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Abstract

This paper describes the genetic algorithm applied to multilayer mirror optimization. An

explanation of how genetic algorithms work is given and how this algorithm was applied to the

design of bifunctional mirrors for the IMAGE Mission.

This paper also discusses some findings that contradict previous design rules for multilayer

mirrors. Some of these are: aperiodic mirrors performing better than periodic mirrors and an

oxide producing a better design than a mirror with just elements as materials.

Using the genetic algorithm, the best mirror design found for the IMAGE Mission was an

aperiodic Y2O3/Al 16 layer stack on SiO2. This design had a predicted reflectivity of 36% at

304 Å and .2% at 584 Å.



1 Introduction

1.1 Interest in the XUV Region

Much is known about the physics of the interaction of radiation with matter in the extreme ultraviolet

(XUV) or soft x-ray region. Some applications are developing that take advantage of what is

currently known and extend the understanding of this region. To image an object, light with a

wavelength less than the size of the object must be used. Since most cells are on the order of a

micrometer in size, soft x-rays, which are on the order of hundreds of angstroms (Å), can be used

to “see” these objects. In the past, high resolution microscopy has been used to image cells but it

requires killing the sample. Soft x-ray microscopy can image live objects, allowing dynamic imaging

of evolving cellular processes. There is also an interest in using the XUV in photolithography. If

shorter wavelengths (about 130Å) are used in microelectronic circuits, one can make smaller circuits

that work at a lower temperature and are much faster and more dense than current circuits. With

smaller circuits, less charge would be needed by each circuit so the temperature would be lower and

the total power used would be less.

Research in the XUV region is also important because there is a lot of contradictary and missing

data about the index of refraction of many materials in this region. This is partly due to the energies

in this region being comparable to that of atomic bonds in solids. As more is learned about the index

of refraction of various materials, the understanding of what is going on in the materials increases.

By the Kramers-Kronig relation, if the index of refraction for a material is known at one wave-

length, then the information at all wavelengths can be calculated. This information tells about the

real and imaginary parts of the index of refraction and fills in the gaps in current data. The Kramers

Kronig relation connects the real and imaginary parts of the atomic scattering factor, f , where f ′

is the real part and f ′′ is the imaginary part:

f ′′(ω) =
2
π

∫ ∞

0

ω′f ′′(ω′)dω′

ω2 − ω′2 . (1)
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In Equation 1, ω is the frequency of the incident wave and ω′ is the natural resonance frequency [1].

It is possible to calculate f ′′ from crystals and then f ′ can be found using this relation. The real

and imaginary parts of the atomic scattering factor are connected to the real and imaginary parts

of the index of refraction, ñ = n + iκ, as follows:

n = 1 − Nλ2

2π

e2

mc2
f ′ (2)

κ =
Nλ2

2π

e2

mc2
f ′′, (3)

where N is the number of atoms per cubic centimeter, λ is the wavelength of light in vacuum, e is

the charge of an electron, m is the mass of an electron, and c is the speed of light in vacuum [2]. The

complex index of refraction is discussed in Section 1.5. From this relation, if f ′ and f ′′ are known

at one wavelength, the index of refraction can be calculated. This knowledge is very useful in XUV

astronomy because the radiation from stars at different wavelengths tells us different things about

the star. In this region, information can be obtained about the inner parts of the star where the

fusion reactions take place.

1.2 IMAGE Mission—XUV and Specifications

Another application in the XUV and the topic of this paper was to design a mirror for the XUV

section of the IMAGE Mission which will be launched in January 2000 and whose goal is to image

the magnetosphere. The mirror was specified at 14.5 degrees from normal to be highly reflective

(> 20%) at 304 Å to see the He-II lines from the magnetosphere and to be non-reflective (< .2%)

at 584 Å to cut out the bright He-I lines from the earth’s atmosphere which would saturate the

detector.

This project was accepted because it was already known how to design a highly reflective mirror

at one wavelength. Since 584 Å is just a little over twice as long as 304 Å, it was thought that the

same mirrors that were highly reflective at 304 Å could also be non-reflective at 584 Å. Through

the course of the project, this was found to be a difficult problem because most materials are more

6



a b c

Figure 1: Graph of a one-dimensional solution space

reflective at 584 Å than at 304 Å. Also, aperiodic stacks, multilayer mirrors with each layer having

a different thickness, were found to produce better mirrors for this problem than periodic mirrors

did, contrary to most previous knowledge [4]. A discussion of why multilayer mirrors are used in the

XUV regions is included in Section 1.5. By using aperiodic stacks, though, another problem arises

as there is a huge space to search for a solution and there are many parameters to fit (each layer

thickness and possibly the materials).

1.3 Optimization Techniques

When there is a problem with one or more independent variables, it is often desirable to maximize

or minimize a characteristic merit function, otherwise known as optimization. The location of

a maximum or minimum is found and then the maximum or minimum value of the function is

calculated. The solution space for a function to be optimized can be represent two-dimensionally as

in Figure 1. If one only looks between points a and b in the figure, a minimum will be found but

it is only a local minimum. From the figure one can see that there is a deeper minimum between

points b and c. Since this is the point with the lowest value for the function in the solution space,

this is the global minimum.

Optimization techniques utilize information about the problem which is encoded in a merit
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function. As the function is changed in the search for a maximum or minimum, the merit function

is recalculated and tells how good the solution is. Thus, if one is searching for a minimum, the best

solution will have the highest or lowest merit function.

