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Abstract 
 

We have applied the genetic algorithm to extreme ultraviolet (XUV) multilayer mirror optimization. We 
have adapted the genetic algorithm to design optimal bifunctional mirrors for the IMAGE/EXPLORER 
Mission.  Our best design, a 16-layer aperiodic stack of alternating layers of Y203 and Al had a predicted 
reflectivity of 36% at 304 Å and 0.2% at 584 Å. 

 
1  Introduction 
 

In this section we will discuss the motivation for the design of bifunctional XUV multilayer mirrors, the 

IMAGE/EXPLORER mission.  The mission placed unique requirements on the multilayer mirror we 

needed to design.  We adopted the genetic algorithm (GA) to meet these design challenges. 

1.1  IMAGE Mission-XUV and Specifications 

We designed a mirror for the XUV section of the IMAGE Mission which will be launched in early 2000 

and whose goal is to take images of the earth's magnetosphere (magnetic field lines surrounding the earth 

contained by the solar wind). Particles from the solar wind compress and confine the magnetic field on that 

side and stretch it out behind the earth on the other side. In the process of compression, particles are 

transferred from the solar wind to the magnetosphere. The IMAGE Mission's goal is to study the interaction 

of these particles in the magnetosphere. The mirror was specified at 14.5 degrees from normal to be highly 

reflective (> 20%) at 304 Å to see the singly ionized helium lines from the magnetosphere and to be non-

reflective (< 0.2%) at 584 Å to cut out the bright neutral helium lines from the earth's atmosphere which 

would saturate the detector. 

We were encouraged that such a design would be possible because 584 Å is a little less than twice 

as 304 Å. We thought that we could find layer thicknesses giving constructive interference at 304 Å that 

would interfere destructively at 584 Å.  Because the magnitude of the index of refraction of materials in the 

XUV is close to one, they are not very reflective. As a result, to get high reflectivity, multilayer mirrors are 

made of many layers of materials. Figure 1 shows reflections from multiple layers can add. Depending on 

the thicknesses of the materials (and therefore the relative phase of the various reflections), the outgoing 

waves either add (constructive interference) or cancel each other (destructively interference). 

Meeting the project specifications was difficult because most materials are more reflective at 584 

Å than at 304 Å. Also, aperiodic stacks, multilayer mirrors with each layer having a different thickness, 
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were found to produce better mirrors for this problem than periodic mirrors did, contrary to most previous 

expectations [2]. However, using aperiodic stacks increases the size of the solution space.  In this case we 

typically need to select two materials for the stack (from a list of dozens of possibilities) and the thickness 

of each of typically 16 layers.  
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Figure 1:  Multiple reflections from multilayers 

 
1.2  A New Application of the GA 
 
Genetic algorithms have been used in optimization problems in fields related to multilayer mirrors and 

seem to produce better results than alternative methods in problems with discrete variables, discontinuities 

in the solution, and multiple parameters [1]. However, they have never been used in the XUV region for 

optimizing multilayer mirrors, especially bifunctional mirrors.In applying the genetic algorithm (GA), 

many of the parameters in the code had to be determined that are specific to the problem of designing a 

mirror for the IMAGE Mission. Also, each problem to which the GA is applied requires a unique merit 

function, a function that tells how good or bad a solution is. Our implementation of the GA was hybrid of 

the standard GA approach and a local optimizer using the simplex algorithm to reduce computation time. 

Hybrid approaches have been used effectively by others in different applications of the GA such as using 

the GA with simulated annealing in calculating the optical constants of materials [3]. 

