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Information Geometry Approach to Verification of
Dynamic Models in Power Systems

Mark K. Transtrum, Andrija T. Sarić , and Aleksandar M. Stanković , Fellow, IEEE

Abstract—This paper describes a new class of system identifi-
cation procedures that are tailored to electric power systems, in
particular to synchronous generators (SGs) and other dynamic
components. Our procedure builds on computational advances in
differential geometry, and offers a new, global characterization
of challenges frequently encountered in system identification of
electric power systems. The approach also benefits from increas-
ing availability of high-quality measurements. While the proposed
procedure is illustrated on SG example in a multimachine bench-
mark (IEEE 14-bus and real-world 441-bus power systems), it is
equally applicable to identification of other system components,
such as loads.

Index Terms—Computational differential geometry, informa-
tion geometry, power system stability, system identification.

I. INTRODUCTION

DYNAMIC models of power systems (for example, elec-
tromechanical models used in transient analysis) have

grown in size to thousands of generators, and tens of thousands
of nodes. However, this growth in quantitative terms has largely
not been accompanied with improvements in fidelity. Specifi-
cally, models have been largely unable to replicate major events
like the 2003 blackout in the Eastern interconnection [1] and sev-
eral such events in the 1990’s in the Western interconnection [2].
This is even more of concern, given the relatively widespread
presence of sensors that have made detailed recordings during
transients. Additional challenges are posed by market-driven
operation and by renewable energy sources that lead to new
flow patterns.

Attempts to use on-line data to improve dynamical models
of key components, especially synchronous generators have a
long history in power systems. First efforts to employ general
dynamical concepts like trajectory sensitivity go back more than
a quarter century [3], [4]. That particular approach has been suc-
cessfully extended to hybrid systems in [5]. Another influential
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A. M. Stanković is with the Department of Electrical Engineering and
Computer Science, Tufts University, Medford, MA 02155 USA (e-mail:
astankov@ece.tufts.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2017.2692523

approach that is based on local information extracted from the
measurement Jacobian is described in [6]. Recent experiences
with dynamic model validation in industry are described in [7].

In this paper, we aim to demonstrate that the root cause of
these issues stems from the very nature of models being verified
from available measurements. A recently introduced term [8],
[9] that describes a class of complex models exhibiting large pa-
rameter uncertainty when fit to data is sloppiness. The premise
of this approach is that a model with many parameters is a
mapping from a parameter space into a data (prediction) space.
A key difficulty in dealing with models of complex systems is
the highly anisotropic mapping between the parameter and data
spaces. This anisotropy is manifested locally in the wide spread
of eigenvalues of the measurement Hessian, and globally as the
hierarchy of widths of the corresponding bounded manifold in
data space. The issue is not just a simple over-parametrization
in terms of the number of parameters – the observed system
behavior actually constraints combinations of the original pa-
rameters.

A particularly useful locally-calculated object in our study
is the Fisher Information Matrix (FIM), or the Hessian of
the sensitivities of measurements to model parameters. Sloppy
models are characterized by FIM eigenvalues that are log-
linear−roughly evenly spaced over several decades; it is not
uncommon for aspect ratios to be much greater than 1000 to 1
[10], [11]. The eigenvalues of the FIM tell us which parameter
combinations are well-constrained by the data (stiff directions in
parameter space, corresponding to large eigenvalues) and which
are not (sloppy directions). Later we illustrate that sloppiness is
not a property that is to be eliminated by better modeling–rather,
it is intrinsic to many physics-based models of networked sys-
tems, and needs to be effectively managed. In particular, useful
predictions are possible without precise parameter knowledge.
As long as the model predictions depend on the same stiff pa-
rameter combinations as the data, the predictions of the model
will be constrained in spite of large numbers of poorly deter-
mined parameters. In the case of power systems, the origins of
sloppiness include component models (see, e.g. [4]), the net-
worked model structure (such as weak couplings of electrically
distant components), and the measurement structure (sampling
density and repeated measurements [12]).

We illustrate our ideas later using the example of identifi-
cation of parameters of a synchronous generator (SG) from
terminal measurements, assuming local data rates commensu-
rate with PMUs. The basic problem has been addressed many
times in the literature, and we only list references of immediate

0885-8950 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6816-0102
https://orcid.org/0000-0002-5144-8580


TRANSTRUM et al.: INFORMATION GEOMETRY APPROACH TO VERIFICATION OF DYNAMIC MODELS IN POWER SYSTEMS 441

relevance to our development. For example, [5], [6], [13] con-
sider parameter estimation for a single generator and re-casts
SG parameter identification in a differential-algebraic equation
(DAE) framework. Refs. [14], [15] consider the same overall
setup involving PMU-derived measurements. They estimate pa-
rameters one-by-one (later up to 3), use the Extended Kalman
filter to validate the parameter values, and use the “playback”
method to validate the parameter values. In this paper we con-
sider the basic problem (in a multi-machine formulation) and
the extension with key control loops closed [automatic voltage
regulator (AVR) and power system stabilizer (PSS); note that in
these analyses the turbine-governor (T-G) dynamics is neglected
as much slower].

