-understood in interconnections
with challenging transients [22].

Step 2: Determination of corresponding physical components
and their vital (“systemic”) parameters (via sensitivities of the
system matrix to parameters).

Step 3: Measurement structure and MBAM-based model re-
duction to achieve good matching of QoI, while maintaining the
presence of all systemic parameters.

Step 4: Provide guidance for design of additional experiments
if needed.

For example, in the IEEE 14-bus test system, the least damped
pole pair is at−0.61± j10.89 (thus critical for oscillation damp-
ing). The sensitivities of these eigenvalues to parameters of SG
in bus 2 vary widely, and are largest for x′

q (0.92) and x′
d (0.05);

thus it makes sense to declarex′
q as a systemic parameter. This

parameter is retained in even very low-order models (e.g., iter-
ations 2 or 3 of MBAM), so area or SG identification with any
of the proposed reduced models will suffice for the critical pole
as far as SG in bus 2 is concerned.

Given the networked nature of power system dynamics, it
makes sense to initiate model reduction in nodes, or across
cut-sets (using the line flow data–the so-called area model re-
duction). When the model for a component/subsystem serves as
a starting point for MBAM, the issue of its alignment with the
system level model arises naturally. For example, in the IEEE
14-bus test system, the linearization of the overall model has
48 states, and we use participation factors to establish links be-
tween its eigenvalues and the 4-order model of the SG in bus
2 in the previous section. We shouldn’t expect a very precise
agreement, as the system model contains dynamics of exciters,
turbines and governors that have been removed from the SG
model dynamics (by being treated as functions of time, known
in simulations), so that we can focus MBAM on reducing the SG
itself. Some modes undergo little, or no change between the two
models–for example λ4 = −3.58 (dominated by e′d ) is shifted
to −3.42. Other modes are changed more significantly–for ex-
ample, the node dominated by e′q (and the exciter) nearly main-
tains the frequency of λ2 , but the damping is reduced. While
engineering judgement clearly has to play a role in checking
the local and system level model consistency, we believe that
nodal/cut-set MBAM reduction, conjoined with the determina-
tion of systemic parameters, provides a sound foundation for
model reduction in large power systems, as illustrated in the
next Section. The physical interpretability of steps in MBAM
reduction is certainly helpful in this regard.

Fig. 7. Eigenvalues plots for different dynamic model reduction options.

VI. APPLICATION TO LARGE POWER SYSTEM

MODEL REDUCTION

The main characteristics of the original dynamic model for
real-world, large power system (Electric Power Industry of
Serbia, a part of the ENTSO-E interconnection) can be sum-
marized as: 441 buses, 655 branches (lines and transformers),
72 SGs (43 of 4-order models and 29 of 6-order models), with
exciters and turbines. The model has 850 differential and 1314
algebraic variables.

In this section we show how insights gained from the dynamic
reduction analysis may be used to simplify the dynamic model of
a real-life power system, while maintaining remarkable fidelity
of the response with very little tuning.

A model of a SG (or other dynamic components) is typ-
ically reduced and identified from nodal measurements, and
then the procedure is repeated as many times as necessary,
one node at a time. This aspect makes the method scalable for
real-world power systems application. We also envision area-or
subnetwork-wise procedure for large systems.

Based on conclusions derived in Sections IV and V, related
to the dynamic reduction for sloppy model, we assume that
the all classical 3-order (and higher) SG’s models (described in
Appendix) are replaced with 3-order differential equations (δ,
ω and e′d ), one algebraic equation [e′q ; T ′

d0 → ∞ in (A1b)] and
4-parameter (x′

d , x′
q , xd , and xq )–denoted as “Proposed 3-order”

in Fig. 7, where fi and σi denotes i-th eigenvalue frequency
and damping, respectively. These results are compared with
original and 3-order SG’s dynamic reduction models [(A1a-b)
in Appendix], denoted in Fig. 7 as “Original” and “Classical
3-order”, respectively. Blue and green lines in Figs. 7 and 8
shows damping ratios (ξ) of 7% and 5%, respectively. Note
that the proposed model outperforms the standard one in this
example. While more studies are in order before such statements
can be generalized, it is encouraging that the proposed model
shows practical utility.

