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ABSTRACT

Bayesian, Frequentist, and Information Geometry Approaches to Parametric Uncertainty
Quantification of Classical Empirical Interatomic Potentials

Yonatan Kurniawan
Department of Physics and Astronomy, BYU

Master of Science

Uncertainty quantification (UQ) is an increasingly important part of materials modeling. In
this paper, we consider the problem of quantifying parametric uncertainty in classical empirical
interatomic potentials (IPs). Previous work based on local sensitivity analysis using the Fisher
Information has shown that IPs are sloppy, i.e., are insensitive to coordinated changes of many
parameter combinations. We confirm these results and further explore the non-local statistics
in the context of sloppy model analysis using both Bayesian (MCMC) and Frequentist (profile
likelihood) methods. We interface these tools with the Knowledgebase of Interatomic Models
(OpenKIM) and study three models based on the Lennard-Jones, Morse, and Stillinger-Weber
potentials, respectively. We confirm that IPs have global properties similar to those of sloppy models
from fields such as systems biology, power systems, and critical phenomena. These models exhibit a
low effective dimensionality in which many of the parameters are unidentifiable, i.e., do not encode
any information when fit to data. Because the inverse problem in such models is ill-conditioned,
unidentifiable parameters present challenges for traditional statistical methods. In the Bayesian
approach, Monte Carlo samples can depend on the choice of prior in subtle ways. In particular,
they often “evaporate" parameters into high-entropy, sub-optimal regions of the parameter space.
For profile likelihoods, confidence regions are extremely sensitive to the choice of confidence level.
To get a better picture of the relationship between data and parametric uncertainty, we sample
the Bayesian posterior at several sampling temperatures and compare the results with those of
Frequentist analyses. In analogy to statistical mechanics, we classify samples as either energy-
dominated, i.e., characterized by identifiable parameters in constrained (ground state) regions of
parameter space, or entropy-dominated, i.e., characterized by unidentifiable (evaporated) parameters.
We complement these two pictures with information geometry to illuminate the underlying cause of
this phenomenon. In this approach, a parameterized model is interpreted as a manifold embedded in
the space of possible data with parameters as coordinates. We calculate geodesics on the model
manifold and find that IPs, like other sloppy models, have bounded manifolds with a hierarchy of
widths, leading to low effective dimensionality in the model. We show how information geometry
can motivate new, natural parameterizations that improve the stability and interpretation of UQ
analysis and further suggest simplified, less-sloppy models.

Keywords: interatomic models, uncertainty quantification, sloppy models, Bayesian inference,
profile likelihood, information geometry
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Chapter 1

Introduction

Interatomic potentials (IPs) are a foundational tool in computational materials science [1].

They allow modelers to make efficient predictions of materials properties without reference to

the complicated sub-atomic structure. Recently there has been considerable interest in applying

methods of uncertainty quantification (UQ) to IPs [2–5]. UQ assesses the reliability of materials

predictions, leveraging tools from statistical inference [6]. Statistical analysis of similar inverse

problems in physics has motivated the study of sloppy models [7]. Sloppy models lead to extremely

ill-conditioned inverse problems and pose several challenges for standard statistical methods [8, 9].

This work considers the application of UQ to IPs in the context of sloppy models. We find that

many IPs are sloppy, which leads to challenges in interpreting UQ results, and use information

geometry to mitigate some of these challenges.

Classical IPs have been widely used in materials science to circumvent the computational cost

of quantum calculations, such as density functional theory (DFT), by approximating the interaction

energy between atoms without considering the electrons. However, a definitive functional form that

can describes all types of atomic bonding hasn’t been discovered. Thus, IPs are often designed for

specific purposes, resulting in a plethora of models [10]. Efforts such as the Open Knowledgebase

of Interatomic Models (OpenKIM) [11] aim to organize and standardize these IPs.

1
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In the development of classical empirical IPs, the parameters are typically fit to match experi-

mental or first principles data of some microscopic properties such as the lattice parameters and

elastic constants of single crystals, or the potential energy and atomic forces associated with random

atomic configurations [12]. They are then used in conjunction with simulation codes to predict other

properties that are not used in the fitting process. Thus, UQ is relevant for assessing the reliability

of these out-of-sample predictions.

In this paper, we are primarily interested in parametric uncertainty, i.e., uncertainty in the

model’s parameters, which is quantified through, for example, a Bayesian posterior distribution

or confidence regions on the parameter space. In our formulation, the IP is used in two models,

one that makes predictions for training data (e.g., energy and forces) and a second that makes

predictions for other material quantities of interest. By varying the parameters, the IP traces out

a set of possible predictions for each model. The set of predictions made by a model is known as

the model manifold [8] and studied by information geometry. Parameters act as coordinates on

the model manifold and distances on the manifold measure statistical distinguishability. The UQ

process propagates uncertainties from training data to uncertainties in parameters via the (pseudo)

inverse of the first model. These uncertainties then propagate through the second model to give

uncertainties in the predictions for the quantities of interest. The inverse of the model is not given

explicitly but only accessible through iterative evaluations of the model. Consequently, the first

uncertainty propagation process is the more challenging one and the focus of this study. Given the

parametric uncertainties, they can then be propagated to other quantities of interest, for example as

in [13]. This entire process is illustrated in Fig. 1.1.

Many UQ methods have been developed to propagate uncertainties in data to uncertainties in

parameters. In materials science, Markov Chain Monte Carlo (MCMC) sampling of the Bayesian

posterior is the most common approach. Being a Bayesian method, this requires a prior distribution,

and several prior distributions have been used, including uniform [14–20], normal [21], Jeffreys
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Figure 1.1 Uncertainty propagation in information geometry. An IP is described by
several parameters, collectively forming a parameter space (top center). By considering the
predictions for all allowed parameter values, a model maps out a set of possible predictions
in data space, known as the model manifold (bottom left, right). Uncertainty in training
data (bottom left) are propagated through the inverse function to uncertainties in parameter
space, represented here by contours of constant likelihood, i.e., cost, in the parameter
space. Parametric uncertainty can then be propagated forward to material quantities of
interest, such as lattice constant, elastic constant, and bulk modulus (bottom right).
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prior [22], and maximum entropy [23]. Other approaches to UQ include: F-statistics estimations

[24], ANOVA-based methods [25], and multi-objective optimization [26]. Other fields have used

the profile likelihood method [27–29], but to the best of our knowledge has not yet been applied to

IPs.

The study of inverse problems in statistical physics has identified an important property of many

multi-parameter models, known as sloppiness. Sloppy models are characterized by predictions that

are insensitive to coordinated changes in combinations of parameters. Inverse problems for sloppy

models are extremely ill-conditioned and, as we will show below, present obstacles for standard UQ

methods. Sloppiness was first systematically studied in 2003 by Brown and Sethna in the context

of systems biology models [7]. The relevant object is the Fisher Information Matrix (FIM) [30]

that quantifies the information that data carry about parameters in a model. Eigenvalues of the FIM

provide a local measure of sloppiness. For sloppy models, the FIM eigenvalues span many orders

of magnitude and have many small eigenvalues. These small eigenvalues correspond to sloppy

combinations of parameters, i.e., those that are ill-constrained by data [8, 31–33].

Although sloppy models are usually identified by their characteristic FIM spectrum, the theory

of sloppy models is couched in the tools of information geometry, the application of differential

geometry to statistics [9, 34]. The key object is the model manifold, which comprises the set

of all possible predictions a model can make with different parameter values. As we show in

Sec. 2.5 the model manifold is embedded in data space. This space is useful because distance

corresponds to statistical identifiability. In other words, points that are distant on the model manifold

are statistically distinguishable, while nearby points are not. Statistical identifiability therefore

induces a Riemannian metric on the parameter space that is given by the FIM. For sloppy models,

the model manifold is bounded with a hierarchy of widths, suggesting the model exhibits a low

effective dimensionality [8]. When a model manifold is very thin, the parameters associated with

the thin directions are unidentifiable from data.
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Sloppy models are ubiquitous in many scientific fields including critical phenomenon [35],

systems biology [9, 31, 36–39], power systems stability [40], particle accelerators [41], and others

[33]. In molecular modeling, it has been shown that IPs typically exhibit the same characteristic

sloppy FIM spectrum [2–4, 42]; however, the techniques of information geometry have not yet

found application to IPs. As materials models increase in complexity, especially with the advent of

machine learning models [5,43–45], sloppiness will become increasingly relevant. This underscores

the importance of understanding the effects of sloppiness on IPs and other materials science models.