Ref. [16] introduced key terms from information geometry
and applied them to (relatively) simple power system compo-
nents [the doubly-fed induction generator (DFIG) is a proto-
typical wind energy source, and the direct-drive synchronous
generator (DDSG) is routinely used for large solar (and some
wind) plants], while focusing on comparisons with local char-
acterizations. Ref. [17] considers in detail the reduction process
that parallels singular perturbation-derived modeling of SGs
when the state count goes from 6 (two dampers) to 4 (d-q), 3 or
2 (“classical” model). It also considers damping quantification
in larger systems. In this paper, we focus on system aspects and
implications of information geometry. We discuss the notion of
parameter sloppiness, which permeates many models in power
systems. We illustrate the consequences on a large model of
industrial relevance.

The outline of the paper is as follows: Section II describes
the power system model used for identification; Section III de-
scribes the parameter estimation from local perspective, while
Section IV describes the information geometry, semi-global
and global sensitivity based approach to model identification;
Section V shows obtained results in a multi-machine bench-
mark example and Section VI contains our recommendations
and conclusions. Appendix provides details for dynamic mod-
els described by differential and algebraic equations.

II. POWER SYSTEM MODEL FOR IDENTIFICATION

Static and dynamic models of power systems are typically
written in DAEs form:

ẋ = f(x,z,p, t) (1)

0 = g(x,z,p, t), (2)

where x is the vector of (differential) state variables, z are the
algebraic variables, p are parameters and t is the (scalar) time
variable.

Details of differential (f) and algebraic equations (g) used in
test power systems are given in Appendix.

System measurement vector is assumed to be of the form:

y = h(x,z,p, t). (3)

The parameters (p) are to be estimated from measurements
(y), and there typically exists some prior information about pa-
rameters, often in the form of plausible ranges for each. The least
squares optimization formulation of the identification problem
is by far the most prevalent in the literature. This formulation is

equivalent to assuming the measurement noise is additive and
Gaussian, in which case the sum of squares is (apart from an
overall additive constant) the negative log likelihood.

The key quantities in the case of least squares identification
are parametric sensitivities whose dynamics can be written
as [13]:

d
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These equations are linear in terms of sensitivities, but the
matrices involved do vary along a system trajectory. Our method
below also makes use of the second order sensitivities, which
can be derived in a similar way. We use automatic differentiation
[18], [19] to simplify the process.

III. PARAMETER ESTIMATION – LOCAL PERSPECTIVE

Equation (6) determines m × p-dimensional (m and p are
total numbers of available measurements and uncertain param-
eters, respectively) time series of Jacobian matrices (Jp(t) =
∂h(t)/∂p), first partial derivatives of system measurement vec-
tor (3) with respect to the parameter vector (p). For small in-
crements, the Hessian matrix is approximately the FIM, Hp(t)
= JT

p (t)Jp(t), which is symmetric and positive semidefinite,
so all its eigenvalues are real and non-negative. Quite often
Hp(t) is nearly singular, and the nearness to singularity is mea-
sured by the condition number κ(Hp), which is the ratio of the
largest λmax to the smallest eigenvalue λmin . Above analysis
could be equivalently framed in terms of singular values for
associated singular vector of Jp(t) [6]. In our simulations, the
condition numbers are calculated for column-stacked Hessians
corresponding to different time points following the beginning
of the transient of interest (clearing of the short circuit in our
simulations−see Table II); the eigenvalues do not vary signifi-
cantly in our examples.

Based on previously published work in power systems [3]–
[6], [13], [20], it is to be expected that all parameters cannot be
estimated at once. In our paper, the ill-conditioned parameters
are detected by the participation factors [21] in eigenvalues of
the (approximate) Hessian.

IV. INFORMATION GEOMETRY, SEMI-GLOBAL AND

GLOBAL SENSITIVITIES

Recent advances focusing on data space (y) rather than pa-
rameter space (p) have proven beneficial for understanding the
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global properties of models and for advancing numerical tech-
niques for exploring them [22]. This approach, usually known
as information geometry, combining information theory with
differential geometry, is an effective mathematical language for
exploring parameterized models [23]. The essence of the ap-
proach is the interpretation of a model as a manifold embedded
in the space of data (y), known as the model manifold. Infor-
mation geometry offers a useful parameterization−independent
perspective on modeling that has led to advances in numerical
algorithms, such as improved data fitting routines [22] (which
we use in Section V for constructing parameter likelihood pro-
files) and Markov-Chain Monte Carlo (MCMC) sampling that
account for the anisotropic cost surfaces in parameter space [24].

Semi-global methods of sensitivity analysis address the short-
comings of local approaches by sampling parameter space in a
finite neighborhood around the best fit. While in this paper we
consider a deterministic formulation for parameter identifica-
tion, we will classify the semi-global methods using a prob-
abilistic framework. Consider a stochastic model P(y|p) for
observing a vector of random variables (y) given a parameter
vector (p). It is, according to Bayes’ rule, proportional to the
product of the prior probability the parameters P(p) and the
likelihood function P(p|y). Broadly, semi-global methods fall
into two categories: 1) scanning methods and 2) Bayesian meth-
ods. Scanning methods sample parameters (sometimes without
regard to the data) and look for correlations between locations
in parameter space and the model behavior, or value of the cost
function at those locations [25]. Bayesian methods sample from
the posterior distribution of the parameters given the data and
use those samples to make inferences about the sensitivity of
the model [24], [26]. We make use of both types of methods in
Section V.