 
1.3  Outline 
In Section 2 we will summarize the genetic algorithm and its application to the mirrors for the IMAGE 

Mission. In Section 3 we present and discuss results obtained for this particular application of the GA. The 

conclusion in Section 4 discusses when it is useful to use the GA, some rules to apply it, and future work to 

be done. 
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2  Genetic Algorithm 
2.1  Description 

As the name implies, GA's use a similar technique to nature's process for optimization and refinement 

through the use of DNA and survival of the fittest [1]. Table 1 describes some of the terminology used in 

the GA. The attributes of each member of the population to be optimized are encoded in a DNA-like array 

within chromosomes. For the specific problem described in Section 1.1, the materials and thicknesses in the 

multilayer were encoded into a gene, an array containing the materials and thicknesses in the stack, as 

shown in Figure 2. Each allele in the gene was stored in a byte so there were constraints on the thicknesses 

due to the storage constraints. The initial population of mirrors was chosen randomly with the program 

choosing the two materials to use and each layer thickness, with the number of layers being fixed for each 

run. 

Population set of trial solutions 

Generation successively created population 

Gene array containing materials and thicknesses 

Allele each material or thickness in the gene 

Parent member of the current generation 

Child member of the next generation 

Chromosome coded form of a trial solution consisting of genes made of alleles 

 
 

Table 1.  Terminology in the GA 
 

Thickness 4
2 B - 

Thickness 3
Material 1 1 B - 

Thickness 2
2 A - 

Thickness 1
1 A -Material 2

 
 

Figure 2: Composition of the Chromosomes 
 

Parents are then selected based on the value of their merit function, which contains the informa-

tion to be optimized. The merit function in this application of the GA included the specifications of the 

mirror design for the IMAGE Mission. Children are then produced by crossover and mutation of the 

parents' genes. The next generation is composed of these children and the best parents of the current 
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generation with the process continuing until the merit function ceases to change significantly. A schematic 

of the GA is shown in Figure 3. 
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Figure 3: Schematic of the Genetic Algorithm 
 
 
 
2.2  Advantages and Disadvantages for this Class of Problems 

The GA is a global optimization procedure that overcomes many of the problems associated with local 

optimization procedures. Although this technique finds global extremes, it usually converges slowly to a 

solution since it initially fills the population in a hit-and-miss fashion and does not take into account any 

details of the shape of the merit function surface.  However, one does not need to compute gradients for 

convergence, as in some of the local optimization techniques, so the actual encoding of the problem is quite 

simple. Also, it is not very dependent on an initial solution, a very useful feature when encountering a new 
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problem for which one has little intuition. In addition, the GA handles discrete and constrained variables 

much more easily than most local optimizers. 

 
2.3  The GA Applied to the IMAGE Mission 
 
In applying the GA to the design of mirrors for the IMAGE Mission, many parameters had to be chosen 

and studies done to ensure that the code would find the best solution. Table 2 lists the parameters that must 

be chosen each time the GA is applied to a new problem. 

Crossover Probability 
Mutation Probability 

Population Size 
Replacement Percentage 

fraction of population used for hybrid (if applicable) 
 
 

Table 2: Parameters specific to each application of the GA 
 
 
2.3.1 Materials and Thicknesses 
 
Before choosing the parameters specific to the problem, information about the problem must be encoded in 

the GA as described earlier in this section.  For the IMAGE Mission mirrors, the encoded information 

included the thickness and composition of each layer.  The code allowed for the possibility of two oxides 

on top of the stack of either fixed or variable thickness.  The two alternating materials of the mirror could 

be fixed by the user or chosen from a database by the program. The database was a compilation of many 

common materials and included the optical constants of these materials at 304 Å and 584 Å. 

There were also constraints placed on the thicknesses of each layer. The alleles in the gene were 

each stored in a byte. This created an upper limit on the thicknesses of each layer of 255 Å, which was 

extended to 275 Å by adding 20 Å to each thickness at the end of each run. This made the lower limit for 

each thickness to be 20 Å, a constraint imposed by our sputtering process. 