1.3.1 Local Optimizers

Local optimization procedures take advantage of the decrease in value of the function near a minimum

to converge to a solution. Thus, if the initial starting point is near a local minimum, that will be the

solution found and there is no way of knowing about or finding better solutions. Two types of local

optimizers use different approaches to take steps in the solution space: those that find the direction

in which the value of the function is decreasing by blind searching and those that use information

about the gradient of the solution space at a point to find a minimum.

An example of this first type and one of the simplest optimization techniques is the downhill

simplex method developed by Nelder and Mead and explained in Numerical Recipes[10]. The solution

space is encoded into a simplex—a multidimensional shape. An initial guess is given and at each step

in the process, one of the sides of the simplex is extended, contracted, or reflected through another

side to find a minimum value. Successive steps lead to a local minima by following the direction of

decreasing value. The algorithm terminates when the step taken is smaller than a tolerance defined

or the decrease in the function value at the last step is smaller than a certain tolerance. This method

can be compared to someone walking in a dark cave high up in a mountain. He will feel in different

directions with his feet until he finds the step that will take him lower. He then follows this method

until he cannot go any lower and hopefully he has made it out of the mountain. Unfortunately,

one can get stuck in a local minima, which is not the global minima. Although this method has no

allowance for fixing this problem and has to have an initial point in the space given to it, it is very

simple to apply.

The second type of local optimization requires the computation of derivatives. An example of

this is the conjugate gradient method [10]. This approach allows one to find a local minimum quickly
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with the calculation of the gradient and one-dimensional sub-minimization. An initial point is chosen

and the gradient is computed. Then the conjugate to this gradient is found and the direction is

followed while the function is decreasing. This is repeated until a local minimum is found. The

conjugate gradient method has relatively fast convergence but is not very useful when the derivative

of the function to be optimized is difficult to calculate or does not exist.

The simplex and conjugate gradient methods are both local optimization techniques. These

methods do not handle discrete variables, discontinuities in solutions, or parameter constraints well.

In optimizing a function, one wants the best solution or global extreme rather than a local extreme.

Also, as in the project described in Section 1.2, the function to be optimized often includes discrete

variables, represented by the material choices, and parameter constraints, represented by a minimum

thickness being set for each layer in the mirror.

1.3.2 Global Optimizers

A global optimizer is one which samples most of the solution space and is more apt to find the

global extreme rather than just a local extreme. Global optimization procedures such as simulated

annealing [8, 9] and genetic algorithms [3] are able to handle these difficulties well and are less

sensitive to an initial guess. These global techniques begin with a random initalization and converge

to a solution through a sequence of structured changes in the parameters. The randomness in

movements and in the initial population allow global extrema to be found but make these methods

inherently very time intensive.

1.4 Calculation of Reflectivities

Each step in the process of optimizing a mirror design requires the calculation of the reflectivity,

which is used in the merit function. In calculating reflectivities when using an unpolarized source,

one must take into account two different polarizations of light as determined by the direction of the

electric (E) field. As shown in Figure 2, s polarization is when the E-field is perpendicular to the

9
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Figure 2: Diagram of Snell’s Law

plane of incidence created by the incident and reflected waves, and p polarization is when the E-field

is parallel to the plane of incidence. When light reaches a boundary, some of the light is reflected and

some is transmitted. Snell’s law relates the incident and transmitted angles in Equation 4, where n

is the index of refraction of the material. This is also shown in Figure 2.

n1 sin θ1 = n2 sin θ2 (4)

With a complex index of refraction, the angle of reflection, θ, is also complex and no longer represents

a geometrical angle.

The Fresnel equations [7] give a relation for finding the coefficients for light of s and p polarization.

When combined with Snell’s law they give Equations 5 and 6, where n = n2/n1 and θ is the angle

between the incident wave and the normal to the plane, or θ1 in Figure 2:

rs =
cos θ −

√
n2 − sin2 θ

cos θ +
√

n2 + sin2 θ
−→ n1 − n2

n1 + n2
at θ = 0 (5)

rp =
−n2 cos θ +

√
n2 − sin2 θ

n2 cos θ +
√

n2 − sin2 θ
−→ n1 − n2

n1 + n2
at θ = 0. (6)

Equations 4 and 5 allow the reflectivities to be calculated due to the s and p polarizations from the

Fresnel coefficients, rs and rp:

Rs = |r2
s | (7)
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Rp = |r2
p|. (8)

If an unpolarized source and detector are used in the experiment, the total reflection can be found

by combining the reflectivities due to the two different polarizations:

R =
Rs + Rp

2
. (9)

1.5 Reflectivity of X Rays

Although the wavelength of light in the XUV region is much shorter than for visible light (hundreds

of Å’s compared to hundreds of nanometers), the same equations can be used in calculating reflec-

tivities. In the XUV region, though, the index of refraction, n, becomes complex and is very close

to one. This complex index of refraction can be represented as ñ = n + iκ, where n is the real part

of the index of refraction and κ is the absorption constant.

A plane wave can be represented by

E = E0e
i(�k·�r−ωt+φ), (10)

where k is the wave number and E0 is the amplitude of the wave. The definition of the wave number

says that k0 = 2π
λ0

, where λ0 is the wavelength of light in vacuum. In a material this becomes k = 2π
λ ,

where n is the index of the refraction of the material and λ = λ0
n is the wavelength of light in the

material. If n is complex, then k is also complex. Since k is multiplied by i in Equation 10, a real

exponent results from the complex part of k, 2πκ
λ0

. Equation 10 then becomes

E = E0e
−2πκ

λ0
zei(−ωt+φ). (11)

The term e
−2πκ

λ0
z is the damping term, which shows how much the wave is absorbed in the material.