Information geometry allows one to go further and character-
ize the global sensitivities of the dynamic model. Key aspects
of the information geometry approach are:

1) There is no information loss in the model manifold, i.e.,
the manifold contains all information about the model
behavior. In contrast, the cost surface in parameter space
condenses the high-dimensional quantities making up the
prediction and data vectors into a single number, i.e., the
cost.

2) Information geometry separates the model, i.e., the man-
ifold embedded in data space, from the data to which it
is being fit, i.e., a point in the data space. In contrast, the
cost surface in parameter space is a function of and often
very sensitive to the data point being fit.

3) The set of points that constitute the model manifold are the
same regardless of how the model is parameterized. This
is in contrast with local characterizations using FIM that
are parametrization-dependent. The parameters are not ig-
nored completely, but act as coordinates on the manifold.

4) Interestingly, when a probabilistic structure is assumed for
the manifold in data space, then the Riemannian metric
on the model manifold (with distance between models
given by the change in measurement residuals) is the FIM
[26], [27].

Geodesics are the analogs of straight lines generalized to
curved surfaces. We use computational differential geometry to
find numerical approximations to geodesic curves on the model
manifold to systematically explore the manifold boundaries. The
process is described in detail and several examples are given
in [22], [27]. Briefly, geodesics are calculated numerically as
the solution to a second order ordinary differential equation in
parameter space (while utilizing quantities from the data space):

∂2pi

∂τ 2 =
∑

j,k

Γi
jk

∂pj

∂τ
· ∂pk

∂τ
; Γi

jk =
∑

�,m

(I−1)i� ∂ym

∂p�
· ∂2ym

∂pj∂pk
,

(7)
where Γ are the so-called Christoffel symbols [28], which are
expressed in terms of the parametric sensitivities in (4)–(6) and
I is the FIM. The parameter τ is the arc length of the geodesic
curve as measured on the model manifold, i.e., in data space.
Notice how the model provides the connection between the
parameter space and data space through the Jacobian matrix
Jp(t) = ∂h(t)/∂p, as calculated in (4)–(6). Further note that
the Christoffel symbols involve the second order sensitivities
that are found by taking another derivative in (4)–(6). We omit
an explicit formula as the derivation is straightforward and the
result is lengthy and not illuminating. Furthermore, because we
evaluate these sensitivities using automatic differentiation [18],
[19], these expressions are not explicitly needed. There is a
technical subtlety in the evaluation of (7) that is critical for our
approach to be tractable for large models. Because the second
derivative of the observation vector is contracted twice with the
geodesic velocity vector (i.e., the sums over indices j and k in
(7) form two “dot products” with the geodesic velocities and the
array of second derivatives), only a directional second derivative
is needed, which can be calculated efficiently as in [22], [27].

Solutions to the geodesic (7) are calculated using standard
methods for numerically integrating Initial Value Problem.
Since geodesics are central to our proposed global analysis,
we demonstrate the calculation and interpretation with a simple
power systems example. Consider a model of a SG with two
unknown parameters (the transient time constants in the d- and
q-axes) that makes predictions for generator rotor angle, gener-
ator speed, real and reactive powers at several times after some
disturbance (we postpone specific details).

The geodesic is found by first selecting initial parameter val-
ues and an initial direction in parameter space (∂p/∂τ ). In
this example, we take these to be the “true” parameter values
and the eigenvector of the FIM with smallest eigenvalue. (We
use quotes to denote that these “true” parameter values are not
necessarily the true values used to generate the data; they are
the starting point of a geodesic). Our global analysis requires
starting from a variety of initial parameter values and direc-
tions. Next, we numerically solve the model DAEs (1), (2), the
sensitivities (4)–(6), and the second order sensitivities in the di-
rection of ∂p/∂τ . These quantities are used to construct the
Jacobian matrix (Jp(t) = ∂h(t)/∂p), the FIM matrix (I =
JT

p Jp ), and the geodesic acceleration (7). Next, we numeri-
cally solve (7), evaluating the model equations and first and
second order sensitivities at each step of the integration.
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Fig. 1. Solving the geodesic equation (7) generates a sequence of parameter
values as a function of τ (top panel) that parameterizes a curve through parameter
space (middle panel). This curve corresponds to a path on a model manifold
(bottom panel) that is approximately a straight line. This curve encounters a
singularity near τ = 1.8 that corresponds to the boundary of the model
manifold (black line in bottom panel).

A numerical solution to the geodesic generates a sequence
of parameter values as a function of τ (Fig. 1, top panel) that
parameterize a curve through parameter space (Fig. 1, middle
panel). Colors in Fig. 1, middle panel represent contours of least
squares cost measuring deviation of the model behavior from
the initial parameter values. Notice how the geodesic naturally
curves through parameter space to construct the path of smallest
least squares cost. This path can also be interpreted as a path on
a manifold (Fig. 1, bottom panel). In this example, the model
manifold is a two-dimensional surface (corresponding to the
two parameters of the model) embedded in a 1680 dimensional
space (1680 = four measurements at 420 time points each).
In order to visualize this manifold, we have chosen three axes
corresponding to three measurements [generator speed at t = 1,

ω(1), real power at t = 2, Pg (2), and reactive power at t =
4, Qg (4)]. These measurements were selected to make features
of the manifold visually clear. Colors on the model manifold
match the corresponding parameter values in the middle panel.