 
2.3.2 Selecting Parents and Reproduction  

One of the decisions to be made in applying the GA is the selection of parents. Some possible strategies 

include: 

• population decimation where only the members with merit functions above a cutoff value are kept, 
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• proportionate selection where the probability of choosing a parent is based on its fitness and  

• tournament selection [1] 

In the application of the GA described here, several strategies were tried but the tournament selection was 

chosen as it seemed to work the best at the end. Proportionate selection does not distinguish well between 

good solutions and slightly better solutions. Thus, as you get near the end of a run and most of the members 

of the population are good, the program goes through many iterations before it ends while tournament 

selection allows the program to terminate faster. In tournament selection, two members of the population 

are chosen randomly and their merit functions are compared.  The member with the higher merit function is 

chosen to be one of the two “parents.”  The genes from the parents are combined with the possibility of 

crossover and mutation to produce two children. 

When crossover occurs, as shown in Figure 4, a random byte (allele) in the gene is chosen and at 

that location, the byte becomes a hybrid of the two parents' genes at that byte. For a discrete variable, the 

new allele is a combination of the bits of the parents' allele at that point. For a continuous variable, the 

allele in the children becomes an average of the two parents' alleles. The bytes before the location of the 

hybrid are then copied from one parent and all of those after the location are copied from the other parent. 

The degree to which crossover occurs is based on a crossover probability determined in encoding the GA 

for a specific problem. In mutation, as shown in Figure 5, a random byte is chosen in the gene and is 

randomly altered. The mutation probability is similar to the crossover probability in that it determine how 

often, if ever, the mutation is applied in producing children. 
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Figure 4: Genetic Algorithm Crossover 
 

Location of mutation

A B C D E F

A B P D E F
 

 
Figure 5: Genetic Algorithm Mutation 

This selection of parents and reproduction is repeated until the number of children desired is produced. 

These children and the best members of the parent population or previous generation then make up the new 

generation. The percent of the previous population to be kept is one of the parameters to be chosen in each 

application of the GA (see Table 2). 

An attempt was made to include diversity the code to better simulate natural selection. In nature, if 

animals compete for the same resources, the strongest will survive by being able to meet their needs. 

Diversity exists in nature because different animals use different resources and do not compete with each 

other. In the code, multiple occurrences of a set of materials would be like animals competing for the same 

resources. The first member in a population with certain materials was given a weight of one and all other 

occurrences of those materials were given a successively lower number as a weight. This weighting was 
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then included in the reflectivity calculations, with the first instance having the highest reflectivity. By 

decreasing the reflectivity of multiple instances of the materials, the merit function is decreased and the 

chances of the mirror surviving to the next generation are decreased. This diversity attempts to sample 

more of the solution space and get out of local minima if the code gets stuck. Unfortunately, we never got 

this feature working to our satisfaction. 

 
2.3.3 Merit Function 
 
The merit function in this problem compared the reflectivity of each member at 304 Å against its 

reflectivity at 584 Å to fit the specifications of the mirror design, as explained in Section 1.1. The merit 

function used follows, where R304 and R584 are the reflectivities at 304 Å and 584 Å respectively: 

 
R304_____ 

max(.002, R584) (1) 
 

One can see from this relation that stacks with high reflectivity at 304 Å and low reflectivity at 584Å will 

be favored above other stacks by having a higher merit function and, thus, being more likely to survive in 

subsequent populations and to produce children. The program seemed to favor minimizing the reflectivity 

at 584 Å over maximizing the reflectivity at 304 Å. As a result, mirrors were found with very good low 

reflectivity at the longer wavelength that more than satisfied the requirements but the reflectivity at the 

shorter wavelength was not very high. It was more important, then to only get the reflectivity at 584 Å 

down to 0.2% and not any lower. By taking the maximum value between .2% and the reflectivity of the 

mirror at 584 Å when calculating the merit function, the program was forced to maximize the reflectivity 

at 304 Å and better mirror designs were found. 