The absorption part of the index of refraction, κ, causes materials to be highly absorbing in this

region. Also, because the index of refraction of materials in the XUV is very close to one, light does

not refract much so materials appear to be almost opaque and do not reflect well. This is also why

in the XUV region one gets total external reflection only for small angles from grazing incidence.
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Thus, if one wants a mirror to work in this region at an angle between grazing incidence and normal,

it will not be possible to get much reflectivity at arbitrary angles and with one layer of material.

From Equations 5 and 6 one can see that since n1 ≈ n2 ≈ 1, the Fresnel coefficients become very

small and there is very little reflection. This is why one needs to use multilayer mirrors in the XUV

region: there is low reflection from a single interface so with multiple layers of the right thicknesses

there is constructive interference (when the waves are in phase) and the reflectivity adds. This can

be seen schematically in Figure 3 as the transmitted ray in one layer is reflected off the next. Each

layer in a multilayer needs to be thin, though, to reduce the amount of absorbtion.

Even though Fresnel’s equations still hold for multilayers, it is useful to put them in a slightly

different form. With multiple layers, the reflectivity of the stack can be calculated using Parratt’s

recursion formula [6] as cited by Kohn [5]. The discussion of reflectivity that follows is based on

Kohn’s work and refers to the setup in Figure 4.

The reflectivity is calculated at the midpoint of a layer in terms of the Fresnel coefficents at

the boundary and the reflectivity at the midpoint of the previous layer. Equations 5 and 6 can be

rewritten in terms of the wave vector k to show this. Due to Snell’s law, the x components of the k

vector are constant in each layer and independent of the index of refraction. This can be expressed

as follows, where θ is the angle from the normal in a vacuum and λ0 is the wavelength in vacuum:

kx =
2π

λ0
sin θ. (12)

The z component of the k vector is different in each layer due to the transition between materials

12
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and changing values of n. In the following equation, n is the index of refraction for the layer:

kz =

√(
2πn

λ0

)2

− k2
x. (13)

To calculate the reflectivity, the amplitude and phase of the electric field as it propagates through

the layer also needs to be calculated. After a wave propagates halfway through a layer of thickness

d, the phase is

C = e
ikzd

2 . (14)

Written in terms of the k vector, the Fresnel coefficients become

rs
21 =

kz2 − kz1

kz1 + kz2
(15)

rp
21 =

n2
1kz2 − n2

2kz2

n2
2kz1 + n2

1kz2
, (16)

where rs
21 and rp

21 are the s and p coefficients, respectively, at the boundary betweeen layers 2 and 1.

Then these coefficients can be combined with the phase to get the reflectivity for each polarization

at the midpoint boundary:

R′
2 =

C4
2 (r21 + R′

1)
1 + r21R′

1

, (17)

where R′
m = C2Rm and R1 is the reflection amplitude in the previous layer. At the substrate layer

of the stack, R = 0 since there is only a transmitted wave. Therefore, Equation 17 can be applied

recursively, beginning at the bottom where R1 is known to be zero. Applying this equation repeatedly

13



eventually gives the reflection amplitude at the top of the stack where the vacuum thickness is taken

to be zero.

In general, R is complex in the XUV region since it gives the amplitude and phase relations

between the incident and reflected waves. Thus, the actual reflectivity, R, at the top of the stack

can be calculated as follows:

R = |R2|. (18)

1.6 A New Application of the GA

Genetic algorithms have been used in optimization problems in fields related to multilayer mirrors

and seem to produce better results than alternative methods [3]. However, they have never been

used in the soft x-ray region for optimizing multilayer mirrors before, especially bifunctional mirrors.

In applying the genetic algorithm (GA), many of the parameters in the code had to be determined

that are specific to the problem of designing a mirror for the IMAGE Mission. Also, each problem

that the GA is applied to requires a different merit function. It took many attempts to find the

merit function that best optimized the qualities of the mirror important for this mission. Even

though GA’s have been used in various optimization problems and the outline of the code is fairly

well established, it was altered in this application by using a hybrid. A simplex algorithm was used

in conjuction with the GA to cut down on the computation time. Similar approaches have been

used effectively by others in different applications of the GA such as using the GA with simulated

annealing in calculating the optical constants of materials [9].

1.7 Outline

In Section 2, the Genetic Algorithm will be explained, in general as well as its application to the

mirrors for the IMAGE Mission. Section 3 will present and discuss results obtained for various

applications of the GA and relate a history of the search for the best mirror design. The conclusion

in Section 4 will discuss when it is useful to use the GA, some rules to apply it, and future work to

14



be done.

2 Genetic Algorithm

2.1 Description

As the name implies, GA’s use a similar technique to nature’s process for optimization and refinement

through the use of DNA and survival of the fittest [3]. Table 1 describes some of the terminology

used in the GA. The attributes of each member of the population to be optimized are encoded in a

DNA-like array within chromosomes. For the specific problem described in Section 1.2, the materials

and thicknesses in the multilayer were encoded into a gene, an array containing the materials and

thicknesses in the stack, as shown in Figure 5. Each allele in the gene was stored in a byte so there

were constraints on the thicknesses due to the storage constraints. The initial population of mirrors

was chosen randomly with the program choosing the two materials to use and each layer thickness,

with the number of layers being fixed for each run.

