Optical Constants of Uranium Nitride Thin Films in the EUV (80-182 eV)

> Marie K. Urry EUV Thin Film Group Brigham Young University

Acknowledgements

Thanks to: Dr. David D. Allred Dr. R. Steven Turley Kristi R. Adamson Luke J. Bissell Jennie Guzman Elke Jackson Winston Larsen Mindy Tonks **Department Funding**

Outline

- > Why We Do What We Do
- Making Thin Films
- Studying Thin Films
- Finding Optical ConstantsReflectometer

Why Extreme Ultraviolet (EUV)?

- > Astronomy
 - Our IMAGE Satellite
 Mirror Project
- Lithography
 - Projection Imagining
 - Scheduled for 2009
- > Medicine
 - High Resolution
 Imaging Microscopes

Optical Constants

Index of refraction: N = n + i k

> In EUV, $n \approx 1$ and k is huge. $\rightarrow \qquad n = 1 - \delta$ $k = \beta$

High δ and low β for maximum reflection for multilayers.

Delta-Beta Scatter Plot at 220 eV

Why Uranium Nitride?

- > Uranium
 - High theoretical reflectivity due to high δ
- Problem: Oxidation
- > Nitride
 - Little effect on reflectivity
 - Prevents oxidation

Computed Reflectance at 10 degrees of various materials

Reflectance computed using the CXRO Website: http://www-cxro.lbl.gov/optical_constants/mirror2.html

Computed Reflectance at 10 degrees of various materials

Reflectance computed using the CXRO Website: http://www-cxro.lbl.gov/optical_constants/mirror2.html

Delta-Beta Scatter Plot at 220 eV

Making Thin Films

Sputtering

- Bombard target, uranium, with argon ions
- Uranium atoms leave target due to collisions
- Nitrogen partial pressure in plasma introduces N atoms
- U and UN molecules
 deposit on our samples

Making Thin Films

> 10-30 nm thick

Deposited on:

- silicon wafers
- quartz slides
- polyimide films
- SiN membranes
- carbon coated TEM grids

Low pressure sputtering
 smooth, dense, low stress films

Side Note for Clarification

Samples 002 – 005

- 002 and 003 are $\mathrm{U_2N_3}$
- 004 and 005 are UN
 - 005 is new and unmeasured

Making Thin Films

Partial pressure determines stoichiometry

Our system couldn't control partial pressures in the critical range

N2 Partial Pressure vs N/U Ratio

Image courtesy of L. Black, et al., Journal of Alloys and Compounds, 315 (2001) 36-41.

Learning About the Samples

Composition

- Depends on partial pressure in system
- > Thickness
 - Crystal monitor is to the side of the film and gets less accurate with time
- > Roughness
- > Optical Constants

Uses photoelectric effect to find composition

Images courtesy of http://volta.byu.edu/adamson03.pdf .

Survey Scan of Surface Identifying Peaks:

100eV - U 5d5/2 280eV - C1s 380eV - U4f7/2 390eV - U4f5/2 398eV - N1s 530eV - O1s 740eV - U4d5/2 780eV - U4d3/2 980eV - Auger O

X-Ray Diffraction (XRD)

> To find thickness > $m \lambda = 2d \sin \theta$

Change in theta between 8 peaks minima around theta=1.5 for UO₂

Atomic Force Microscopy (AFM)

- > To Measure Roughness
- Result: RMS roughness

Length Scale vs. RMS

RMS and length scale in nm

Transmission Electron Microscope (TEM)

Transmission Electron Microscope (TEM)

SAMPLES	UN002	UN003	UN004
N ₂ Pressure	>1e-4 torr	>1e-4 torr	~1e-5 torr
Suspected Phase	U_2N_3	U_2N_3	UN
Lattice Size			
Literature (Å)	5.34	5.34	4.89
XRD (Å)		5.0	4.0
TEM (Å)	5.46		4.98
Ratio (measured/lit)	1.022		1.018

Ellipsometry

Optical constants are different for different polarizations of light

If we know the substance and a model for the optical constants, we can find thickness and optical constants in UV

Images courtesy of http://www.swt.edu/~wg06/manuals/Gaertner117/ellipsometerHome.htm.

Finding Optical Constants

- > Advanced Light Source at Berkeley
 - Light created by synchrotron
 - Measures reflectance at different angles and wavelengths

LAWRENCE BERKELEY NATIONAL LABORATORY

Reassembled and aligned

Hollow Cathode Light Source

- Plasma with H or He
- > 700 V DC
- Spectral Lines from He
 - 304 Angstroms
 - 2p->1s
 - 584 Angstroms
 - → 1s2p->1s²
- Found leaks
- Replace plexi-glass

 Lab VIEW Program for Centering Detector
 Assumed a Gaussian
 Theta/2*theta misalignment

- > Other Improvements
 - Circuit diagrams
 - SOP's
- Still working
 - Fixing virus problems

On to Berkeley!

Outline

Background (9 minutes)

- Why EUV?
- Optical Constants
- Why Uranium?
- Making & Studying Thin Films (13 minutes)
 - Sputtering
 - XPS
 - XRD
 - AFM
 - TEM
 - Ellipsometry

Finding Optical Constants (10 minutes)

- What we want to know
- ALS
- Reflectometer/ Monochromator
- Results/Continuing Research (8 minutes)
- Acknowledgements (1 minute)

To Do

Learn about light source (internet)
 Ellipsometry stuff (Dr. Allred)
 Update "Problem!!" and data slides (Dr. Allred)

IMD

> Written by David Wendt

Computes reflectivities of materials based on their optical constants

> We used UO model because of similar densities

(Insert graph here)

Problem!!

Our samples change with time.
 The peaks seen in XRD move.
 Continuing research in this area.

