About the Group
We are an experimental condensed matter physics group focused on investigating the structure and magnetism of fascinating--and often technologically promising--materials, such as superconductors, strongly correlated electron systems, multiferroics, magnetocalorics, molten salts for nuclear reactors, and more. We use beams of neutrons, x-rays, and muons produced at large-scale accelerator facilities to probe the atomic and magnetic correlations in these materials, together with advanced computational modeling to gain quantitative insight into the spatial arrangement of atoms and spins in a given material. Specific techniques include atomic and magnetic pair distribution function (PDF) analysis of neutron/x-ray total scattering data and muon spin relaxation/rotation (μSR). Interested and motivated undergraduate and prospective graduate students are encouraged to reach out to learn more about our research and find opportunities to participate.
Research Projects
Thermoelectrics, Magnetocalorics, and Multiferroics--Oh My!
This project focuses on the connection between the local atomic and magnetic structure and the energy-relevant properties of magnetocaloric, thermoelectric, and multiferroic materials. Magnetocaloric materials exhibit large temperature changes with the application and removal of a magnetic field, offering promising applications in solid-state refrigeration and waste heat harvesting. Thermoelectric materials experience an electrical voltage when subjected to a temperature gradient or vice versa, also providing novel routes for energy-efficient cooling and waste heat harvesting. Multiferroic materials show cross-order coupling between electric polarization and magnetic order, potentially enabling unique functionalities for energy transformation, information science, and signal processing. We are using combined atomic and magnetic pair distribution function analysis, together with muon spin spectroscopy, to establish the local atomic and magnetic structure of representative compounds for these material classes and better understand the origin of their outstanding properties. In the process, we are developing new experimental and computational methods for magnetic pair distribution function analysis, which will be widely applicable to many other materials, as well. Funding: US Department of Energy, Early Career program.
Promoting Many-Body Quantum Entanglement in Geometrically Frustrated Magnets with Disorder
Quantum information technologies rely on quantum entanglement, or the intrinsic linking of one quantum object to another. An important research objective is to gain a fundamental understanding of many-body quantum entanglement involving large numbers of quantum objects. Certain magnetic materials known as geometrically frustrated magnets provide a valuable platform for this topic of study because they may exhibit many-body-entanglement at low temperature. This project advances the search for promising quantum-entangled frustrated magnets through a systematic investigation of the role of atomic-scale disorder in promoting or hindering many-body entanglement. The results illuminate strategies for utilizing disorder to promote quantum-entangled ground states and contribute to a deeper understanding of many-body quantum entanglement in general. Funding: US National Science Foundation LEAPS Program.
Novel magnets, Magnetic Nanoparticles, Metal-Insulator Transitions, High-Entropy Materials, and More
We maintain broad interest and involvement in structural studies of numerous material systems where knowledge of the local atomic and magnetic structure can add value. We have ongoing projects on novel magnets such as altermagnets and low-dimensional magnets, magnetic nanoparticles, Mott insulator systems and materials with metal-insulator transitions, high-entropy alloys and oxides, and more. We are always open to collaborations on interesting material systems.
Selected Publications
We report the synthesis and characterization of a rare-earth dichalcogenide EuTe2. An antiferromagnetic transition was found at TN=11K. The antiferromagnetic order can be tuned by an applied magnetic field to access a first-order spin-flop transition and a spin-flip transition. These transitions are associated with a large negative magnetoresistance with a change of magnitude of resistivity over five orders. Magnetic susceptibility, heat capacity, and Hall coefficient measurements reveal that the moments of Eu2+ align along the c axis and holes are the majority carriers. Furthermore, density functional theory calculations demonstrate that the carriers near the Fermi surface mainly originate from the Te 5p orbitals and the magnetism is dominated by localized electrons from the Eu 4f orbitals. Our results suggest that EuTe2 is an A-type antiferromagnetic material with large negative magnetoresistance.
The local atomic and magnetic structures of the compounds AMnO2 (A = Na, Cu), which realize a geometrically frustrated, spatially anisotropic triangular lattice of Mn spins, have been investigated by atomic and magnetic pair distribution function analysis of neutron total scattering data. Relief of frustration in CuMnO2 is accompanied by a conventional cooperative symmetry-lowering lattice distortion driven by N'eel order. In NaMnO2, however, the distortion has a short-range nature. A cooperative interaction between the locally broken symmetry and short-range magnetic correlations lifts the magnetic degeneracy on a nanometer length scale, enabling long-range magnetic order in the Na-derivative. The degree of frustration, mediated by residual disorder, contributes to the rather differing pathways to a single, stable magnetic ground state in these two related compounds. This study demonstrates how nanoscale structural distortions that cause local-scale perturbations can lift the ground state degeneracy and trigger macroscopic magnetic order.
The relevance of magnetic, structural, orbital, and charge degrees of freedom in the iron-based superconductors (FeSCs) and related materials occupies a central focus in condensed matter physics. While the majority of iron-based materials exhibit the same two-dimensional iron square lattice structural motif, a family of AFe2X3 (X = Se,S) compounds introduces a quasi-one-dimensional (1D) ladder motif, which resembles the two-legged spin ladder copper oxide materials. Furthermore, unlike most parent compounds of FeSCs, the members of this spin ladder family are insulators. Recently, a superconducting transition has been observed under pressure with Tc up to 24 K, similar to the pressure-induced superconductivity in the copper oxide ladder Sr14−xCaxCu24O41 material, stimulating much interest. Here, we review the magnetic, structural, and electronic properties in this family, particularly in the BaFe2X3 series tuned by pressure and by chemical substitution. The established pressure-temperature (P-T) and carrier concentration-temperature (x-T) phase diagrams in related materials provide useful information to extend the variety of high-temperature superconductors and compare with other FeSCs. We also review some essential information about analogous square lattice FeSCs.
We present a coordinated study of the paramagnetic-to-antiferromagnetic, rhombohedral-to-monoclinic, and metal-to-insulator transitions in thin-film specimens of the classic Mott insulator using low-energy muon spin relaxation, x-ray diffraction, and nanoscale-resolved near-field infrared spectroscopic techniques. The measurements provide a detailed characterization of the thermal evolution of the magnetic, structural, and electronic phase transitions occurring in a wide temperature range, including quantitative measurements of the high- and low-temperature phase fractions for each transition. The results reveal a stable coexistence of the high- and low-temperature phases over a broad temperature range throughout the transition. Careful comparison of temperature dependence of the different measurements, calibrated by the resistance of the sample, demonstrates that the electronic, magnetic, and structural degrees of freedom remain tightly coupled to each other during the transition process. We also find evidence for antiferromagnetic fluctuations in the vicinity of the phase transition, highlighting the important role of the magnetic degree of freedom in the metal-insulator transition.