Thickness 4
2 B - 

Thickness 3
Material 1 1 B - 

Thickness 2
2 A - 

Thickness 1
1 A -Material 2

Figure 5: Composition of the Chromosomes

Parents are then selected based on the value of their merit function, which contains the informa-

tion to be optimized. The merit function in this application of the GA included the specifications of

the mirror design for the IMAGE Mission. Children are then produced by crossover and mutation

of the parents’ genes. The next generation is composed of these children and the best parents of the

current generation with the process continuing until the merit function ceases to change significantly.

A schematic of the GA is shown in Figure 6.
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Evaluate 
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Figure 6: Flow chart of the Genetic Algorithm
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Population set of trial solutions

Generation successively created population

Gene array containing materials and thicknesses

Allele each material or thickness in the gene

Parent member of the current generation

Child member of the next generation

Chromosome coded form of a trial solution consisting of genes made of alleles

Table 1: Terminology in the GA

2.2 Advantages and Disadvantages for this Class of Problems

The GA is a global optimization procedure that overcomes many of the problems associated with

local optimization procedures. Although this technique finds global extremes, it usually converges

slowly to a solution and takes much computation time since it begins in a hit-and-miss fashion

to fill the population. Despite being time intensive, one does not need to compute gradients for

convergence, as in some of the local optimization techniques, so the actual encoding of the problem

is quite simple. Also, global techniques are not dependent on an initial guess, a very useful feature

when encountering a new problem for which one has no intuition. The GA also handles discrete

variables and constraints on variables, which local optimizers do not handle well.

2.3 The GA Applied to the IMAGE Mission

In applying the GA to the design of mirrors for the IMAGE Mission, many parameters had to be

chosen and studies done to assure that the code would find the best solution. Table 2 lists the

parameters that must be chosen each time the GA is applied to a new problem.

17



Crossover Probability

Mutation Probability

Population Size

Replacement Percentage

If a hybrid is used:

amount of population applied to

Table 2: Parameters specific to each application of the GA

2.3.1 Materials and Thicknesses

Before choosing the parameters specific to the problem, information about the problem must be

encoded in the GA. Much of this is described earlier in this section. In coding the GA for the

IMAGE Mission mirrors, each mirror or member of the population was allowed to have two materials

with up to two oxides on top. The code allowed for the materials of the mirror to be fixed by the

user or chosen from a database by the program. The database was a compilation of many common

materials and included the optical constants of these materials at 304 and 584 Å’s.

There were also constraints placed on the thicknesses of each layer. The alleles in the gene were

each stored in a byte. This created an upper limit on the thicknesses of each layer of 255 Å which

was extended to 275 Å by adding 20 Å to each thickness at the end of each run. This made the

lower limit for each thickness to be 20 Å, which is a realistic lower limit on the growing capabilities

of layers.

2.3.2 Study of Seeds

The GA was coded in C++ with the initial population randomly produced using the random number

generator included in C++ and a seed chosen. The seed was important in helping to know if the

population size was large enough to make sure all of the solution space was sampled. The population
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size must be chosen carefully when applying the GA to a specific problem because if the population

size is too small, not enough of the solution space is sampled and the best solution may be missed.

In Tables 3, 4, and 5, Mat and R refer to the materials and reflectivities at 304 Å for each seed.

The data was obtained by running the GA with three different seeds. The seeds used are as follows:

#1 199282721, #2 249283612, #3 847162553.

4 Layers

Population Mat 1 R 1 Mat 2 R 2 Mat 3 R 3

200 B4C/U 12.85% U/Se 17.22% CaF2/Al 12.86%

600 U/Te 20.82% U/Te 20.83% U/Si 18.1%

4000 U/Te 20.82% U/Te 20.83% U/Te 20.83%

Table 3: Study of 4 layer mirrors designed with different seeds

From Table 3, one can see that at a population of 4000 all three seeds gave the same result, while

at a population of 200 and 600 the results are very different between the seeds. Thus, it appears

that a population of 4000 is a large enough population to sample the whole solution space and not

miss the best solution for a mirror with four layers.

10 Layers

Population Mat 1 R 1 Mat 2 R 2 Mat 3 R 3

200 U/Te 31.73% U/Ta 12.86% U/Ta 12.86%

600 U/Te 31.72% U/Te 31.73% U/Te 31.73%

4000 Al/Y2O3 32.45% Y2O3/Al 33.64% Y2O3/Al 33.64%

Table 4: Study of 10 layer mirrors designed with different seeds

In Table 4, the solutions are approximately equal among the seeds for a population of 4000, but

it is probably not a large enough population to make sure all of the solution space is sampled since
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the reflectivities differ between the three seeds by over a percent. From the results for a population

of 600, it appears that that is a large enough population since the designs from all three seeds are

the same. The solution is not as good, though, as that found with a larger population so the design

with 600 must be a local extreme.

16 Layers

Population Mat 1 R 1 Mat 2 R 2 Mat 3 R 3

200 U/CH2 17.92% U/CH2 19.16% U/CH2 19.16%

600 U/Te 34.03% U3Si/Te 23.12% U3Si/Te 23.12%

4000 U/Te 34.14% Y2O3/Al 36.42% Y2O3/Al 36.42%

Table 5: Study of 16 layer mirrors designed with different seeds

Obviously, from Table 5, a population of 4000 is not large enough when optimizing a mirror

with 16 layers either. If the population was large enough to sample all of the space, all three seeds

would have given the same materials and approximately the same reflectivities. Since there is such

a difference between the results obtained with the three seeds at a population of 600, a much larger

population is probably required for a mirror of 16 layers than for one of 4 or even 10 layers to be

assured that the entire solution space is sampled.

