News and Events

Thumbnail of Galaxies in the Furnace
An example of violence on a cosmic scale, enormous elliptical galaxy NGC 1316 lies about 75 million light-years away toward Fornax, the southern constellation of the Furnace. Investigating the startling sight, astronomers suspect the giant galaxy of colliding with smaller neighbor NGC 1317 seen just right of the large galaxy's center, producing far flung star streams in loops and shells. Light from their close encounter would have reached Earth some 100 million years ago. In the sharp telescopic image, the central regions of NGC 1316 and NGC 1317 appear separated by over 100,000 light-years. Complex dust lanes visible within also indicate that NGC 1316 is itself the result of a merger of galaxies in the distant past. Found on the outskirts of the Fornax galaxy cluster, NGC 1316 is known as Fornax A. One of the visually brightest of the Fornax cluster galaxies it is one of the strongest and largest celestial radio sources with radio emission extending well beyond this one degree wide field-of-view.
Mount Timpanogos with sky above
Temp:  32 °FN2 Boiling:76.0 K
Humidity: 77%H2O Boiling:   368.7 K
Pressure:86 kPaSunrise:7:33 AM
Wind:1 m/s   Sunset:5:01 PM
Precip:0 mm   Sunlight:47 W/m²  
Image for New ESC Weather Station
A group of undergraduate students braved the heat and heights of the ESC roof to install a new weather station. The station is up and running, and will hopefully record data for years to come.
Image for Study analyzes distant Kuiper Belt object with NASA's Hubble data
Using data from NASA's Hubble Space Telescope, a new study suggests that an object previously thought to be a binary system may be a rare triple system of orbiting bodies.
Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Gus Hart Receives the Karl G. Maeser Research and Creative Arts Award
Dr. Gus Hart received the 2024 Karl G. Maeser Research and Creative Arts Award for his work in computational material science and his continued innovation in computational methods.

Selected Publications

Thumbnail of figure from publication
Sabrina R. Hatt, Camille Shaw, Emma Zappala, Raju Baral, Karine Chesnel, and Benjamin A. Frandsen (et al.)

We present a combined magnetometry, muon spin-relaxation (𝜇⁢SR), and neutron-scattering study of the insulating spin glass Zn0.5Mn0.5Te, for which magnetic Mn2+ and nonmagnetic Zn2+ ions are randomly distributed on a face-centered cubic lattice. The magnetometry and 𝜇SR results confirm a spin freezing transition around 𝑇𝑓≈23 K, with the spin-fluctuation rate decreasing gradually and somewhat inhomogeneously through the sample volume as the temperature decreases toward 𝑇𝑓. Characteristic spin-correlation times well above 𝑇𝑓 are on the order of 10−10 s, much slower than typically observed in canonical spin glasses but in line with expectations for a cluster spin glass. Using magnetic pair distribution function (mPDF) analysis and reverse Monte Carlo (RMC) modeling of the magnetic diffuse neutron-scattering data, we show that the spin-glass ground state consists of clusters of spins exhibiting short-range-ordered type-III antiferromagnetic correlations with a locally ordered moment of 3.1(1)𝜇B between nearest-neighbor spins. The type-III correlations decay exponentially as a function of spin separation distance with a correlation length of approximately 5 Å. The diffuse magnetic scattering and corresponding mPDF show no significant changes across 𝑇𝑓, indicating that the dynamically fluctuating short-range spin correlations in the paramagnetic state retain the same basic type-III configuration that characterizes the spin-glass state; the only change apparent from the neutron-scattering data is a gradual reduction of the correlation length and locally ordered moment with increasing temperature. Taken together, these results paint a unique and detailed picture of the local magnetic structure and dynamics in Zn0.5Mn0.5Te and provide strong evidence that this material is best described as a cluster spin glass. In addition, this work showcases a statistical method for extracting diffuse scattering signals from neutron powder diffraction data, which we developed to facilitate the mPDF and RMC analysis of the neutron data. This method has the potential to be broadly useful for neutron powder diffraction experiments on a variety of materials with short-range atomic or magnetic order.

Thumbnail of figure from publication
Brandon J. Titensor, Lauren W. Miner, Joshua J. Vawdrey, Stuart B. Shaklan, and David D. Allred

Starshade technology represents a promising approach for direct exoplanet imaging, offering stellar light suppression up to a factor of 1010. Particulate contamination that clings to the edge of the starshade causes solar glint which could compromise Earth-like exoplanet detection. In previous research, when testing at atmospheric pressure, McKeithen et al. 2023 observed that the sharp edge have fewer particles larger than 14 microns, and more particles smaller than 14 microns, than expected from the surface distribution. To determine if this observation was reproducible in different environments, we contaminated Starshade edge coupons in low vacuum conditions. We characterized the surface and edge cleanliness level using optical microscopy, a custom ImageJ macro and R program that calculated the counts and area of particles in each image. We then compared our results with McKeithen et al. confirming their result, but the crossover occurred at particle diameters of about 3 microns rather than 14 microns. In our work, we propose different mechanisms which could affect any differences between the vacuum environment tests and the tests performed in air previously.

Thumbnail of figure from publication
Joshua J. Vawdrey and David D. Allred (et al.)