This work considers the role of sloppiness for the application of UQ to IPs. Since sloppy

models are ill-conditioned, they pose unique challenges for standard UQ methods. Results are

often highly sensitive to details of the problem formulation and difficult to interpret. We illustrate

these challenges with both Bayesian and Frequentist UQ methods, introducing the profile likelihood

methods to the material modeling community. We additionally bring the information geometry

techniques of sloppy model analysis to bear on this problem and discuss how they can illuminate

and mitigate these challenges. The paper is organized as follows. First, we precisely formulate the

problem in Sec. 2.1 and discuss using the FIM as a local analysis of sloppiness in Sec. 2.2. Then,

we discuss the Bayesian and Frequentist UQ methods in Sec. 2.3 and 2.4, respectively. We describe

information geometric tools, specifically geodesics, central to our sloppy model analysis in Sec. 2.5.

Sec. 2.6 presents the models used in this study, i.e., the IPs and quantities of interest. We present

the results for each method in Ch. 3. Finally, we discuss the effects sloppiness has on UQ in Ch. 4

and the prospect for accurate, efficient UQ in IPs generally.



Chapter 2

Methods

In this chapter we introduce the general methods that will be used later on in the thesis. We pay

particular attention to the mathematical assumptions that different methods require and the types of

calculations that they enable. Then we introduce the interatomic models and data sets on which we

conduct our study.

2.1 Defining Cost

The minimal elements for parametric UQ are (1) a collection of data, {ym}M
m=1 (where M is the

number of data points), (2) a parameterized family of models that make predictions { fm(θ)}M
m=1,

and (3) a metric for comparing the model predictions to data, ‖·‖. We assume that the model

depends on N parameters θ ∈ D ⊆ RN . Here, D is the physically allowed domain; for example,

it is common for some parameters to be restricted to positive values. It is convenient to interpret

both the data and model predictions as vectors in an M-dimensional data space: ym→ y ∈ RM,

fm(θ)→ f :D ⊆ RN → RM.

The third requirement, a metric, defines a cost function (also known as a loss function) that

quantifies how well specific parameter values fit the available data, C(θ) = ‖y− f(θ)‖. The best

6
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fit parameters, denoted by θ ∗, minimize the cost. By far the most common choice for a metric is

(weighted) least squares

C(θ) =
1
2

M

∑
m=1

rm(θ)
2, (2.1)

where we have introduced the residuals

rm (θ) =
ym− fm (θ)

σm
(2.2)

that depends on the inverse weights σm that act as error bars for each data point.

The cost function has a probabilistic interpretation as the negative log-likelihood

P(y|θ)∼ exp{−C(θ)}. (2.3)

Eq. 2.1 corresponds to the case that residuals are independent and identically distributed Gaussian

random variables: rm ∼N (0,1), or equivalently ym ∼N ( fm(θ),σ
2
m). Probability acts as a measure

on data space that we use to quantify uncertainty. For stochastic processes, the stochastic variation

in the data is a natural measure, in which case the inverse weights, σm, are often taken to be the

standard errors estimated from repeated observations. When working with DFT data, we often do

not have an associated error bar. Instead, we advocate selecting σm to be the acceptable tolerance in

the model for a particular application. Deliberate selection of σm is an important part of the UQ

problem formulation since any eventual measure of the uncertainty in the model parameters will be

derived from the choice of measure in data space. Because predictions may be made for quantities

that carry different physical units (e.g., energies vs. forces), choosing σm is minimally necessary for

Eq. 2.1 to be dimensionally consistent. In general, choosing σm as a fractional tolerance, e.g., 10%

of the data, is a reasonable choice and what we use in this study.

To illustrate key ideas throughout this section, we use a two-parameter toy model of the form

f (t;θ) =
1

t2 +θ1t +θ2
. (2.4)
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(a) (b)

Figure 2.1 Time series (a) and cost surface (b) for the toy model in Eq. 2.4. Data are given
by the red points in (a), with the error bars set to 30% of the data. Model predictions for
different parameter values and their corresponding points on the cost surface are shown in
matching colors. Contours represent the errors between the model predictions and data as
calculated in Eq. 2.1.

We make predictions at times t = 1.0,2.0,3.0, i.e., fm(θ) = f (tm;θ). We restrict θi ≥ 0 (a com-

mon physical constraint on parameter values), which suggests working with the log-transformed

parameter values. We use y = [1/3,1/7,1/13]T with tolerances σm set to be 30% of the data y,

for the purpose of visual clarity. This data, along with model predictions for several values of the

parameters, are shown in Fig. 2.1a.

It is useful to visually consider cost contours for this model, shown in Fig. 2.1b. In general, we

are interested in describing the regions in parameter space with low cost. The model in Eq. 2.4 is

sloppy, as manifested by its insensitivity to coordinated variations in some parameter directions.

Because of this, the cost contours in the sloppy directions are elongated and the aspect ratio of the

canyon around the minimum is very large. Away from the best fit, many of the cost contours do

not close; canyons stretch to the edges of parameter space and flatten into broad plateaus. Extreme

values of the parameters can have finite, and in many cases, very small cost. These features are

ubiquitous in sloppy models, and play a fundamental role in quantifying the parametric uncertainty.
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For models with many parameters, direct visualization of the cost surface is not possible.

However, we have constructed this toy model to illustrate issues that are typical of high-dimensional

parameter spaces. In the next sections, we describe several tools for analyzing the cost surface of

multi-parameter models.

2.2 Fisher Information: Sloppy Model Analysis

To quantify the local geometry of the cost surface in a neighborhood of the best fit, we linearize

the residuals about θ ∗:

rm(θ)≈ rm(θ
∗)+

∂ rm

∂θ
(θ −θ

∗). (2.5)

To lowest order, the cost function becomes

C(θ)≈C(θ ∗)+
1
2
(θ −θ

∗)T (JT J)(θ −θ
∗), (2.6)

where we have used the fact that ∇C = 0 at θ ∗ and introduced the Jacobian of the residual function

Jmn = ∂ rm/∂θn =−(1/σm)∂ fm/∂θn evaluated at θ ∗ . The squared Jacobian appearing in Eq. 2.6

is the Fisher Information Matrix (FIM):

I = JT J. (2.7)

The FIM is an important statistical quantity; its inverse is a lower bound on the covariance of

parameter uncertainty, known as the the Cramér-Rao bound [46].

The local geometry of the cost surface around the best fit is described by the FIM, as we illustrate

in Fig. 2.2. Diagonals of the FIM describe the change in cost to each parameter individually,

ignoring any potential correlations among parameters. Cost contours form ellipses, aligned with the

eigenvectors of the FIM, whose aspect ratio is given by the square root of the ratio of the eigenvalues.

Elongated directions are parallel to the eigenvectors with small eigenvalues, indicating that the data

carry little information about those parameter combinations. These parameter combinations are
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Figure 2.2 The Fisher Information describes the local geometry of the cost surface. Locally
cost contours are represented by ellipses where the axes are aligned with the eigenvectors
of the FIM. The aspect ratio of the ellipse is given by the square root of the ratio of the
eigenvalues.

only weakly constrained by the data and have large uncertainties in their inferred values. Projecting

these ellipses onto the parameter axes estimates the uncertainty in each individual parameter, given

by the diagonals of the inverse FIM.