Notice that the geodesic is approximately a straight line
through the data space (bottom panel), curving only to match
the curvature of the model manifold. The length of this curve is
proportional to τ . The model manifold has a boundary (black
curve, bottom panel). This boundary is manifest as a singular-
ity in the geodesic at a finite τ (near 1.8) that corresponds to
the geodesic encountering this boundary. Inspection reveals that
this boundary corresponds to the limit T ′

q0 = 0. The existence
of this boundary is the geometric indication that T ′

q0 is practi-
cally unidentifiable from below; it can be taken to its extreme
limit without incurring an infinite cost.

By constructing several orthogonal geodesic paths, we iden-
tify different cross sections of the model manifold and use the
geodesic distance (τ ) to measure the width of the manifold.
It is empirically observed that the entire manifold is bounded
and often highly anisotropic with widths typically forming an
exponential hierarchy, reminiscent of the hierarchy of eigen-
values revealed by the local analysis [22]. The boundaries are
a feature of the model manifold that are invariant to certain
changes in the observation vector and give a topological (i.e.,
global) description of the model manifold [29]. Furthermore, by
calculating many geodesics with a variety of initial conditions,
we can identify all of the boundaries and by extension all
of the parameter combinations that are susceptible to being
unidentifiable.

V. APPLICATION

We consider transient stability-related models in the DAE
form and we have developed a Matlab-derived simulation envi-
ronment. Our environment is based on PSAT, which is a suite
of freely available Matlab routines well documented in [30],
to which we have added our code for evaluation of measure-
ment sensitivities and for computational differential geometry
(in Python/Julia). Our Matlab code is fully general in the sense
that it allows for a variety of measurements (rotor angle and
speed, nodal active and reactive power injections, nodal volt-
age magnitudes and angles, branch active and reactive flows,
and branch current magnitudes). The right-hand sides of the
sensitivity equations are found using Julia’s “DualNumbers”
package for forward automatic differentiation [31]. The differ-
ential equations for both the model (1)–(6) and the geodesic (7)
are solved using the legacy FORTRAN solver VODE [32]. Our
simulations are performed for IEEE 14-bus [30, Fig. 2.4, also
see Appendix D for detailed input data)] and real-world 441-bus
test systems. In part A we deal with the model of a synchronous
generator [21], [30], [33]; in part B we consider the system with
AVR and PSS loops closed.

A. The Sensitivity for IEEE 14-Bus Test System

The single-line diagram of IEEE 14-bus test system and il-
lustration of analyzed test cases are shown in Fig. 2. The dy-
namic model of test system is summarized in Table I (detailed
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Fig. 2. Single-line diagram of IEEE 14-bus test system with analyzed cases.

TABLE I
THE MAIN CHARACTERISTICS OF DYNAMIC MODEL FOR IEEE

14-BUS TEST SYSTEM

dynamic models for SG, AVR and PSS are provided in Ap-
pendix; dynamic model for T-G is omitted, because it is ne-
glected in sloppy analysis due to slower dynamics).

For one d-axis and one q-axis SG’s model described in
Appendix, the state variables of interest are (A1): two mechani-
cal variables (δ and ω) and electrical states (e′q and e′d , where for
single q-axis model e′d is omitted), while algebraic variables are
(A2): vf , Pm , Pg and Qg . Parameters (electrical) of interest are:
T ′

d0 , T ′
q0 , xd , x′

d , xq and x′
q (for single-axis model T ′

q0 is omit-
ted). Mechanical parameters (H and D) correspond to the much
slower dynamics, and are often assumed known, or estimated
separately.

Available measurements for the SG are the rotor angle (δ),
speed (ω), and the real and reactive powers (Pg and Qg , re-
spectively), as well as the terminal voltage magnitude (V) and
angle (θ). Note that the rotor angle (δ) typically cannot be
measured directly, but it can be estimated from local measure-

TABLE II
EIGENVALUES, PARTICIPATION FACTORS AND CONDITION NUMBERS FOR

CHARACTERISTIC SETS OF UNCERTAIN PARAMETER SETS ON

SINGLE SG (BUS 1)

Parameters, p� Eigenvalues, λ� Participation factors, pk � κ(Hp)

Case 1: T ′
d 0 , 0.01 0.41;0.57;0.01;0.00;0.00;0.00 2.3 · 108

T ′
q 0 , xd , x ′

d , 0.05 0.25;0.09;0.65;0.00;0.00;0.00
xq , x ′

q 463.99 0.30;0.30;0.31;0.00;0.00;0.08
31510.47 0.03;0.03;0.03;0.00;0.22;0.69

1691525.97 0.00;0.00;0.00;0.89;0.08;0.03
2887301.24 0.00;0.00;0.00;0.11;0.69;0.19

Case 2: xd , x ′
d , 164.60 0.97;0.00;0.00;0.03 17471

xq , x ′
q 29878.15 0.03;0.00;0.22;0.75

1689838.40 0.00;0.89;0.08;0.03
2875800.11 0.00;0.11;0.70;0.19

Case 3: x ′
d , 29052.04 0.00;0.22;0.78 98.8

xq , x ′
q 1689534.41 0.89;0.08;0.03

2869080.65 0.11;0.70;0.19

ments. This is an old engineering problem, with first estimation-
type solution proposed by Kinitsky in 1958 [34], which in turn
build upon work of electric machine experts from the 1930s.
More recent reference [35] consider a transient model for the
machine and deploy the full power on microprocessors for on-
line calculations. The most relevant reference for our purposes
is [15], as it contains not only a very effective algorithm for esti-
mation of the generator angle [15, eq. (8)], but also quantifies its
performance under faults and for significant machine parameter
mismatches.