Xenon difluoride passivated aluminum with a lithium fluoride overcoat (Al+XeLiF) mirror coatings are promising candidates for future space telescope missions due to their high reflectance down to 100nm. The XeLiF mirror coating blocks aluminum oxidation. Aluminum oxide is undesirable since it significantly reduces the far UV (100-to-190nm) reflectance. Cleaning techniques for this ideal coating require the balance of traditional surface cleaning with careful handling of the hygroscopic LiF. Photonic Cleaning Technologies’ First Contact Polymers (FCP) are proven to clean and protect optical surfaces effectively. A specialized FCP formulation may be required for Al+XeLiF. We monitored Al+XeLiF changes under repeated application of four FCP formulations using variable angle spectroscopic ellipsometry (VASE), reflectance, and Atomic Force Microscopy (AFM). We also applied multiple FCP formulations to both Al+XeLiF and Al+LiF samples and stored them in different humidity environments to monitor potential protective qualities of each formulation. We observed that two FCP formulations can effectively protect Al+XeLiF in 40% RH without Al loss over half a year.

Thumbnail of figure from publication
Joshua J. Vawdrey, Brandon J. Titensor, Richard R. Vanfleet, and David D. Allred (et al.)

Magnesium fluoride on xenon difluoride passivated aluminum (Al+XeMgF2) mirrors have high reflectance encompassing the H Lyman-α at 121.6 nm. Al+XeMgF2 is a key candidate for space telescopes and satellites that demand far-UV (FUV) measurements coupled with high reflectance at longer wavelengths. Contamination can significantly reduce FUV reflectance, so Al+XeMgF2 mirrors must be as clean as possible. Protecting the surfaces while in storage is also desirable. We investigated the suitability of four different formulations of Photonic Cleaning Technologies' First Contact Polymer for cleaning and protecting Al+XeMgF2 coatings by repeatedly cleaning test samples. These were cleaved from a silicon wafer coated with 300 nm of chemical vapor deposited (CVD) silicon nitride (Si3N4). All the formulations could clean samples at least once. Using Variable-Angle, Spectroscopic Ellipsometry (VASE), we determined that two (S2 and S3) of the four tested formulations were able to clean and protect the Al+XeMgF2 surfaces multiple times (>20) over 5 months without detectable alumina growth on the Al in a low humidity environment. There were also no changes to the thickness of 'apparent' MgF2. Apparent MgF2 includes the deposited MgF2, the 2–3 nm AlF3 layer produced by the XeF2 passivation step, and contributions from surface roughening. There was also no detectable alumina growth for the controls. The fact that the samples were stored between tests in a desiccator with their First Contact overcoat provides evidence that Al+XeMgF2 samples can successfully be protected and stored under some First Contact formulations for at least five months in a dry environment. Far-ultraviolet reflectance is not reported here.

Thumbnail of figure from publication
Brian E. Anderson, Spencer T. Neu, Joshua F. Gregg, Sarah M. Young, and Timothy W. Leishman

Passive radiators are notoriously difficult to characterize because one cannot effectively assess their mechanical parameters with loudspeaker electrical impedance techniques and no motors. This paper discusses the details of passive radiator and dynamic loudspeaker driver parameter measurements through practical experiments conducted with a plane wave tube, the two-microphone transfer function technique, and the two-load method to remove the need for an ideal anechoic termination. A previous theoretical paper demonstrated how normal-incidence transmission losses through these devices in an anechoically terminated tube could yield their mechanical and electrical parameters [Leishman and Anderson, J. Acoust. Soc. Am. 134(1), 223–236 (2013)]. The mechanical parameters follow from an open-circuit transmission loss condition, whereas a driver's electrical parameters follow from an additional closed-circuit condition. This paper presents several experimental results and compares extracted parameters to those derived from electrical impedance measurements and destructive methods. In addition to other parameters, the masses of diaphragm assemblies show favorable agreement. The presented techniques effectively assess passive radiator parameters without employing active driver configurations and then removing their motors, which changes the measured properties. PACS numbers: 43.38.Ja, 43.20.Ye, 43.20.Mv, 43.55.Rg

Thumbnail of figure from publication

Volume 3 of the FCC Feasibility Report presents studies related to civil engineering, the development of a project implementation scenario, and environmental and sustainability aspects. The report details the iterative improvements made to the civil engineering concepts since 2018, taking into account subsurface conditions, accelerator and experiment requirements, and territorial considerations. It outlines a technically feasible and economically viable civil engineering configuration that serves as the baseline for detailed subsurface investigations, construction design, cost estimation, and project implementation planning. Additionally, the report highlights ongoing subsurface investigations in key areas to support the development of an improved 3D subsurface model of the region. The report describes the development of the project scenario based on the ‘avoid-reduce-compensate’ iterative optimisation approach. The reference scenario balances optimal physics performance with territorial compatibility, implementation risks, and costs. Environmental field investigations covering almost 600 hectares of terrain—including numerous urban, economic, social, and technical aspects—confirmed the project’s technical feasibility and contributed to the preparation of essential input documents for the formal project authorisation phase. The summary also highlights the initiation of public dialogue as part of the authorisation process. The results of a comprehensive socio-economic impact assessment, which included significant environmental effects, are presented. Even under the most conservative and stringent conditions, a positive benefit-cost ratio for the FCC-ee is obtained. Finally, the report provides a summary of the studies conducted to document the current state of the environment.