2.3 Bayesian Analysis

The most common UQ methods in molecular modeling use a Bayesian framework. In Bayesian

statistics, the parametric uncertainty is described by a posterior distribution given by Bayes’ theorem

P(θ |y) ∝ L(θ |y) ·π (θ) , (2.8)

where L(θ |y) and π(θ) are the likelihood and the prior distribution of the model’s parameters,

respectively [47, 48]. The likelihood is functionally the same as the probability distribution of
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the observed data conditioned on the different values of the parameters, i.e., L(θ |y) = P(y|θ). A

formal analogy to the Boltzmann distribution [7, 49, 50] suggests the introduction of a “sampling

temperature,” T , which modifies Eq. 2.3 as

L(θ |y)∼ exp{−C(θ)/T}. (2.9)

The cost is analogous to the internal energy of a system, so low temperature distributions are con-

centrated near the low-energy (i.e., low cost) region of parameter space. Formally, the temperature

uniformly scales the tolerances σm in Eq. 2.2. Continuing the analogy, Eq. (2.8) becomes

P(θ |y)∼ exp(−(C(θ)−S(θ)T )/T ) , (2.10)

so the prior is analogous to entropy: S = logπ .

We sample from the posterior distribution using an MCMC algorithm. There are several black-

box libraries for MCMC sampling. In this work, we used the ptemcee Python package, which

utilizes an affine invariance property of the sampler [51, 52]. In addition, this method generates

chains at different temperatures and mixes them with an appropriate acceptance probability [53].

Parallel tempering improves convergence rates by allowing walkers to skip over regions in parameter

space with higher cost values and possibly find different minima (if they exist). Additionally, by

sampling at multiple temperatures, we can assess how the choice of σm affects any conclusions we

draw from the distribution.

To assess the convergence, we simulate multiple chains and use the Potential Scale Reduction

Factor (PSRF), denoted by R̂ [54–56]. The value of R̂ is related to the ratio of the covariance

between and within the independent chains, given by

R̂ =
n−1

n
+

m+1
m

λmax(W−1B/n), (2.11)

where n and m are the numbers of iterations and chains, respectively, and λmax(A) denotes the

largest eigenvalue of matrix A. B/n and W are the variance between and within the independent
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Figure 2.3 MCMC samples of the model defined by Eq. 2.4. On the lower triangle, the
samples are plotted on top of the cost contour. The univariate marginal distributions of the
samples are given on the diagonal.

chains, ψ j,
B
n
=

1
m−1

m

∑
j=1

(
ψ̄ j− ψ̄

)(
ψ̄ j− ψ̄

)T

W =
1

m(n−1)

m

∑
j=1

n

∑
t=1

(
ψ jt− ψ̄ j

)(
ψ jt− ψ̄ j

)T
.

(2.12)

As the MCMC samples converge to a stationary distribution, the value of R̂ approaches one; however,

the converse is not necessarily true. Common thresholds of R̂ are in the range of 1.1 to 1.05 [55]. In

this work, we have used the more stringent requirement (R̂ < 1.05).

To illustrate, we sample the posterior of the model in Eq. 2.4 with a uniform prior distribution

that is non-zero over (−4,4). Fig. 2.3 shows the result of the sampling as an array of plots that

summarize the sample. Along the main diagonal, we plot the univariate marginal distributions,

i.e., projection of the samples’ distribution onto a parameter axis. In the lower triangle of the

array we show samples in two dimensional parameter space. In higher dimensions, these plots are

two-dimensional marginal distributions. In this example, we have superimposed the samples on top

of the cost contours (compare this to Fig. 2.1b).
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In Fig. 2.3, notice that the MCMC samples are located along the canyon. This is expected as

the posterior is large in regions of higher likelihood, i.e., lower cost. Thus, the samples accurately

conform to the cost contours and quantify the uncertainty in the parameter estimates. However,

by inspecting Fig. 2.3, we can anticipate a potential problem when the cost contours have flat,

elongated canyons that extend to extreme parameter values. In this scenario, it will be common

to “evaporate” parameters, i.e., have samples that extend over the full range of model parameters.

Parameter evaporation was first observed when sampling posterior distributions for sloppy models

in systems biology [41]; however, the phenomenon occurs in molecular models as well, as we

document below.

Closely related to the parameter evaporation is the question of choosing the prior distribution,

π(θ), on parameter space. Here, we have used a uniform prior, a common choice for an uninforma-

tive prior. However, we find the prior can strongly influence the posterior distribution in obscure

ways. Even the apparently innocuous uniform prior can introduce strong biases. Notice that in

Fig. 2.3, the samples stop evaporating due to the boundaries of the prior distribution. Consequently,

the marginal distribution of the samples have a hard cutoff at this boundary. With a broader prior,

the posterior will be even wider, and samples may no longer be concentrated near the best fit. The

long canyons and broad plateaus of the cost surface would dominate the samples. We intuitively

explain this effect in terms of a trade-off between energy and entropy in the sampling process.

While the single most probable parameter value is the best fit (i.e., ground state), there are many

more sub-optimal parameter values along the canyon. In other words, the broad prior introduces a

large entropy in some regions of the parameter space. For broad priors, the entropic contribution

dominates the sampling.
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The effect is clearly demonstrated with a simple example. Consider a one-dimensional cost

function given by

C(θ) =


C0 θ < l

C0 +∆ θ > l
(2.13)

where θ is a non-negative parameter and C0, ∆ and l are non-negative constants. We take a prior

π(θ) = U(0,L), i.e., a uniform, flat prior from zero to a positive value of L. After calculating the

posterior distribution, we find the average cost for this scenario to be

〈C〉=


C0 L < l

C0 +∆

(
L−l

L+l(e∆/T−1)

)
L > l.

(2.14)

Notice that for very large L (i.e., very broad prior), 〈C〉 →C0 +∆. That is to say, for a sufficiently

broad prior, the posterior distribution is dominated by bad fits (large cost) because of their large

entropic contribution. This result holds for any non-zero sampling temperature and regardless of

how bad the fit is (i.e., the size of ∆).
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As we will see in Ch. 3, the trade-off between entropy and energy is even more nuanced for

“sloppy” cost landscapes with many dimensions. Rarely is there an objectively “correct” prior, and

any choice is almost certain to introduce artifacts into the statistics of the posterior. In these cases, it

is unclear to what extent the posterior accurately reflects the target uncertainty. One solution is to

sample with multiple priors and temperatures, a computationally expensive task, and try to assess

the effect of prior and sampling temperature on the results. Because this practice generates multiple

posteriors, it potentially undermines the Bayesian paradigm in which a single posterior summarizes

all the information one has about the parameters of a model. However, we believe these extra steps

are an important intermediate analysis in understanding the effect of the prior on the posterior and

necessary for constructing a reliable posterior. Alternatively, one could use a formalism that does

not require an a priori measure on parameter space. This is the domain of Frequentist statistics,

which we discuss next.

2.4 Frequentist Analysis

Although much has been said about the philosophical differences between Bayesian and Fre-

quentists [57, 58], here we use a functional distinction. The choice of prior in the previous section

was a central question. The prior acts as a measure on parameter space, i.e., a weight function

whose integral generalizes the concept of lengths and volumes [59]. In the frequentist approach no

such measure exists. Without a measure on parameter space, we lose the machinery of a posterior

distribution, but we also need fewer mathematical assumptions. With no prior, the goal is to describe

the set of parameter values that have small cost (i.e., below some statistically defined threshold)

without attaching any (probabilistic) weight to regions of parameter space. The tool we use to

accomplish this is the profile likelihood [60].
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Figure 2.4 Profile likelihood for the model in Eq. 2.4. On the lower triangle, the red and
blue curves show the paths traced from the profile likelihood computation for the parameter
on the horizontal and vertical axes, respectively. The cost profiles, i.e., the cost along these
paths, are given on the diagonal.

The basic idea is to select one parameter, fix it to a constant value, and globally optimize the

likelihood function (i.e., minimize the cost) over the remaining N−1 model parameters [60, 61].

By varying the value to which the parameter is fixed, we trace out a “profile” of how the cost

depends on this parameter in the context of the rest of the model. The procedure is best understood

through example, as we now demonstrate on the toy model from Eq. 2.4 in Fig. 2.4. As before,

we summarize results with a two-by-two array of figures. Consider the cost contours in the lower

triangle of the plot array. The red curve is the set of points obtained by fixing θ1 to a constant value

and optimizing the cost over θ2. The optimization searched over vertical slices of the parameter

space for each value of θ1. Similarly, the blue curve is the set of points found by fixing θ2 and

optimizing over horizontal slices, i.e., over θ1. Along the main diagonal, we plot the cost along

each of these profile likelihood paths.