Even though seeds 2 and 3 were able to come up with a little better solution for the case of a

16 layer mirror and a population of 4000, seed 1 allowed the GA to find better solutions over all, as

can be seen from Tables 3, 4, and 5, and was used in all of the succeeding calculations.

2.3.3 Selecting Parents and Reproduction

One of the decisions to be made in applying the GA is the selection of parents. Some strategies

include: population decimation where only the members with merit functions above a cutoff value are

kept, proportionate selection where the probability of choosing a parent is based on its fitness, and

tournament selection [3]. In the application of the GA described here, several strategies were tried
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but the tournament selection was chosen as it seemed to work the best. In a tournament selection,

two members of the population are chosen randomly and their merit functions are compared with the

higher one “winning.” This is repeated and the two “winners” then undergo crossover and mutation

of a copy of their genes to produce two children.

When crossover occurs, as shown in Figure 7, a random byte (allele) in the gene is chosen and

at that location, the byte becomes a hybrid of the two parents’ genes at that byte. For a discrete

variable, the new allele is a combination of the bits of the parents’ allele at that point. For a

continuous variable, the allele in the children becomes an average of the two parents’ alleles. The

bytes before the location of the hybrid are then copied from one parent and all of those after the

location are copied from the other parent. The degree to which crossover occurs is based on a

crossover probability determined in encoding the GA for a specific problem. In mutation, as shown

in Figure 8, a random byte is chosen in the gene and is randomly altered. The mutation probability

is similar to the crossover probability in that it determine how often, if ever, the mutation is applied

in producing children.

This selection of parents and reproduction is repeated until the number of children desired is

produced. These children and the best members of the parent population or previous generation

then make up the new generation. The percent of the previous population to be kept is one of the

parameters to be chosen in each application of the GA (see Table 2).

An attempt was made to include diversity in the code to better simulate natural selection. In

nature, if animals compete for the same resources, the strongest will survive by being able to get

more of the food. Diversity exists in nature because different animals eat different food and do not

compete with each other. In the code, multiple occurrences of a set of materials would be like animals

competing for the same food. The first member in a population with certain materials was given a

weight of one and all other occurrences of those materials were given a successively lower number

as a weight. This weighting was then included in the reflectivity calculations, with the first instance

having the highest reflectivity. By decreasing the reflectivity of multiple instances of the materials,
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Figure 8: Mutation of the Genes
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the merit function is decreased and the chances of the mirror surviving to the next generation are

decreased. This diversity attempts to sample more of the solution space and get out of local minima

if the code gets stuck. Unfortunately, I never got this feature working to my satisfaction.

2.3.4 Merit Function

The merit function in this problem compared the reflectivity of each member at 304 Å against

its reflectivity at 584 Å to fit the specifications of the mirror design, as explained in Section 1.2.

The merit function used follows, where R304 and R584 are the reflectivities at 304 Å and 584 Å

respectively:

R304

max(.002,R584)
. (19)

One can see from this relation that stacks with high reflectivity at 304 Å and low reflectivity at 584 Å

will be favored above other stacks by having a higher merit function and, thus, being more likely to

survive in subsequent populations and to produce children. The program seemed to favor minimizing

the reflectivity at 584 Å over maximizing the reflectivity at 304 Å. As a result, mirrors were found

with very good low reflectivity at the longer wavelength that more than satisfied the requirements

but the reflectivity at the shorter wavelength was not very high. It was more important, then to

only get the reflectivity at 584 Å down to .2% and not any lower. By taking the maximum value

between .2% and the reflectivity of the mirror at 584 Å when calculating the merit function, the

program was forced to maximize the reflectivity at 304 Å and better mirror designs were found.

Several functions were tried before deciding to use the merit function shown in Equation 19.

Since the mirror was to be highly reflective at 304 Å and non-reflective at 584 Å, the first merit

function tried was:

R304

R584
. (20)

This function did not work very well because the code weighted the minimization of the reflectivity

at 584 Å more than the maximization of the reflectivity at 304 Å. Another function tried included
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the specifications of the mirror design as stated in Section 1.2:

R304

.2
+

(
1 − R584

.002

)
. (21)

This function again had the problem that the minimization at 584 Å was weighted much more than

the maximization at 304 Å so mirrors were found with very low reflectivity over all.

2.3.5 Hybrid Used

The GA uses a time-intensive hit-and-miss approach to initialize and alter each generation. To

cut down on the execution time of this program and to make sure the entire solution space was

sampled, the genetic algorithm (a global optimizer with slow convergence) was combined with a

simplex algorithm (a local optimizer with rapid convergence). The GA was used to initialize the

population and then the simplex was applied to the thickness of the mirrors to improve a certain

amount of the population. In the simplex algorithm, the thicknesses of a stack are encoded into

a simplex—a geometric shape representing the parameter space which is altered until the optimal

solution is found [10]. The simplex was only applied to a small amount of the population (one

hundredth) and it was found that this made for more rapid convergence to the optimal solution and

allowed the GA to be applied to smaller population sizes without sacrificing performance.

Materials Unfixed

Hybrid Gen R584 R304 Mats Time(sec)

yes 14 .2% 34.2% U/Te 2763.4

no 3 .2% 20.72% Y2O3/Al 329.0

Table 6: 16 layers on SiO2 with a population of 6000

The data in Table 6 was obtained with the GA choosing the materials for a mirror made up of

16 layers (8 layer pairs) on SiO2 with a population of 6000. The GA was first run with the hybrid

acting on one hundredth of the population and then as the straight GA. The GA with hybrid found
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a much better solution than the straight GA, as can be seen by comparing the reflectivities at 304

Å. The computation time for the hybrid run on a DEC Alpha workstation was about nine times

greater than for the run without hybrid probably because more generations were produced before

a good solution was found. The straight GA run looks like it got stuck in a local maximum very

early on in the run and was unable to get out. The hybrid, on the other hand, sampled more of the

solution space and so was able to find a better solution.