The test system is interconnected with neighboring power
systems by ten 400 kV and 220 kV lines. Two interconnec-
tion lines exports energy and static (load-based) equivalents are
connected in these buses. Eight interconnection lines imports
energy and in these buses dynamic [SG- and Radial, Equivalent
and Independent (REI-) based] equivalents are connected. Large
test system is subjected to the three-phase short circuit in bus
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Fig. 8. Eigenvalue plots for test system with neighboring areas (modeled by
REI-equivalents).

Fig. 9. Time responses in a boundary point (modeled by REI equivalents): bus
voltage and SG’s active power for original (‘Online measurement’) and reduced
(‘Parameter estimation’) large power system models.

11 in t = 0.1s, which cleared after 250 ms (fault impedance is
Zf = j0.1 p.u.).

Based on analyses from Sections IV and V, the electrical dy-
namic part of REI and minimum-loss equivalents for neighbor-
ing power system areas are assumed as proposed 3-order differ-
ential equations (δ, ω, and e′d ), and one algebraic equation model
[e′q ; T ′

d0 → ∞ in (A1b)]. Reactances of the REI-equivalents (x′
d ,

x′
q , and xq ) are obtained from boundary measurements [37],

while the time constant T ′
q0 and xd are identified as the sloppy

parameters, where in simulations are assumed T ′
q0 = 1 s and

xd = 1.83 p.u.
Rightmost eigenvalue plots are shown in Fig. 8, while in

Fig. 9 we show examples of time responses for bus voltage and
SG’s active power in a bus with REI equivalent.

VII. CONCLUSION

The paper describes a nonlinear model reduction procedure
that is well-suited for power system applications. It combines
physical and engineering insight with data-driven exploration
to produce practically interpretable models. It turns out that the
networked system structure is a key to successful application of
MBAM. We have studied its properties on a small system and
illustrated its potential on a much larger system from industrial
practice. The procedure connects with existing methods, such as
singular perturbation in interesting ways and offers a new tool
to the armamentarium of a power system analyst.

APPENDIX

If for synchronous generator (SG) we assume ω ≈ ωs , (or
ω ≈ 1 p.u.), then τm = Pm /ωm ≈ Pm and τe = Pg common
mechanical differential equations (2-order model) are [34]:

f ⇒
⎧
⎨

⎩

δ̇ = Ωb(ω − ωs)

ω̇ =
1

2H
(Pm − Pg − D(ω − ωs))

. (A1a)

For one q-axis, 3-order model to (A1a) the following differ-
ential equation is added:

f ⇒
{

ė′q =
1

T ′
d0

(−e′q − (xd − x′
d)id + vf ) . (A1b)

For one d- and one q-axis, 4-order model to (A1a) and (A1b)
the following differential equation is added:

f ⇒
{

ė′d =
1

T ′
q0

(−e′d + (xq − x′
q )iq ) . (A1c)

For two d- and two q-axes, 6-order (Anderson-Fouad’s) model
[38] (note that this model can be considered as a simplification
of the Sauer-Pai’s model [39]) to (A1a)-(A1c) following differ-
ential equations are added:

f ⇒

⎧
⎪⎪⎨

⎪⎪⎩

ė′′q =
1

T ′′
d0

(−e′′q + e′q − (x′
d − x′′

d)id)

ė′′d =
1

T ′′
q0

(−e′′d + e′d + (x′
q − x′′

q )iq )
. (A1d)

The common algebraic equations are:

g =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 = Pm − Pg

0 = Pm0 − Pm

0 = vf 0 − vf

0 = V sin(δ − θ) − vd

0 = V cos(δ − θ) − vq

. (A2a)

For one q-axis, 3-order model to (A2a) the following algebraic
equations are added:

g =

{
0 = vq + ra iq − e′q + x′

did

0 = vd + ra id − xq iq
. (A2b’)

For one d- and one q-axis, 4-order model to (A2a) the follow-
ing algebraic equations are added:

g =

{
0 = vq + ra iq − e′q + x′

did

0 = vd + ra id − e′d − x′
q iq

. (A2b”)

For two d- and two q-axes, 6-order (Anderson-Fouad’s) model
to (A2a) the following algebraic equation are added:

g =

{
0 = vq + ra iq − e′′q + x′′

did

0 = vd + ra id − e′′d − x′′
q iq

. (A2b”’)
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