In some special instances, such as a single machine, the alge-
braic equations [denoted with g in (2)] can be solved in terms
of states; the algebraic variables z (1)–(3) still remain (V, θ for
network buses and other for generator units). To demonstrate
salient features of our method on a model that is relevant and
transparent, we focus on the four differential equations on SG
example [denoted with f in (1)]. However, in actual power sys-
tems (and in the IEEE 14-bus power system considered), there
exist additional dynamical components (turbines, AVRs, PSSs
etc.), which we consider in the next section, as well as mul-
tiple generators and loads. A single unit described by f in (1)
would see these other components through variation in the field
voltage (vf ), mechanical power (Pm ) and in the complex volt-
age in the point of connection (represented by V and θ). For
simplicity, we assume that interface variables for SG in Bus
1 (these are Pm , vf , V and θ) are functions of time, but in-
dependent of the parameters considered. This, of course, is an
approximation for a multi-generator system, but it allows direct
comparison with numerous references that focus on a single
generator.

We start transients in sensitivities following three-phase short
circuit in bus 4 in t = 0.1 s, which cleared after 150 ms. For
example, the transient variations of the voltage magnitudes and
angles are approximately 4% and 20 degrees, respectively.

In Table II we present eigenvalues, participation factors and
condition numbers for different uncertain parameter sets. The
sloppiness of most of the uncertain parameter sets used is clear:
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TABLE III
SENSITIVITY OF CONDITION NUMBERS TO THE STRUCTURE OF AVAILABLE

MEASUREMENTS (LOCAL AND GLOBAL) FOR Case 2 IN TABLE II

Local measurements Global measurements

Measurements κ(Hp) Measurements κ(Hp)

Pg 1 , Qg 1 ,
V1 , θ1

48198 Pg 1 , Qg 1 , V1 , θ1 ,
P i n j 2 , Q i n j 2

958.2

V1 , θ1 ,
P in j 1 , Q in j 1

∗
∼� Pg 1 , Qg 1 , V1 ,

θ1 , P i n j 5 , Q i n j 5

1086.8

Pg 1 , Qg 1 ,
P in j 1 , Q in j 1

∼� Pg 1 , Qg 1 , V1 ,
θ1 , P i n j 2 , Q i n j 2 ,

P i n j 5 , Q i n j 5

1086.8

Pg 1 , Qg 1 , V1 ,
θ1 , P in j 1 , Q in j 1

509.7

∗ Injection measurements are obtained from corresponding generation/load injection
measurements and branch flow measurements

1) Time constants (T ′
d0 and T ′

q0−see Appendix) are both
ill-conditioned (near-zero eigenvalues are dominantly in-
fluenced by these) and cannot be estimated simultaneously
from the transient (see Case 1 in Table II).

2) SG’s normal and transient reactances (xd , x′
d , xq and

x′
q−see Appendix) are better conditioned; however, the

overall condition number is high at 17473 (see Case 2 in
Table II). The most challenging SG’s reactance is xd ; it
influences the smallest eigenvalue dominantly (with par-
ticipation factor 0.97).

3) SG reactances x′
d , xq and x′

q (without xd ) are well-
conditioned and can be estimated reliably (see Case 3
in Table II); this is agreement with [33, Chapter 5].

4) Condition number and eigenvalue plots are changing for
different uncertain parameter sets (second column in Ta-
ble III).

5) Transient sensitivity of eigenvalues, whose magnitude
variations are below 10%, indicates that above conclu-
sions hold throughout the analyzed time period.

6) Condition number and eigenvalue plots vary negligibly
for different short-circuit locations and time durations (see
Table III).

7) All presented results are for SG in Bus 1; the conclusions
are also valid for remaining generators (in buses 2, 3, 6
and 8 – regardless of different voltage levels and ratings).

In Table III we explore the variation of condition numbers
to changes in measurement structure (local measurements on
analyzed SG and connection bus, or a combination of local and
distant bus measurements):

1) For well-conditioned parameter estimation, the SG’s ac-
tive/reactive power and voltage in connection point mea-
surements are always needed.

2) Measurement of power injections improves the condition-
ing for parameter estimation.

3) Local injection measurements can be replaced with power
flows at remote/adjacent lines. When local injection mea-
surements are available, the global injection measure-
ments do not improve the estimation significantly.

Fig. 3. Projections of the Bayesian posterior sampling for each pair of elec-
trical log-parameters. True values are denoted with a zero subscript.