By construction, the profile likelihood paths trace out the canyon on the cost contour. By

comparing the paths and the cost along the paths, we extract information about how variation of

the parameters affects the variation in the predictions. The paths also tell us how the parameters
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Figure 2.5 Confidence intervals for a Gaussian likelihood at several confidence levels. C1σ

and C2σ correspond to the cost threshold at 68% and 95% confidence levels, respectively.
The confidence interval of θ given 68% confidence level spans from −σ to +σ .

correlate with each other. Statistical confidence levels correspond to an allowed error or cost

threshold. For a given confidence level, the uncertainty of an individual parameter is given by

the width of the profile likelihood that has cost values lower than this cost threshold. This idea is

illustrated in Fig. 2.5 for a simple Gaussian likelihood function.

To calculate profile likelihoods, we developed a Python package, profile_likelihood [62]

that additionally interfaces with IPs from the OpenKIM database at https://openkim.org. We use the

Levenberg-Marquardt algorithm with geodesic acceleration in the optimization process [63].

The profile likelihood analysis method has its own challenges and limitations. Optimizing

multi-dimensional cost functions can be challenging [8]; however, by using the result of the

previous optimization as the starting point of each iteration, convergence is relatively fast and stable.

Additionally, the profiling process effectively projects parameter curves onto the parameter axes. As

https://openkim.org
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we will see in Ch. 3, if the cost canyon curves or bends, it will be missed by the profile likelihood.

More broadly, the construction is not invariant to reparameterization. Just as priors may introduce

artifacts in the Bayesian framework, the parameterization can introduce artifacts into the profile

likelihood. To avoid these issues, we next use information geometry to study the uncertainty in a

parameterization-independent way.

2.5 Information Geometry

Information geometry is an approach to statistics in which a multi-parameter model is interpreted

as a high-dimensional manifold. We study this manifold using computational differential geometry

that allows us to extract the key geometric and topological features of the model manifold. These

features shed light on issues related to UQ.

As we have seen in Sec. 2.1, a multi-parameter model makes a set of predictions, fm(θ), that

we interpret as a vector in data space. That is to say, the model is a mapping between parameter

space and data space:

f :D ⊆ RN → RM. (2.15)

Conceptually, the model manifold is constructed by mapping all possible parameter values to their

corresponding predictions in data space, i.e., the model manifold is the image of parameter space

under the model map, illustrated for the toy model (Eq. 2.4) in Fig. 2.6.

Critically, notice that the manifold is bounded by two one-dimensional segments. We focus on

the boundaries of the model manifold as they are the geometric feature most relevant to parameter

uncertainty. In parameter space, we have seen there can be large or infinite uncertainties when

cost contours do not close, i.e., confidence regions extend to the limits of the parameter domain.

Infinite, high entropy regions of parameter space are mapped to finite regions near the boundary of

the model manifold, thus these contours are generic when the model manifold is bounded. Since the
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(a) (b)

Figure 2.6 Model manifold of the toy model in Eq. 2.4. Each point in parameter space (a)
corresponds to a set of predictions in data space (b). The set of all possible predictions trace
out the model manifold. For reference, colored points are the same as those in Fig. 2.1.
The red arrows in parameter space shows the eigenvectors of the FIM. Geodesics (solid
and dashed curves) relate manifold structures, such as manifold boundaries, to parameter
space.
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cost corresponds to distance in data space, the images of cost contours are approximately concentric

circles on the model manifold. Each segment of the boundary is a manifold of co-dimension one.

Associated with each boundary segment is a parameter, or combination of parameters, that are

practically unidentifiable at some level of statistical confidence.

We use geodesics, i.e., distance minimizing curves, on the model manifold to find the uniden-

tifiable parameter combination associated with each boundary segment [34]. We approximate

geodesics curves along the model manifold by numerically solving the geodesic equation

∂ 2θ i

∂τ2 =−∑
j,k

Γ
i
jk

∂θ j

∂τ

∂θ k

∂τ
, (2.16)

where

Γ
i
jk = ∑

l,m

(
I−1)il ∂ym

∂θ l
∂ 2ym

∂θ j∂θ k (2.17)

are the so-called Christoffel symbols, I is the FIM, θ are the parameters, and τ is the arc length

of the geodesic along the model manifold. We numerically solve for the path of the geodesic by

treating this equation as an initial value problem where the initial position is given by the nominal

parameter values and the initial direction is given by the sloppiest eigenvector. We provide a simple

example script for calculating geodesics on github [64]. To illustrate this, we again turn to the toy

model in Eq. 2.4. Fig. 2.6 shows two geodesics that pass through the best fit point on the model

manifold, the solid and dashed curves in both parameter space (a) and on the model manifold (b).

Notice how the geodesics rotate in parameter space to naturally follow the cost contours and align

with the unidentifiable parameters. As the geodesic curves approach the edge of the model manifold,

we see that either θ1→ 0 or θ2→ 0. From the correspondence between the parameter space picture

and the data space picture, we deduce that the upper boundary segment on the model manifold

corresponds to θ1 → 0 while the lower segment corresponds to θ2 → 0. These limiting values

indicate which combinations of parameters are unidentifiable and have unbounded uncertainties.

In this simple example, the two boundary segments are already aligned with parameters of

the model. In more realistic models, boundary segments often correspond to the coordinated
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combinations of bare parameters. In these cases, we will use geodesics to identify the correlation

and find a more natural, identifiable reparameterization.

2.6 Interatomic Potentials and Tests

In this study we apply the methods described in Sec. 2.2 - 2.5 to empirical IPs taken from

the OpenKIM repository [11, 65]. The OpenKIM framework has a standardized collection of

models, data, and tests for computing materials properties that make the UQ process reproducible

and transferable. For this study we chose the Lennard-Jones and Morse potentials for silicon and

nickel, respectively, to validate methods and demonstrate general principles on low-dimensional

models. We then extend the investigation to the molybdenum disulfide (MoS2) system using the

more complex Stillinger–Weber potential [2].

These potentials are categorized as cluster potentials. Given a system with N atoms, the total

potential energy, V , is

V =
N

∑
i, j=1
i< j

φ2(ri,r j)+
N

∑
i, j,k=1
i< j<k

φ3(ri,r j,rk)+ . . . , (2.18)

where φn denotes the n-body potential function and ri is the position of atom i.

The Lennard-Jones (LJ) potential is a pair potential, i.e., Eq. 2.18 only consists of the two-body

(pair-wise) interaction term and the the higher order potential functions are set to zero. The pair-wise

interaction has two parameters, given by

φLJ(ri j) = 4ε

((
σ

ri j

)12

−
(

σ

ri j

)6
)
+∆,

∆ =−4ε

((
σ

rcut

)12

−
(

σ

rcut

)6
)
,

(2.19)

where ri j = ‖ri− r j‖ is the distance between atoms i and j. The potential is only non-zero when

ri j < rcut = 7.91118 Å. The parameter ε is an energy scaling factor in the potential, while σ is
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related to the equilibrium distance of the pair interaction. The shifting factor, ∆, is chosen so

that the potential is continuous at rcut. The parameter values for silicon are ε = 3.17431 eV and

σ = 1.9778 Å [66–70].

The Morse potential is also a pair potential, similar to the LJ potential. The pair-wise interaction

with three parameters is given by

φM(ri j) = ε

(
−e−2C(ri j−r0)+2e−C(ri j−r0)

)
+∆,

∆ =−ε

(
−e−2C(rcut−r0)+2e−C(rcut−r0)

)
,

(2.20)

where ε is an energy scaling factor, r0 is the equilibrium distance and C controls the width of the

potential well. Again, the potential is only non-zero when ri j < rcut = 9.75476 Å and ∆ is chosen

such that the potential is continuous at rcut. The parameter values for nickel are ε =−0.4205 eV,

C = 1.4199 Å
−1

, and r0 = 2.78 Å [71–73].