Materials Fixed

Hybrid Gen R584 R304 Mats Time(sec)

yes 10 .2% 36.45% Y2O3/Al 1967.2

no 41 .2% 36.23% Y2O3/Al 4019.0

Table 7: 16 layers on SiO2 with a population of 6000

The data in Table 7 was obtained by running the GA with the materials fixed to see how the two

versions of the program compared. This study shows the difference in the computation time betwee

the GA with hybrid and without. From the time of computation and the number of generations

taken, one can see that the hybrid was able to converge to a solution much quicker than the regular

GA. It looks like each generation of the regular GA takes less computation time, though, which is

very surprising. Although the simplex algorithm converges to a solution faster than the GA does,

it requires more iterations for each step so it may sometimes actually take longer to find a good

solution than the GA, as in Table 6.

There are many other local optimizers that could have been used in conjunction with the GA

in this application, such as conjugate gradient or BCGS. The simplex is probably the slowest local

optimizer known but it is also the most robust and easiest to implement.
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3 Results

A discussion is given of the results obtained using the GA for the IMAGE Mission and the mirror

design actually used for the IMAGE project in Section 3.1. A history of the search for the best

design is given in Section 3.2. Section 3.4 describes another application of the GA that arose while

working on the mirrors for the IMAGE Mission. In Section 3.3, a description is given of a study of

the experimental methods used in designing and making the mirrors. The values of the parameters

used in this application are given in Section 3.5.

3.1 Mirrors Designed for the IMAGE Mission

In searching for the optimal design of the mirror for the IMAGE Mission, the GA was run with the

following specifications: hybrid, 16 layers, mutation probability=0.05, crossover probability=0.75,

population size=8000, replacement percentage=50%, and the program was allowed to choose the

materials. The best design found was Y2O3/Al with a reflectivity at 304 Å of 36% and a reflectivity

at 584 Å of < .02%, as shown in Figures 9 and 10.
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Figure 9: Reflectivity of Y2O3/Al at 304 Å.
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Figure 10: Reflectivity of Y2O3/Al at 584 Å.

This design was very surprising and non-intuitive because it included an oxide. The presence of

oxygen in the form of an oxide on the top of a mirror usually decreases the reflectivity significantly.
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Also, elements were thought to reflect better than compounds. This mirror design seemed better

than other designs from an experimental view, though, since it already includes an oxide. Most

mirrors are made and then the top layer or so oxidizes and the reflectivity decreases because oxygen

has a very low index of refraction. The Y2O3/Al mirror would not have that problem since the Y is

already in an oxide compound.

Attempts were made to grow the Y2O3/Al mirror but many difficulties were encountered. Due

to the nature of Y2O3, a ceramic, the sputtering process used at the time to produce the mirrors

would not work. An RF power supply was needed to deposit this ceramic but the process was not

worked out within the time constraints so other designs were used.

The next multilayer mirror design tried was U/Al, but these materials oxidize too quickly, espe-

cially Al. Thus, U/Si was used for the mirror for the IMAGE Mission with a layer of U placed on

top to oxidize. This design was much more practical than Y2O3/Al and the U and Si targets were

already available and those fabricating the mirrors had had experience with sputtering them. The

design for the mirror made for the project was that it be a periodic U/Si multilayer with 7 layer

pairs or 14 layers total and a thin layer (39.7 Å) layer of UO3 on top. The thickness for each U layer

was to be 53.6 Å and for the Si layers was to be 128.5 Å.
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Figure 11: Reflectivity of U/Si at 304 Å.
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Figure 12: Reflectivity of U/Si at 584 Å.
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It was surprising that the mirror that was made to these specifications reflected better than the

theoretical design did. Some possible reasons for this discrepancy are given in Section 3.3. At 304 Å

the high reflectivity was 17% and the reflectivity at 584 Å was .84%. This is much different than the

theoretical reflectivities at both wavelengths. At 304 Å the theoretical reflectivity was about 15%

while at 584 Å it was about 8%. The actual makeup of the mirror was determined to be the same

as what was desired through x-ray diffraction. The U cap placed on top of the mirror was designed

to completely oxidize and to protect the layers underneath from oxidation which would decrease the

reflectivity.

3.2 Periodic and Aperiodic Designs

When this project was begun, it was unknown which materials would be best to use for the mirrors.

A study was first done of Mo/Si periodic stacks at 584 Å with variable periods. The substrate

was SiO2 for all of the calculations. The best results found using a program called fit2, written by

members of the group working on this project, was a three-period stack with the Mo layers 162 Å

thick and the Si layers 372 Å thick. This design had a reflectivity of 23% at 584 Å.
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Figure 13: Reflectivity of Mo/Si at 304 Å.
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Figure 14: Reflectivity of Mo/Si at 584 Å.

Figures 13 and 14 show that this stack was much more reflective at 584 Å than at 304 Å. This
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follows what is known about materials in the XUV region, that most materials are more reflective at

584 Å than at 304 Å, which made the project very difficult. Many multilayer mirror applications use

mirrors made of Mo/Si, but the goal is usually just to achieve high reflectivity at one wavelength and

not to produce a bifunctional mirror, with high reflectivity at one wavelength and low at another.