 
2.3.4 Hybrid Used 

The GA uses a time-intensive hit-and-miss approach to initialize and alter each generation. To cut down on 

the execution time of this program and to make sure the entire solution space was sampled, the genetic 

algorithm (a global optimizer with slow convergence) was combined with a simplex algorithm (a local 

optimizer with rapid convergence). The GA was used to initialize the population and then the simplex was 
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applied to the thickness of the mirrors to improve a certain fraction of the population. In the simplex 

algorithm, the thicknesses of a stack are encoded into a simplex geometric shape representing the parameter 

space which is altered until the optimal solution is found [4]. The simplex was only applied to a small 

amount of the population (one hundredth) and it was found that this made for more rapid convergence to 

the optimal solution and allowed the GA to be applied to smaller population sizes without sacrificing 

performance. 

Varying Materials 
Hybrid Gen R584 R304 Mats Time(sec) 
yes 
 
no 

14 
 
3 

.2% 
 
.2% 

34.2% 
 
20.72% 

U/Te 
 
Y203/Al  

2763.4 
 
329.0 

 
Table 3: 16 layers on Si02 with a population of 6000 

 
 
The data in Table 3 was obtained with the GA choosing the materials for a mirror made up of 16 

layers (8 layer pairs) on Si02 with a population of 6000. The GA was first run with the hybrid acting 

on one hundredth of the population and then as the straight GA. The GA with hybrid found a much 

better solution than the straight GA, as can be seen by comparing the reflectivities at 304 Å. The 

computation time for the hybrid run on a DEC Alpha 200 4/233 workstation was about nine times 

greater than for the run without hybrid probably because more generations were produced before a 

good solution was found. The straight GA run looks like it got stuck in a local maximum very early on 

in the run and was unable to get out. The hybrid, on the other hand, sampled more of the solution 

space and so was able to find a better solution. 

 
 

Fixed Materials 
Hybrid Gen R584 R304 Mats Time(sec) 
yes 
no 

10 
41 

.2% 

.2%  
36.45% 
36.23%  

Y203/Al 
Y203/Al 

1967.2 
4019.0 

 
Table 4: 16 layers on Si02 with a population of 6000 

 
 
The data in Table 4 was obtained by running the GA with the materials fixed to see how the two 

versions of the program compared. This study shows the difference in the computation time between 
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the GA with hybrid and without.  From the time of computation and the number of generations taken, 

one can see that the hybrid was able to converge to a solution much quicker than the regular GA. It 

looks like each generation of the regular GA takes less computation time, though, which is very 

surprising. Although the simplex algorithm to a solution faster than the GA does, it requires more 

iterations for each step so it solution than the GA, as in Table 3. 

 There are many other local optimizers that could have been used in conjunction with the GA 

in this application, such as conjugate gradient or BCGS. The simplex is probably the slowest local 

optimizer known but it is also the most robust and easiest to implement. 

 
3 Results 
 
We discuss the results obtained using the GA for the IMAGE Mission and the mirror design actually used 

for the IMAGE project in Section 3.1. The values of the parameters used in this application are given in 

Section 3.2. 

 
3.1  Mirrors Designed for the IM 

In searching for the optimal design of the mirror following specifications: hybrid, 16 layers, mutation 

probability=0.05, crossover probability=0.75, population size=8000, replacement percentage=50%, and 

with the algorithm choosing the materials.  The best design found was Y203/Al with a reflectivity at 304 Å 

of 36% and a reflectivity at 584 Å  of < .02%, as shown in Figures 6 and 7. 

 



June 10, 1999, GA.doc, page 12 

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

72 73 74 75 76 77 78 79

re
fle

ct
iv

ity

angle, degrees from grazing

’y2o3alh.out’

 
 

Figure 6: Reflectivity of best Y2O3/Al mirror at 304 Å. 
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Figure 7: Reflectivity of best Y2O3/Al mirror of 584 Å. 
 