B. Information Geometry Based Local, Semi-Global and
Global Results for IEEE 14-Bus Test System

In this section we consider the SG (in Bus 1) with AVR and
PSS (T-G is neglected due to much slower dynamics). We have
generated artificial data for a set of “true” parameter values
and performed a MCMC sampling [36], [37] of the posterior
distribution. To enforce the physical constraints xd > x′

d and
xq > x′

q [21], we have introduced the positive parameters fd

and fq , so that x′
d = xd/(1 + fd) and x′

q = xq/(1 + fq ). The
parameters to be validated are: 1) SG: xd , fd , xq , fq , T ′

d0 and
T ′

q0 [30, eq. (15.29)]; 2) AVR: Ka [37, eq. (16.12)], and 3) PSS:
Tw [30, eq. (16.38)].

Our results suggest that parameters xd (first row in Fig. 3) and
T ′

d0 (fourth column in Fig. 3) are likely to be difficult to estimate,
which is one of the key findings of local analyses reported in
the literature [4, eq. (27)]. Observe how few of the clouds are
elliptical (for example, the joint distribution of xd and fd has a
“wing” of acceptable parameter values), indicating that the local
sensitivity analysis will be inadequate to capture details of the
parameter correlations. Please note that our results are in very
good agreement with [3], [4], [6]. Without the generator angle,
the cloud for xd extends significantly to the right, indicating
that has become unconstrained from above, but otherwise all
the results are qualitatively the same.

In spite of its quantitative limitation, the local analysis cap-
tures many qualitative features (e.g., the relative uncertainty of
each parameter) that are confirmed by the MCMC analysis. Cor-
relation matrices estimated from a local sensitivity analysis and
a semi-global Bayesian sampling in log-parameters are shown
in left and right panels in Fig. 4, respectively. The local correla-
tion matrix correctly predicts the relative difficulty of inferring
each parameter; however, it is quantitatively inaccurate when
compared with the covariance matrix of the global correlation.
Furthermore, from the Bayesian sampling, higher-order mo-
ments can be estimated that describe the non-quadratic features
of the sampling cloud (Fig. 3).

Note the richness of the structure in many of the credible
regions. Simply stating accuracy of individual parameters (e.g.,
xd was constrained to be within 10% of the true value), or even
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Fig. 4. Correlation matrices estimated from a local sensitivity analysis (left)
and a semi-global Bayesian sampling (right) in log-parameters; top row – with
angle measurements, bottom row – without angle. The variance of individual
parameters is given by the diagonal elements. Note that a variance of 6 in log-
parameters corresponds roughly to a relative error of about 90%. The two pairs
of matrices have many of the same qualitative features. The local correlation
correctly predicts that that T ′

q 0 , T ′
d0 and fq will be difficult to identify. However,

there are quantitative differences between each set of two matrices. Furthermore,
the covariance matrices do not reflect the rich structure of the credible regions
in Fig. 3.

Fig. 5. Non-Bayesian scanning – likelihood variation for fd . Notice that fd

is unidentifiable from below, but is constrained from above.

parameter correlations fails to convey the structure in these point
clouds. Furthermore, because nonlinear effects play an impor-
tant role in defining the extent of the credible regions, the clouds
analogous to those in Fig. 3 are likely to vary depending on the
SG’s “true” parameter values and the scale of the measurement
noise to which they are fit.

Next, we consider a scanning method that is a non-Bayesian
alternative to MCMC sampling. We fix one parameter (or more)
and fit the model by varying the remaining parameters; we iden-
tify the confidence intervals for each parameter by considering
what range still yields a good fit (measured by log likelihood).
For example, in the case of the parameter fd (Fig. 5), notice
that it can be made very small, but has an upper cut-off. This is
confirmed by MCMC sampling (Fig. 3, top left plot). We note
that this scanning method has better scaling properties in the
case of large systems than MCMC, provided likelihood profiles
are calculated for one parameter at a time.

Fig. 6. Global exploration of a two-dimensional cross section of the manifold
corresponding T ′

q 0 and T ′
d0 . The contours are the joint likelihood profile for the

two parameters. The red lines are geodesics on the model manifold. Notice that
the geodesics align with the four “canyons” of the cost surface.

Fig. 7. Data space visualization of the model manifold for the two-
dimensional cross section defined by T ′

d0 and T ′
q 0 projected onto the first

three principal components in data space (left) and the fifth through seventh
principal components (right). Color represents the fourth principal component
(left) and eighth principal component (right). Red lines are geodesics curves
(corresponding to a subset of those in Fig. 6 for clarity). This cross section has
four edges and four corners (like a deformed square). The four edges of the
model manifold correspond to the four “canyons” in Fig. 6.

In Fig. 7, we consider the joint likelihood profile for the
two time-scale parameters T ′

d0 and T ′
q0 (cf. Fig. 3, bottom right

panel). The contours correspond to level sets of the negative
log-likelihood. Notice that the cost surface has four “canyons”.
The primary (deepest) canyon extends from the origin to the
right (T ′

d0 to infinity). In addition, there are two more shallow
canyons running up and down from the origin along the T ′

q0
axis. Finally, there is a fourth, very shallow canyon running to
the left from the origin, corresponding to T ′

d0 going to zero.
The red lines in Fig. 6 are geodesics on the model manifold

restricted to the two-dimensional cross section spanned by T ′
d0

and T ′
q0 . These curves are highly nonlinear; however, they tend

to bend in agreement with the local sensitivity analysis (e.g.,
aligning the canyons of the likelihood profile). The nonlinearity
of the geodesic curves reflects the incompleteness of the local
analysis. However, the geodesics naturally “connect” the local
analyses to reveal the global structure of the parameter space.