Some of the first materials tried for the design of the mirror were U and Al. A study was

conducted of U/Al periodic stacks and then aperiodic stacks to see how they compared. With a

periodic stack, the best design found using a program by David Windt called IMD had a reflectivity

of about 20% at 304 Å and about .5% at 584 Å as shown in Figures 15 and 16. The stack was

composed of eight periods of U with a thickness of 41 Å and Al with a thickness of 129 Å on SiO2.
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Figure 15: Reflectivity of periodic U/Al at

304 Å.
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Figure 16: Reflectivity of periodic U/Al at

584 Å.

A better stack was found with an aperiodic design. The aperiodic stack was made of sixteen

layers total or eight pairs of U/Al on SiO2. This stack had a reflectivity of 32.69% at 304 Å and

approximately 1% at 584 Å as shown in Figures 17 and 18.

At the same time, studies were also conducted with U/Si stacks and Al/U and Si/U stacks with

various oxides on the top to simulate reality. The data from these stacks was not very encouraging

as designs that fit our specifications were not found.
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Figure 17: Reflectivity of aperiodic U/Al at

304 Å.
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Figure 18: Reflectivity of aperiodic U/Al at

584 Å.

There was some concern about the oxidation of the materials being used in the designs and also

with the use of uranium. Uranium is radioactive in large amounts and even in the small amounts

present in the mirrors there was some concern that it would give off counts that would obscure the

detection of He-II. These concerns about materials and the difficulty in using local optimization

techniques led to the application of the GA to this problem.

3.3 Diagnostics

It was found that when mirrors were grown to the theoretical specifications found by the GA that

the reflectivities were vastly different than were proposed. The results obtained using the GA were

checked using IMD and fit2 and the reflectivities matched if the same optical constants were used.

This led to a study of how reflectivity changed with thickness to see if the actual makeup of the

mirrors could be determined. The focus was on finding a minimum in reflectivity at about 584 Å and

studying how changes in thickness moved this minimum. Unfortunately, the studies were conducted

for multilayers with Si on U but the mirrors were grown with U on Si. As a result, this information

did not reveal anything.
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Although, the study did not work, there are some ideas of the causes of incorrect thicknesses

in the mirrors made. This could be caused by using wrong optical constants. In the XUV region,

there are many discrepancies in the optical constants among different sources. Roughness could also

account for the difference between the theoretical and experimental designs as it was not taken into

account in the theoretical calculations. From analysis of some of the layers, it is apparent that there

is diffusion between the layers and the interfaces between the two materials are not abrupt. This

changes the makeup of the mirror and, thus, affects the reflectivity. From Figures 11 and 12, it is

apparent that the theoretical design was sometimes not as good as the experimental design. This

could be due to errors in the program.

3.4 Polarizers

The GA has been applied to the design of polarizers, as well, by members of the research group.

All light has two polarizations called s and p as shown in Figure 2. A polarizer will transmit or

reflect one of these polarizations better than the other. Thus, a good polarizer will be such that

the reflective ray is almost all s or p—known as linear polarization. The merit function used in

this application of the GA is the average of the s and p polarization, known in the literature as the

extinction coefficient:

Rs

Rp
. (22)

3.5 Selection of Parameters

The GA depends on the choice of the following adjustable parameters: the crossover probability, the

mutation probability, the replacement percentage, the population size, the merit function, and how

much of the population the hybrid is applied to. These parameters were studied for the problem

discussed in this paper to see what the optimal values were. The results are shown in Section 3.5.2.
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3.5.1 Study of Population Size (N)

As can be seen from Tables 8, 9, and 10, the GA was able to produce many different mirror designs

which meet the specifications at 584 Å and exceed the specifications at 304 Å. To get the following

results, GA was run with hybrid acting on one hundredth of the population, seed #1, crossover

probability=0.75, mutation probability=0.05, and replacement=50%. In the tables, Population is

the size of the population, Gen is the number of generations used to get the solution, and R584 and

R304 are the reflectivities at the two wavlengths in Å.

4 Layers

Population Gen R584 R304 Mats Time(sec)

200 5 .2% 12.86% CaF2/Al 7.9

500 6 .2% 11.87% CaF2/Al 23.1

1000 8 .2% 20.82% U/Te 51.0

2000 6 .2% 20.83% U/Te 91.1

4000 6 .2% 20.83% U/Te 180.7

8000 4 .2% 20.83% U/Te 235.9

Table 8: Study of 4 layer mirrors with different populations

If the population is too small, the best solution is often missed as not enough of the solution

space is being sampled. This can be seen in the Tables 8, 9, and 10, where the Y2O3/Al solution was

only found with a large population. In Table 9, a population of 8000 allowed a better solution to be

found that at 16000. This means that a population of 16000 is not large enough when optimizing

a mirror of 10 layers to ensure that the best solution is found. The solution being better with the

smaller population in this instance is mainly due to the randomness of the GA; the initial population

is randomly generated and altered.