This design was very surprising and non-intuitive because it included an oxide.  The presence of oxygen in 

the form of an oxide on the top of a mirror usually decreases the reflectivity significantly.  Also, elements 

were thought to reflect better than other designs from an experimental view , though, since it already 

includes an oxide.  Most mirrors are made and then the top layer or so oxidizes and the reflectivity 

decreases because oxygen  has a very low index of refraction. The Y203/A1 mirror would not have that 

problem since the Y is already in an oxide compound 

Attempts were made to grow the Y203/Al mirror but many difficulties were encountered.  Due to 

the nature of Y203, a ceramic, the sputtering process used at the time to produce the mirrors would not 

work.  We are currently working on setting up an RF sputtering system to be able to make this mirror and 

other films. 

 
3.2  Optimal Parameters 

For each application of the GA to a different problem, one must find the optimal values for certain 

parameters used in the code. The main parameters to be chosen are the fraction of each population that is 
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replaced by new children, the crossover probability, and the mutation probability. If a hybrid is used, one 

must also choose the fraction of each population it is applied to. Each problem also requires its own merit 

function specific to what is being optimized. Johnson and Rahmat-Samii [1] give a range of values in 

which the optimal solution for most problems will be found: smaller replacement percentages usually lead 

to faster convergence, 0.6-0.9 for the crossover probability, and 0.01-0.1 for the mutation probability. For 

the problem of finding a mirror that is highly reflective at 304 ∆ and non-reflective at 584 ∆, the best values 

for the parameters listed above were found to be: replacement percentage=50%, crossover probability=0.7, 

mutation probability=0.05, and the hybrid applied to the population divided by 100. 

 
4  Conclusion 

4.1  Where the GA is Valuable 

In doing optimization, it is often useful to have a good solution. Unfortunately, there is not a the advantages 

and disadvantages of the local most beneficial. 

The GA is useful in optimization problems will look like. It also is very useful when satisfyi has 

discrete parameters and discontinuities.  The random nature of this algorithm allows more of  the solution 

space to be sampled and, if the population is large enough, to find the global extreme and not get stuck in a 

local extreme. This feature makes the GA inherently time intensive, though. In designing a mirror to meet 

the specifications of the IMAGE Mission, a hybrid approach worked best-the GA to find solutions all over 

the parameter space and a simplex algorithm to converge to the best solution. This hybrid significantly 

reduced the computation time and allowed smaller populations to be used without sacrificing the optimal 

solutions. 

 
4.2  Rules for Application of the GA 

When applying the GA to any problem, there are many parameters to be chosen: the population size, the 

mutation and crossover probabilities, the amount of each generation to be kept, and the merit function. 

Also, if time is a concern, a hybrid with another algorithm should be used. If a hybrid is used, one must 

decide how much of each generation to apply it to. For the problem of finding a mirror that was highly 

reflective at 304 Å and non-reflective at 584 Å, the following parameters were found to work best: 



June 10, 1999, GA.doc, page 15 

crossover probability=0.7, mutation probability=0.05, replacement percentage=50%, and the hybrid was 

applied to one-hundredth of each generation (population/ 100). 

 
4.3  Future Research 

More work still needs to be done on this application of the GA before it is complete. The code used in this 

optimization did not take into account manufacturability or feasibility of a design. There was a feature built 

in that would weight different materials more than others to represent lower cost or easier manufacturing 

but this feature was never fully developed or used. Also, the code is designed to optimize a mirror for 

broadband reflectivity . This can be changed with minimal altering of the code but the merit function may 

need to be changed as well. We plan to make the Y203/Al mirrors described in Section 3.1 and compare the 

actual reflectivities with the calculated values. 

There were many problems with getting the calculated and measured reflectivities to match. This 

is probably due to the uncertainty in optical constants in the XUV region. Many sources have vastly 

different values for the index of refraction so it was difficult to know which to use. Also, for many 

wavelengths in the XUV, the index of refraction is not even known. We plan to make the Y203/Al mirrors 

described in Section 3.1 and compare the actual reflectivities with the calculated values. Obviously, this 

region in the spectrum still has many interesting problems that need to be studied to increase understanding 

of the XUV region and help the theory come closer to reality. 
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