To better understand the relation between the information
geometry of the model and parameter identifiability, consider
the visualization of the model manifold in data space in Fig. 7.

The cross section has four edges and four corners−like a
deformed square. These edges correspond to the limits that
T ′

d0 and T ′
q0 become either zero or infinity. The edges are

closely related to the four “canyons” in Fig. 6. As one fol-
lows the canyons toward extreme parameter values, the canyons
slowly rise up, reflecting a decrease in quality of fit, but then
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TABLE IV
EIGENVALUES, PARTICIPATION FACTORS AND CONDITION NUMBERS FOR THREE CHARACTERISTIC SETS OF

UNCERTAIN PARAMETERS IN AREA (SGS AND NETWORK PARAMETERS)

TABLE V
MAXIMAL AND AVERAGE ERRORS IN TIME RESPONSES OF ORIGINAL AND SIMPLIFIED MODELS FOR REAL-WORLD TEST SYSTEM

1
T

∑ T
t = 1 |V Or .

t − V S l .
t | 1

T

∑ T
t = 1 |θOr .

t − θS l .
t | 1

T

∑ T
t = 1 |P Or .

g , t − P S l .
g , t | 1

T

∑ T
t = 1 |QOr .

g , t − QS l .
g , t |

Max (Bus 433) Aver. Max (Bus 429) Aver. Max (Bus 15) Aver. Max (Bus 7) Aver.

0.0054 0.0010 0.0751 0.0732 0.0410 0.0011 0.0199 0.0008

plateau. Thus, the parameters can be taken to extreme values
(e.g., zero of infinity) with finite cost. Because they correspond
to extreme parameter values with finite cost, each canyon can
identified with one edge of the model manifold. The mani-
fold boundaries make it possible to have infinite confidence
regions. The depth of each canyon at extreme parameter values
is the inverse distance to the corresponding edge on the model
manifold. Which parameters will have infinite confidence re-
gions will in general depend on the “true” parameter values,
the measurement noise in the data, and the level of statistical
confidence.

We now consider the boundaries of the six-dimensional man-
ifold corresponding to the six electric parameters in a SG, one
of the primary results of this study. Because the manifold is not
easily visualized, we report the results of our geodesic analysis.
In addition to T ′

d0 and T ′
q0 each being unidentifiable from above

or below, we also find that xd and fd could each become infi-
nite in a correlated way (i.e., so that xd − x′

d remains finite), fd

could become infinite (x′
d goes to zero) or zero (x′

d goes to xd )
with similar results for xq and x′

q .

Significantly, these results give a global characterization of
the structure of the model manifold. Unlike local analyses that
focus on the relationship between a specific realization of data
and parameters, the global analysis characterizes properties of
the model that are transferable to other data sets. In particular, it
identifies which parameters could potentially be unidentifiable
for different measurements or data of different quality.

C. System-Wide Estimation for IEEE 14-Bus Test System

The identification of power system areas (“dynamic equiva-
lents”) is a key for application of our method in industrial prac-
tice. As an illustration, we consider the case when, in addition
to SG’s and appropriate control’s parameters, the transmission
network needs to be identified as well. The elements of trans-
mission network are described by the static branch equivalents
(lines and transformers) with uncertain resistances, reactances
and susceptances; the influence of reactances to the dynamic
behavior is typically considered dominant. We assume a full set
of available measurements: SG’s output active/reactive powers,
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Fig. 8. Time responses of bus voltage and SG’s active and reactive powers
with maximal errors (from Table V) for original and simplified models for
real-world test system.

bus voltage magnitude/angle, bus active/reactive power injec-
tions and branch active/reactive power flows. In Table IV we
display the eigenvalues of the Hessian matrix, participation fac-
tors and condition numbers for three uncertain parameter sets
(three SGs and five branches – Case 6):

1) The conclusions about quality of parameter identification
are aligned with those of Table II.

2) Largest eigenvalues are dominantly influenced by uncer-
tain branch reactances, making them relatively easy to
estimate.

3) Quality of parameter identification is worsening with (spa-
tial) increase of uncertain area.

Our strategy for extending the approach to large systems
involves the following steps:

1) Determination of key modes to be included in the system
model with key states (via participation factors of the
system matrix), and corresponding physical components
and their vital (“systemic”) parameters (via sensitivities
of the system matrix to parameters).

2) Measurement structure and model selection to achieve low
to moderate sloppiness and the presence of all systemic
parameters among the identifiable ones.

3) Nodal local and semi-global analysis for typical transients.
For example, in the test system in Fig. 1, the least damped
pole pair is at −0.61 ± j10.89 (thus critical for oscillation
damping). The sensitivities of these eigenvalues to param-
eters of SG in Bus 1 vary widely, and are largest for x′

q1
(0.92) and x′

d1 (0.05); thus it makes sense to declare x′
q1 as

a systemic parameter. This parameter is retained in even
very low-order models [30], so area or SG identification
with typical models will suffice for the critical pole as far
as SG in Bus 1 is concerned.