We use these pair potentials to predict the unrelaxed energy and forces of silicon (LJ potential)

and nickel (Morse potential) atoms in a randomly perturbed body-centered triclinic configuration

with a periodic boundary condition. The lattice parameters are given below [74, 75].

a = 3.1287525 Å α = 87.25318054968444◦

b = 3.15146 Å β = 93.34074777413502◦

c = 3.13121044 Å γ = 91.23134462011188◦

We also use a random triclinic configuration with 64 silicon atoms [76] with several other cluster

potentials in a broader survey of the Fisher information. We take as data the predicted energy

and forces at the default parameters and assume 10% error bars (for forces, we use 10% of the

magnitude of the force vector).

Note that these structures are not the ground states for silicon or nickel, but they are tests

available in OpenKIM that are convenient for validating methods on low-dimensional models. We

will see that they clearly illustrate the problems that the sloppiness of the model brings to the
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standard UQ methods and the phenomena that we will discuss later are generic to any atomic

configuration used.

We extend the analysis to the Stillinger–Weber (SW) potential for monolayer MoS2 [77, 78],

which contains both pair-wise and three-body interactions. The two-body interaction takes the form

of

φ
IJ
2
(
ri j
)
= AIJ

(
BIJ

(
σIJ

ri j

)pIJ

−
(

σIJ

ri j

)qIJ
)

exp
(

σIJ

ri j− rcut
IJ

)
, (2.21)

where uppercase subscripts denote the types of atoms, e.g., AIJ is the parameter A corresponding to

interaction between atoms of type I and type J. The three-body term is given by

φ
IJK
3
(
ri j,rik,β jik

)
= λJIK

(
cosβ jik− cosβ

0
JIK
)2

exp
(

γIJ

ri j− rcut
IJ

+
γIK

rik− rcut
IK

)
, (2.22)

with β jik being the angle between the i– j and i–k bonds.

We calibrate this potential to predict the atomic forces in configurations near the equilibrium

state, as described in [2]. Our formulation follows closely that of the original paper (e.g., we set

qIJ = 0, fix γ to be the same for all types of interaction, and use the same training set); however,

we make a few changes. First, we allow parameters pIJ to take any positive real value and remove

the relation between σIJ and the equilibrium lattice constants of the system. We also do not

require dφ2/dr|r=d = 0 at the equilibrium bond length d, which removes the constraint on BIJ . The

remaining free parameters are AIJ , BIJ , pIJ , and σIJ for each type of pair-wise interaction (Mo–Mo,

Mo–S and S–S interactions), λIJK for S–Mo–S and Mo–S–Mo interactions, and γ .

We again choose error tolerances to be 10% of predicted values. Note that this leads to non-

uniform weighting factors in our cost function, unlike reference [2]. Fitting this model leads to

a new set of optimal parameter values listed in Table 2.1 for the two-body interaction term and

Table 2.2 for the three-body interaction term. Other parameters that are not listed in these tables

take the same values as listed in [2], such as the cutoff radii and the reference bond angle. The cost

at the best fit is 1.390×106. Because the fitting data are forces near equilibrium, the error bars are
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very small (leading to a large cost) with larger weight on configurations near equilibrium. However,

in our Bayesian analysis we sample the posterior at many temperatures, effectively scaling these

small error bars up to something more reasonable. The process provides a systematic study of the

role of error bars in quantifying parametric uncertainty in sloppy, molecular models.

Interaction

Parameter Mo–Mo Mo–S S–S

A (eV) 18.4310060 8.83861305 0.37463396

B 0.00641786 1.04793603 561.429270

p 4.73717813 8.26621744 2.66196913

σ(Å) 6.16940454 1.92967991 0.41904814

Table 2.1 Fitted parameters of the two-body term in the SW potential for MoS2.

Parameter value

λS–Mo–S (eV) 4.28784076

λMo–S–Mo (eV) 14.4285026

γ (Å) 1.53800500

Table 2.2 Fitted parameters of the three-body term in the SW potential for MoS2.

After the calibration process, we propagate the parametric uncertainty of this potential to predict

the uncertainty of the change in energy as a response to the lattice stretching and compression.

This calculation is done by creating MoS2 unit cells with various in-plane lattice constants a, then

relaxing the atoms in the perpendicular, out-of-plane, direction. We probe the calculation in the

range (a−a0) ∈ [−0.5,0.5] Å, where a0 is the equilibrium lattice constant. Then, we compare the

uncertainty to the result in [2] qualitatively.
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Results

Fig. 3.1 shows the eigenvalues of the FIM for the models in Sec. 2.6, evaluated at the nominal

values of the parameters. Notice that they are sloppy; the eigenvalues cover many orders of

magnitude, indicating that many parameters are unidentifiable from the data. To illustrate that

sloppiness is a general property of IPs, we also include the eigenvalues of the FIM, evaluated at the

original parameters, for the Khor–Das Sarma potential [79,80], Environment Dependent Interatomic

Potential (EDIP) [81–84], and SW potential [1, 85–89] in predicting the energy and forces of

the atoms in a random triclinic silicon configuration [75, 76]. Fig. 3.2 shows the participation

factor [90,91] for the SW MoS2 model, i.e. how much each parameter contributes to each eigenvector.

Participation factors are calculated as the element-wise square of the eigenvectors of the FIM. We

conclude that the sloppiest direction, indicated by the eigenvector with the smallest eigenvalue,

is dominated by the parameter BS–S. Similarly, we can read off the participation factors of each

parameter in the other eigendirections.

Although the FIM is a local calculation, it is computationally inexpensive compared to other

methods discussed here. As a result we recommend using the FIM as an initial step to UQ. We will

revisit the results from the FIM when we extend the analysis and compare the results to more global

methods.

25
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Figure 3.1 Eigenvalues of the FIM for various IPs: (a) LJ for Si, (b) Morse for Ni, (c)
SW for MoS2, and (d) Khor–Das Sarma, (e) EDIP, (f) SW, each for Si. For each model,
the larger (smaller) eigenvalues represent stiff (sloppy) parameter combinations in the
direction of their respective eigenvectors.
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Figure 3.2 Participation factor of the SW potential for MoS2, calculated as the element-
wise square of the eigenvectors of the FIM. Each column corresponds to an eigenvector,
increasing in stiffness from left to right. Participation factor shows how much each param-
eter contributes to each eigenvector. The parameter direction is given by the logarithm of
the labels on the vertical axis. The sloppiest eigenvector (the left most column) is mostly
in the log(BS–S) direction.
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(a) (b)

Figure 3.3 MCMC samples for the LJ potential, sampled in (a) linear and (b) log parameter
scales. The original parameterization of the potential is given by the red dot. The samples
are plotted against the cost contour on the lower triangle pane on each figure, with samples
condensed around the low cost canyon. The marginal distributions are shown on the
diagonal for each figure.

Fig. 3.3 shows the results of the Bayesian analysis for the LJ potential sampled on both the

linear (Fig. 3.3a) and log scales (Fig. 3.3b). In both cases, we use a uniform prior in their respective

parameter space, bounded by a rectangular region defined by 0 < ε < 30 and 0 < σ < 2−1/6rcut

in linear parameter space, and |log(ε)|< log(30) and |log(σ)|< log
(

2−1/6rcut

)
in log parameter

space. The upper bound of σ is chosen so that the pair-wise equilibrium length is less than the

cutoff distance. At first glance, the sampling is in good agreement with what is expected from the

cost surface. Samples dominate the regions of low cost and give a visual validation that the samples

are converged. Fig. 3.4 compares the marginal distributions for each parameter on both linear and

log scales. Notice how the parameter scaling and, by extension, the choice of prior, can have a

strong impact on the posterior distribution. On a log scale, there is a broad, flat plateau for large,

negative values of log(σ) and log(ε). These choices affect how the uncertainties are interpreted

and eventually propagated to new predictions.
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Figure 3.4 Comparison of the marginal distributions for the MCMC simulations sampled
in linear (blue) and log (orange) parameter scales. A uniform prior was used in both cases.
Differences in the posterior distributions reflect the role of parameter scaling and choice of
prior.