The time of computation depends on the population size and the number of generations needed to
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10 Layers

Population Gen R584 R304 Mats Time(sec)

200 14 .2% 21.75% USi2/Te 75.9

500 11 .2% 28.18% U/AlSi 118.4

2000 8 .2% 31.72% U/Te 420.7

4000 9 .2% 31.96% Y2O3/AlSi 944.3

5000 9 .2% 31.96% Y2O3/AlSi 941.5

6000 9 .2% 31.96% Y2O3/AlSi 1129.9

8000 12 .2% 33.63% Y2O3/Al 1980.0

12000 7 .2% 31.73% U/Te 2135.2

16000 7 .2% 31.73% U/Te 2838.3

20000 11 .2% 33.65% Y2O3/Al 4694.0

Table 9: Study of 10 layer mirrors with different populations

converge to a solution. By comparing those runs with similar numbers of generations, a comparison

can be made of the change in computation time due to an increase in population, as all of this data

was found by the GA running on a DEC Alpha workstation. Most optimization procedures use

powers of N iterations, where N is the population size. With an optimizer that scales like N2, a

population of 1000 will have 10002 iterations. If the population is then increased to 4000, 4 times

larger, the number of iterations is increased to 40002, or 16 times larger. As can be seen from

Tables 8, 9, and 10, the GA is fairly linear with relation to time. Thus, increasing the population

by large amounts will not increase the computation time very much.

The number of generations in the calculations affects the running time as well. This is why

in Table 10 the running time for a population of 2000 was larger than for a population of 4000.

Figure 19 shows the convergence of the GA. If a good solution is found very quickly but small
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14 Layers

Population Gen R584 R304 Mats Time(sec)

200 13 .2% 25.19% USi2/Te 96.7

500 19 .18% 30.11% U/AlSi 276.6

2000 26 .2% 33.69% U/Te 1532.6

4000 10 .2% 33.77% Y2O3/AlSi 1145.7

5000 13 .2% 33.81% Y2O3/AlSi 1873.8

6000 18 .2% 35.9% Y2O3/Al 3095.0

8000 12 .2% 33.71% U/Te 2727.9

12000 11 .2% 35.85% Y2O3/Al 3803.8

16000 13 .2% 35.89% Y2O3/Al 5938.4

20000 12 .2% 35.91% Y2O3/Al 8729.7

Table 10: Study of 14 layer mirrors with different populations

34



changes are still made for many generations, the running time may be much longer than is actually

needed. This shows one of the aspects of the GA that still needs to be worked on.
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Figure 19: Convergence of GA.

3.5.2 Optimal Parameters

For each application of the GA to a different problem, one must find the optimal values for certain

parameters used in the code. The main parameters to be chosen are the amount of each population

that is replaced by new children, the crossover probability, and the mutation probability. If a hybrid

is used, one must also choose the amount of each population to apply the hybrid to. Each problem

also requires its own merit function specific to what is being optimized. Johnson and Rahmat-Samii

[3] give a range of values in which the optimal solution for most problems will be found: smaller

replacement percentages usually lead to faster convergence, 0.6-0.9 for the crossover probability, and

0.01-0.1 for the mutation probability. For the problem of finding a mirror that is highly reflective

at 304 Å and non-reflective at 584 Å, the best values for the parameters listed above were found

to be: replacement percentage=50%, crossover probability=0.7, mutation probability=0.05, and the

hybrid applied to the population divided by 100.
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4 Conclusion

4.1 Where the GA is Valuable

In doing optimization, it is useful to have a technique that finds a global extreme and not just a

good solution. Unfortunately, there is not a perfect procedure for optimization. One must weigh

the pros and cons of the local and global techniques and decide which features are most beneficial.

The GA is useful in optimization problems where one has no idea what the solution will look

like. It also is very useful when satisfying many different parameters and when the problem has

discrete parameters and discontinuities. The random nature of this algorithm allows more of the

solution space to be sampled and, if the population is large enough, to find the global extreme and

not get stuck in a local extreme. This feature makes the GA inherently time intensive, though.

In designing a mirror to meet the specifications of the IMAGE Mission, a hybrid approach worked

best—the GA to find solutions all over the parameter space and a simplex algorithm to converge

to the best solution. This hybrid significantly reduced the computation time and allowed smaller

populations to be used without sacrificing the optimal solutions.

4.2 Rules for Application of the GA

When applying the GA to any problem, there are many parameters to be chosen: the population size,

the mutation and crossover probabilities, the amount of each generation to be kept, and the merit

function. Also, if time is a concern, a hybrid with another algorithm should be used. If a hybrid is

used, one must decide how much of each generation to apply it to. For the problem of finding a mirror

that was highly reflective at 304 Å and non-reflective at 584 Å, the following parameters were found

to work best: crossover probability=0.7, mutation probability=0.05, replacement percentage=50%,

and the hybrid was applied to one-hundredth of each generation (population/100).
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4.3 Future Research

More work still needs to be done on this application of the GA before it is complete. Currently,

the GA only optimizes aperiodic stacks; it allows each layer to be a different thickness. The code

needs to be altered to optimize periodic stacks as well. In this case, the GA would probably not be

much better than traditional local optimization techniques due to its random nature, but it would

run faster than with the problem described in this paper because there would be fewer parameters.

The code used in this optimization also did not take into account manufacturability or feasibility

of a design. There was a feature built in that would weight different materials more than others

to represent lower cost or easier manufacturing but this feature was never fully developed or used.

Also, the code is designed to optimize a mirror for broadband reflectivity. This can be changed with

minimal altering of the code but the merit function may need to be changed as well.

There were also many problems with getting the calculated and measured reflectivities to match.

This is probably due to the uncertainty in optical constants in the XUV region. Many sources

have vastly different values for n and κ so it was difficult to know which to use. Also, for many

wavelengths in the XUV, the index of refraction is not even known. Obviously, this region in the

spectrum still has many interesting problems that need to be studied to increase understanding of

the XUV region and help the theory come closer to reality.
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