D. Real-World Test System

The main characteristics of original dynamic model for
real-world (Electric Power Industry of Serbia, a part of the
ENTSO-E interconnection) power system can be summarized
as: 441 buses, 655 branches (lines and transformers), 72 SGs
(43 of 4-order models and 29 of 6-order models), with AVRs
and turbines. The model has total 850 differential and 1314 al-
gebraic variables. Test system is subjected to the three-phase
short circuit in Bus 1 in t = 0.0 s, which cleared after 250 ms
(fault internal impedance is Zf = (0 + j0.1) p.u.).

In this section we show how insights gained from the sloppi-
ness analysis may be used to simplify the model of a real-life
power system, while maintaining remarkable fidelity of the re-
sponse with very little tuning. Based on conclusions derived
in Sections V.B and V.C, related to stiff and sloppy SG’s pa-
rameters, we assume: 1) all SG’s models are 4-order; all SG’s
time constants are adjusted to typical values: T ′

d0 = 7 s and
T ′

q0 = 0.2 s; all SG’s reactances in d-axis are adjusted to typ-
ical values: xd = 0.3 p.u. Maximal and average errors in time
responses of original and simplified models for real-world test
system are reported in Table V. In Fig. 8 we show time re-
sponses of bus voltage and SG’s active and reactive powers with
maximal errors reported in Table V.

Results of this pilot study are encouraging, suggesting that
models with low, managed sloppiness can indeed be useful in
industrial practice. A case-specific re-parametrization may re-
duce or even eliminate sloppiness, but it is unlikely to be useful
for other stakeholders in the power system enterprise.
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VI. CONCLUSION

This paper outlines a new class of system identification
procedures tailored to electric power systems. Our procedure,
illustrated on synchronous generator example, builds on
computational advances in differential geometry, and offers
a new, global characterization of challenges encountered
in system identification of electric power systems. From
an optimization perspective, we offer domain-specific tools
for regularization of ill-posed optimization models that are
prevalent in studies of power system dynamics and in static state
estimation. One of the major challenges to system identification
in large models is method scalability. Somewhat surprisingly,
the global methods we advocate scale well with system size,
since they exploit the low effective dimensionality of the model
manifold in data space.

APPENDIX

For one d-axis and one q-axis SG model, the differential
and algebraic equations respectively can be written as [30, eqs.
(15.5), (15.29), (15.7), (15.8) and (15.2)–(15.4), respectively]:

f =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇ = Ωb(ω − ωs)

ω̇ =
1

2H
(Pm − Pg − D(ω − ωs))

ė′q =
1

T ′
d0

(−e′q − (xd − x′
d)id + vf )

ė′d =
1

T ′
q0

(−e′d + (xq − x′
q )iq )

(A1a)

g =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vf = vf 0
Pm = Pm0

Pg = vdid + vq iq = V sin(δ − θ) e ′
q −V cos(δ−θ)

x ′
d

+Vcos(δ − θ)
Vsin(δ − θ) − e′d

x′
q

Qg = vq id − vdiq = V cos(δ − θ) e ′
q −V cos(δ−θ)

x ′
d

−Vsin(δ − θ)
Vsin(δ − θ) − e′d

x′
q

.

(A1b)

For one q-axis (3-order) model differential equation for ė′d in
(A1a) is neglected.

Additional differential equations for two d- and two q-axes
(6-order) model (for e′′q and e′′d− see Table I) can be found in
[30, eq. (15.9)] or [17, Appendix].

AVR (based on a typical DC-based exciter) model is described
as [30, eq. (16.12)]:

f =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v̇r1 =
Ka

Ta

(
vref − vm − vr2 − Kf

Tf
vf − vr1

)

v̇r2 = − 1
Tf

(
Kf

Tf
vf − vr2

)

v̇f =
1
Te

(−vf (Ke + Se(vf ) − vr1)

.(A2a)

g =
{
vref = vref

0 . (A2b)

PSS model is described as [30, eq. (16.38)]:

f =
{

v̇1 = − 1
Tw

(Kω ω + KpPg + KvV + v1) (A3a)

g = {vs = Kω ω + KpPg + KvV + v1 . (A3b)

Details of larger models for SGs, AVRs, T-Gs and PSS can
be found in [21], [30], [33].

Bus active/reactive power balance equations in ith bus respec-
tively are:

Pgi − Ppi = Pnet,i (A4a)

Qgi − Qpi = Qnet,i , (A4b)

where:

Pgi , Qgi − active and reactive power generations in ith bus,
respectively [given in (A1b)];

Ppi , Qpi − active and reactive loads in ith bus, respectively;
Pnet,i , Qnet,i − active and reactive power network flows in ith

bus, respectively:

Pnet,i =
N∑

j=1

[ViVj (Gij cos(θi − θj ) + Bij sin(θi − θj ))]

(A5a)

Qnet,i =
N∑

j=1

[ViVj (Gij sin(θi − θj ) − Bij cos(θi − θj ))],

(A5b)

where Gij and Bij are elements of bus admittance matrix Y =
G + jB.
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