In more general terms, recall that the prior defines how one measures volume in parameter space.

Regions of the parameter space with large volume may dominate samples, in analogy to statistical

mechanics in which high-entropy configurations can dominate an ensemble. It is also related to

(though not exactly the same as) the phenomenon known as Lindley’s paradox in which Bayesian

and Frequentist approaches can give different results in a hypothesis test when a broad prior is

used [92]. This issue can become especially subtle for sloppy models in high dimensions. These

models are insensitive to coordinated changes in many parameters, indicating that there are large

regions of parameter space with nearly identical fits, i.e., fits with high-entropy contributions to the

posterior. In these cases, large entropic contributions may dominate their relative frequency in the

posterior. The high dimensionality makes it difficult to quantify the role of the energy vs. entropy in

the final sample and, by extension, justify the choice of prior.

For high-dimensional sloppy models, it is instructive to compare the results of the Bayesian

and Frequentist techniques, as done in Fig. 3.5 for the LJ and Morse potentials. For the Morse

potential, we also use a uniform prior, bounded by |log(r0)| < log(rcut), |log(C)| < log(30), and

|log(−ε)|< log(30). These cases illustrate how the two methods agree in low-dimensional examples

that are well-understood. Notice that the samples are very dense in regions around the paths of the

profile likelihood, indicating that the posterior is energy-dominated and that there are not significant
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(a) (b)

Figure 3.5 MCMC samples and profile likelihood for the (a) LJ and (b) Morse potentials.
We plot the cost surface for LJ because it only contains two parameters; in general it is
not possible to plot the cost surface, e.g. for Morse. On the lower triangle panes, the
MCMC samples are plotted as the black points while the red and blue curves show the
profile likelihood paths for the parameters on the horizontal and vertical axes, respectively.
On the diagonal, we superimpose the cost profiles (red curves) on top of the marginal
distribution of the MCMC samples. These plots show qualitative agreement between the
two methods for low dimensional models. MCMC samples are concentrated around the
profile likelihood paths, indicating that the sampling is energy-dominated and there are
no significant artifacts from the choice of prior. However, there are signs of large entropy
regions that could dominate the sampling at higher temperatures, e.g., evaporation at large
negative values of log(r0).

artifacts from the prior. Furthermore, the marginal distributions of each parameter are congruous

with the profile likelihoods (main diagonal). However, there are hints of large-entropy regions that

could become significant at higher sampling temperatures, for example, samples evaporating on the

sub-optimal region at large negative values of log(r0).

We now turn to the SW model in Fig. 3.6. We set the prior distribution to be uniform in a

rectangular region, defined by |log(θi)|< 24, where θi are the parameters in this potential. Previous

results have shown that a natural sampling temperature given by T0 = 2C0/N ≈ 1.85×105 (recall

that C0 = 1.390×106 is the minimum cost) gives a good estimate of the systematic errors in the
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model [4]. Thus, raising the temperature from T = 1 to T = T0 transitions the sampling from the

target accuracy to a more realistic estimate of the actual systematic errors. Fig. 3.6 summarizes a

Bayesian sampling at four temperatures for parameters AS–S and BS–S (T = 5.40×10−3 T0,5.40×

10−2 T0,5.40×10−1 T0,5.40 T0). The sampling results at other sampling temperatures for the other

parameters can be found in Appendix A.

At low temperatures, the profile likelihoods again agree with the Bayesian sampling. Next,

we increase the sampling temperature. Recall that the temperature uniformly scales the error bars

in Eq. 2.2. As the temperature rises, the uncertainty estimates in the parameters also increase;

however, it does not increase uniformly in each of the parameters. At some critical temperatures,

the uncertainty in a particular parameter abruptly transitions to infinity. For example, notice that,

from the spread of the samples, the uncertainties in the parameters AS–S and BS–S are relatively

small at T = 5.40×10−3 T0, but becomes effectively infinite at T = 5.40×10−1 T0. The posterior

has transitioned from a distribution of low-temperature, energy-dominated to high-temperature,

entropy-dominated samples. The higher sampling temperature has “evaporated” the parameter. We

discuss this further in Ch. 4.

For the next step of UQ for this model, we propagate the parametric uncertainty and calcu-

late the uncertainty of the change in energy as a response to lattice stretching and compression.

Fig. 3.7 shows the uncertainty of this quantity of interest, calculated at several different sampling

temperatures using the ensembles in Fig. 3.6. Notice that at lower sampling temperatures, such as at

T = 5.40×10−3 T0 (blue), the uncertainties of the predicted quantities are finite. Moreover, the

uncertainty in the tension domain (a > a0) matches the distribution of predicted quantities from

various models in [2]. However, at higher temperatures, the uncertainties diverge as the MoS2 sheet

is compressed.

At higher temperatures, some of the MCMC walkers sample regions with extreme values

of parameters, near the edge of the support of the prior. These evaporated samples represent
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(a) (b)

(c) (d)

Figure 3.6 MCMC sampling for parameters A and B of the S–S interaction in the SW
MoS2 potential with a uniform prior in log parameter space at sampling temperatures: (a)
T = 5.40×10−3 T0, (b) T = 5.40×10−2 T0, (c) T = 5.40×10−1 T0, and (d) T = 5.40 T0,
where T0 is a natural temperature. Notice that different parameter combinations evaporate
at different temperature, e.g., AS–S and BS–S evaporate at lower temperature in a coordinated
way (b), while they evaporate in all directions at higher temperature (c and d).
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Figure 3.7 Propagated uncertainty of changes in energy as a function of lattice stretching
and compression. a0 and Ec are the equilibrium lattice constant and cohesive energy,
respectively. The uncertainty of this quantity is calculated at several different temperatures
from the ensembles in Fig. 3.6. Notice that the uncertainty of the energy at higher
temperature diverges to infinity. This is a results of parameter evaporation, where the
evaporated parameters predict infinite energy.

interactions with a very strong repulsive force in the compression domain. The magnitude of the

energy grows very fast as the lattice is compressed. Consequently, the uncertainty of the energy

in this domain diverges. Further, we are unable to propagate the uncertainty from the T = 5.40 T0

samples. The ensemble at this temperature contains many samples representing extreme potentials,

e.g., a semi-infinite square-well potential.

The phenomenon of parameter evaporation illustrated in Fig. 3.6 has been observed previ-

ously [41]. When a parameter evaporates, its marginal posterior distribution approaches its prior.

Evaporated parameters do not participate in the statistics of the model; they do not encode any

information in the data and do not constrain future predictions. In other words, the effective dimen-
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sionality of the model is reduced by the number of evaporated parameters. However, evaporated

parameters affect statistical methods, slowing down convergence in both MCMC sampling and

profile likelihood optimization. They also obscure interpretation since the evaporated parameters

are often combinations of the bare parameters. UQ with these “nuisance” parameters is challenging.

Parameter evaporation is a global manifestation of the “sloppiness” phenomenon. Sloppiness was

first recognized as the exponential distribution of FIM eigenvalues, as in Fig. 3.1, a local calculation.

However, it was later shown using information geometry that sloppiness is a global property of

the model. For sloppy models, the entire model manifold is systematically compressed into an

object of low effective dimensionality, and in many practical cases, the eigenvalues of the FIM

(local property) are a good estimate for the widths of the model manifold (global property) [8, 93].

We check this correspondence for the case of the SW model by comparing the eigenvalues in

Fig. 3.1 with the number of effective (non-evaporated) parameters in the model at each sampling

temperature. We consider a parameter to “evaporate" if the samples approach a boundary of the

prior corresponding to this parameter. Although in general there is a subtle difference between the

evaporated and the non-evaporated parameters, the temperature ladder we use is sparse enough that

there is a clear distinction between the two. We show the comparison between the local estimate

and the result deduced from MCMC in Table 3.1, and we find good agreement.

Sloppiness in high dimensions leads to cost contours that do not close and complicates the

question of prior selection and the role of parameter-space entropy in the Bayesian posteriors. We

now use information geometry to better understand this phenomenon, first using the LJ model as a

motivating example.
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Temperature (T0) Effective dimensionality Local estimate

5.40×10−6 15 13

1.71×10−6 15 13

5.40×10−5 15 13

1.71×10−5 15 13

5.40×10−4 15 13

1.71×10−4 15 10

5.40×10−3 15 10

1.71×10−3 14 9

5.40×10−2 11 8

1.71×10−2 9 7

5.40×10−1 6 5

1.71×10−1 6 5

5.40×100 0 3

Table 3.1 Relation between sampling temperature, effective dimensionality, and local
estimate of the effective dimensionality of the model. The effective dimensionality is the
number of non-evaporated parameters at a given temperature. The local estimate is the
number of eigenvalues of the Fisher information larger than a given temperature.
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Figure 3.8 Geodesics for the LJ potential in the sloppy and stiff directions. Each geodesic
starts at the best fit parameters and moves in the forward and backward directions of
the sloppy and stiff eigenvectors of the FIM, shown by the corresponding arrows. By
considering the difference in the scaling of the parameter axes, the eigenvectors are
orthogonal to each other.
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Fig. 3.8 shows four geodesics paths in parameter space radiating from the best fit. Although

difficult to discern from the figure, the geodesics that found boundaries took the same asymptotic

form: log(ε)→ ∞, log(σ)→−∞ with log(ε) diverging six times faster than log(σ). The signif-

icance of this result is more apparent when expressed in the so-called AB form with A = 4εσ12

and B = 4εσ6. As the original parameters, ε and σ , approach the boundary, they are correlated

such that A→ 0 while B remains finite. This suggests the AB parameterization is a more natural

parameterization, which from Eq. 2.19 gives,

φLJ(ri j) = 4ε

(
σ

12

(
1

r12
i j
− 1

r12
cut

)
−σ

6

(
1
r6

i j
− 1

r6
cut

))

= A

(
1

r12
i j
− 1

r12
cut

)
−B

(
1
r6

i j
− 1

r6
cut

)

→−B

(
1
r6

i j
− 1

r6
cut

)
.

(3.1)

For this fitting problem, B is the identifiable parameter combination. There is a natural limit that

removes the unidentifiable parameter, A→ 0, that leads to a physically interpretable reduced model,

i.e., a purely attractive potential. Although this reduced model loses the physics of the repulsive

part of the potential, the data to which the model was fit included atomic configurations that only

probed the attractive regime. Thus, the geometry (1) reflects the information content of the data, (2)

explains the correlations among the inferred parameters, (3) isolates unidentifiable combinations of

parameters, and (4) suggests reduced models for simplifying the statistics.

An analogous calculation on the Morse potential reveals many of the same themes. We find

the geodesic initially aligned with the sloppiest eigenvector of the FIM, eventually approaches

a boundary in which C→ 0 and ε → −∞ as seen in Fig. 3.9. Notice that this geodesic aligns

with the MCMC results, i.e., the low-cost canyon. As with LJ, this geodesic suggests a natural

reparameterization of the model:

k =−2εC2. (3.2)
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As ε and C approach extreme values the specific combination k remains finite. In this parameter-

ization, k and r0 are the identifiable parameter combinations, while C is unidentifiable since its

uncertainty extends to C→ 0. Evaluating the limit C→ 0 at constant k and r0 leads to the simplified

model:

φ̃M(ri j) =
1
2

k(ri j− r0)
2− 1

2
k(rcut− r0)

2. (3.3)

In this limit, the model is a simple, harmonic potential parameterized by an equilibrium position,

r0, and a stiffness, k. This indicates the configurations do not carry enough information about the

potential’s anharmonicity to constrain those parameter combinations. Once again, the geometry

reflects the information content of the data, explains observed correlations, isolates the unidentifiable

combinations, and suggests alternative parameterizations and simplified models.

We now consider the SW potential. As before, we calculate a geodesic in the sloppiest direction

and find that it encounters the boundary AS–S→ 0 and BS–S→ ∞ as shown in Fig. 3.10. Again, we

reparameterize the model

θ = AS–SBS–S. (3.4)

Both AS–S and BS–S are unidentifiable parameters, but there is an identifiable combination given by

θ = AS–SBS–S. Notice that as AS–S→ 0 at constant θ , BS–S→ ∞, consistent with the evaporation in

Fig. 3.10. Furthermore, considering AS–S,1/BS–S→ 0 at constant θ leads to the reduced form:

φ̃
S–S
2 (ri j) = θ

(
σ

ri j

)p

exp
(

σ

ri j− rcut

)
. (3.5)

Fig. 3.11 shows the plots of the two-body S–S interaction term for both the original and reduced

models. In addition to having fewer identifiable parameters, reduced models include the physics that

is informed by the data. In this case, details about the repulsive core were removed at the boundary,

resulting in a stronger repulsion at short distances that were not constrained by the fit.
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Figure 3.9 Geodesic in the sloppiest direction for the Morse potential. Geodesics (blue
curves) are shown with the MCMC samples (black points) to illustrate that the geodesics
follow the same low cost canyons as MCMC. These geodesics reveal specific parameter
limits leading to boundaries of the model manifold, e.g., C→ 0 as ε →−∞.
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Figure 3.10 Geodesics in the sloppiest direction for the SW model. Geodesics (blue curves)
are plotted with MCMC results at sampling temperatures of 5.40×10−3 T0 (orange points)
and 7.19× 10−2 T0 (black points). Axis scaling is set to show detail, not to reflect the
boundaries of the uniform prior. The geodesic started in the local sloppy direction defined
by the FIM, B→ 0 as σS–S→ ∞. Eventually, the geodesic turned to find the boundary
given by the limit AS–S→ 0 as BS–S→ ∞.
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Figure 3.11 Reduced models on the boundaries have fewer identifiable parameters and
abstract away irrelevant aspects of the physics. Geodesics identified the boundary defined
by the coordinated limit AS–S → 0, BS–S → ∞. This figure compares the forms of the
original and reduced two-body SW potentials for the S–S interaction. This reduction
abstracts away details about the repulsive core of the potential.
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It is interesting to compare the geodesic to the purely local analysis of the Fisher Information.

The initial direction of the geodesic is given by the sloppiest eigendirection of the Fisher Information.

That eigendirection, as can be seen in Fig. 3.2, is dominated by the parameters BS–S and σS–S.

Initially, the geodesic decreases BS–S and increases σS–S; however, as σS–S increases, it plays a

more important role in the model. It is no longer part of the sloppy combination, so the geodesic

rotates to align with AS–S and BS–S, the parameters that eventually participate in the boundary (see

Fig. 3.10). This simple comparison illustrates how the geodesic naturally extends the local analysis.



Chapter 4

Discussion and Conclusion

Sloppy models are often identified by their characteristic FIM spectra with eigenvalues spanning

many orders of magnitude [8, 9, 32, 33]. Previous work has noted sloppiness in many contexts

[9, 31, 35–39], including IPs [3, 4, 42, 42], and our results corroborate this conclusion (see Fig. 3.1).

Subsequent work using information geometry showed sloppiness to be a consequence of global

properties of the model, specifically that the model manifold is bounded with a hierarchy of

widths [8]. In this work, we have extended the local sloppy-model analysis using (Bayesian)

MCMC and (Frequentist) profile likelihoods. Each of these methods gives a unique perspective on

the “global sloppiness" of the model. For example, MCMC samples evaporate sloppy parameters

and cost profiles have flat plateaus resulting in diverging uncertainties. We connect these traditional

statistical tools to sloppy model analysis using information geometry and geodesics. We show that

the problems associated with both of these methods are features of the same underlying phenomena,

sloppiness in the form of bounded model manifolds. We now discuss each of these observations in

more detail.

Fig. 3.3 illustrates that cost contours of sloppy models have broad plateaus in parameter space.

These regions can be thought of as high entropy states, i.e., large volumes of parameter space with

approximately equal cost. Although these regions may have sub-optimal cost, they can dominate

43
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the Bayesian posterior because of their high entropy. Previous work in sloppy models has noted

this “parameter evaporation” when the posterior becomes dominated by sub-optimal, high-entropy

samples [41]. Geometrically, the model maps these high-entropy regions to compressed areas near

the boundaries of the model manifold. Parameter evaporation is thus the Bayesian manifestation of

sloppiness that is a consequence of model boundaries.

Model boundaries have different distances from the data. This implies that the height of the

cost plateau varies in each parameter direction. Consequently, specific parameters evaporate at

different sampling temperatures. This is analogous to particles in a classical finite potential well;

only those particles (MCMC walkers) with high enough energy can escape the well (cost surface).

Fig. 3.6 shows that different parameter combinations evaporate at different temperatures. Indeed,

previous studies in IPs have lowered the sampling temperature specifically to avoid parameter

evaporation [3, 4]. However, for a sufficiently broad prior, parameters evaporate at any non-zero

temperature, although the evaporation time may be very long for large cost barriers, making it

difficult to assess convergence.

Table 3.1 reports the number of evaporated parameters for different sampling temperatures for

our SW potential. Note that the number of identifiable parameter combinations, i.e., non-evaporated

at a given temperature, correlates with the number of eigenvalues above that temperature. Elsewhere,

it has been shown that the eigenvalues of the FIM are a good approximation for the widths of

the model manifold [8, 93]. Since sampling temperature corresponds to a distance in data space,

Table 3.1 confirms that the eigenvalues are a reasonable (local) approximation for the widths of the

model manifold in IPs.

Most of the challenges associated with formulating and performing a Bayesian analysis of a

sloppy IP result from the interplay of entropy and energy in the posterior. Recall that the Bayesian

prior acts as a measure on the parameter space (see Sec. 2.4), i.e., it quantifies the entropy associated

with volumes of parameter space. The ambiguity in the choice of prior leads to the issues we report
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here. We advocate comparing MCMC with a Frequentist method to assess the effect the prior has

on the posterior, as we have done using profile likelihoods.

The profile likelihood analysis, being a Frequentist method, does not use a prior. As such,

global sloppiness manifests itself differently. The cost profiles exhibit plateaus that asymptotically

approach constant values, as seen in Figs. 3.5 and 3.6. Uncertainty in a parameter is set by selecting

a level of statistical significance, e.g., 95% confidence interval, and identifying those parameter

values with cost less than the corresponding cost threshold. As the cost threshold approaches that of

the plateau, the uncertainty diverges. This leads to uncertainty metrics that are very sensitive to the

level of statistical significance, making it difficult to draw conclusions from the UQ analysis.

Another complication due to sloppiness is related to parameter correlations. Sloppy canyons

and plateaus do not naturally align with the parameter axes due to correlations in the parameters.

These correlations can bend sloppy canyons, as seen in Fig. 3.5a for LJ. As the profile likelihood

projects bending canyons onto parameter axes, correlation is lost and the results are misleading.

Using a more natural parameterization, motivated by information geometry, weakens parameter

correlations and unwinds the canyons asymptotically aligning them with the parameter axes.

Geodesics extend the local FIM analysis to a global regime. For example, consider Fig. 3.10.

The geodesic initially pointed in the sloppiest direction, as indicated by the FIM, but changed

directions to follow the global sloppiness as it approached the manifold boundary. This behavior is

due to non-linearity in the model, and is known as parameter-effects curvature [94].

The global nature of geodesics is used to find boundaries of the model manifold, revealing the

cost plateaus and suggesting natural parameterizations of the model. Again, consider Fig. 3.10

where the geodesics found the manifold boundary represented by the parameter limits AS–S→ 0 and

BS–S→ ∞. This limit demonstrates a more natural parameterization of the model with parameters

ε = 1/BS–S and θ = AS–SBS–S, where ε is strictly non-negative. In this parameterization, only one

parameter participates in the boundary, i.e., ε → 0 while θ =O(1). The sloppy direction aligns
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with a single parameter ε that is (mostly) uncorrelated from θ . Furthermore, rather than a diverging

confidence interval for BS–S, the confidence intervals for ε and θ remain finite.

This new parameterization suggests a simplified model in which ε has been removed. The

Manifold Boundary Approximation Method (MBAM) is a tool that utilizes information geometry

to find these boundary limits and construct reduced models. In this specific example, the reduced

model would correspond to ε→ 0 while holding θ ∼O(1). This limit removes the sloppy parameter

from the model, leaving the identifiable combination, θ = AS–SBS–S. Performing MBAM before

UQ, i.e., finding less sloppy models, would remove the challenges we have discussed. In this paper,

we have performed the first step of MBAM by using geodesics to find manifold boundaries.

Reduced models often do not transfer well to new predictive regimes. However, they make new

predictions with higher levels of certainty. When the large parametric uncertainties of sloppy models

are propagated to new predictions, the resulting uncertainties can be large or infinite. Reducing the

sloppiness of models decreases parametric uncertainty as well as the propagated uncertainty in new

predictive regimes. Future work will continue this process and perform UQ on reduced models.

We have shown that sloppy models lead to ill-posed UQ problems. For Bayesians, the challenge

is how to unambiguously select a prior that does not lead to large-entropy contributions in the

posterior. For Frequentists, the challenge is sensitivity to the confidence level and plateaus that

do not naturally align with the bare parameters (i.e., occur due to correlations among parameters).

By identifying the root cause of these problems, we hope this work will lead to more transparency

in the future UQ studies for IPs. In particular, information geometry suggests solutions to these

issues by identifying natural parameterizations near boundaries that provides simplified, less-sloppy

models.

In conclusion, we provide suggestions both for model developers and UQ practitioners alike.

For developers of empirical potentials, we recommend using the FIM to assess how parameters

locally affect calculated quantities. To extend this analysis to a global regime, we recommend
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using geodesics to identify more natural parameterizations as well as additional training data that

is needed to identify model parameters. For example, geodesic calculations for the LJ potential

above identified that the training data only contained information about the attractive part of the

potential. To fully identify the LJ parameters additional data that probe the repulsive regime is

needed. Using these geodesics to reduce the model with an MBAM step will decrease model

sloppiness and improve future UQ. This process can then be iterated starting from the reduced

model until a simple, yet accurate model is attained.

For performing UQ of IPs, we recommend starting with the FIM analysis to assess the sloppiness

of the model. This analysis also provides a local estimate of which parameters evaporate at a given

sampling temperature. If performing UQ with MCMC, we recommend using several different

sampling temperatures, including the natural temperature [7], and some alternative priors. Then, we

advocate comparing the sampling results to geodesics, a frequentist method, to assess the effect of

the Bayesian prior on parameter uncertainty. Additionally, researchers can perform other frequentist

analysis, e.g., profile likelihood. Finally for an extended UQ analysis, researchers can perform

model reduction, in which case we recommend the iterating the steps in the previous paragraph.



Appendix A

UQ Results for SW Model

In the following figures, we present the profile likelihood results and the MCMC samples for

all parameters of the SW model. This model predicts the atomic forces in an MoS2 monolayer at

several sampling temperatures. The sampling temperatures are given with respect to the natural

temperature T0 ≈ 1.85× 105. On the lower triangle panes, the samples are plotted as the black

points while the red and blue curves show the profile likelihood paths for the parameters on the

horizontal and vertical axes, respectively. On the diagonal, we superimpose the cost profiles (red

curves) on top of the marginal distribution of the MCMC samples.
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Figure A.1 Sampling Temperature 5.40×10−6 T0
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Figure A.2 Sampling Temperature 1.71×10−6 T0
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Figure A.3 Sampling Temperature 5.40×10−5 T0



52

Figure A.4 Sampling Temperature 1.71×10−5 T0
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Figure A.5 Sampling Temperature 5.40×10−4 T0
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Figure A.6 Sampling Temperature 1.71×10−4 T0



55

Figure A.7 Sampling Temperature 5.40×10−3 T0
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Figure A.8 Sampling Temperature 1.71×10−3 T0
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Figure A.9 Sampling Temperature 5.40×10−2 T0
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Figure A.10 Sampling Temperature 1.71×10−2 T0
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Figure A.11 Sampling Temperature 5.40×10−1 T0
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Figure A.12 Sampling Temperature 1.71×10−1 T0
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Figure A.13 Sampling Temperature 5.40 T0
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