Welcome to the Frandsen Group!

About the Group

We are an experimental condensed matter physics group focused on investigating the structure and magnetism of fascinating--and often technologically promising--materials, such as superconductors, strongly correlated electron systems, multiferroics, magnetocalorics, molten salts for nuclear reactors, and more. We use beams of neutrons, x-rays, and muons produced at large-scale accelerator facilities to probe the atomic and magnetic correlations in these materials, together with advanced computational modeling to gain quantitative insight into the spatial arrangement of atoms and spins in a given material. Specific techniques include atomic and magnetic pair distribution function (PDF) analysis of neutron/x-ray total scattering data and muon spin relaxation/rotation (μSR). Interested and motivated undergraduate and prospective graduate students are encouraged to reach out to learn more about our research and find opportunities to participate.

Research Projects

Thermoelectrics, Magnetocalorics, and Multiferroics--Oh My!

This project focuses on the connection between the local atomic and magnetic structure and the energy-relevant properties of magnetocaloric, thermoelectric, and multiferroic materials. Magnetocaloric materials exhibit large temperature changes with the application and removal of a magnetic field, offering promising applications in solid-state refrigeration and waste heat harvesting. Thermoelectric materials experience an electrical voltage when subjected to a temperature gradient or vice versa, also providing novel routes for energy-efficient cooling and waste heat harvesting. Multiferroic materials show cross-order coupling between electric polarization and magnetic order, potentially enabling unique functionalities for energy transformation, information science, and signal processing. We are using combined atomic and magnetic pair distribution function analysis, together with muon spin spectroscopy, to establish the local atomic and magnetic structure of representative compounds for these material classes and better understand the origin of their outstanding properties. In the process, we are developing new experimental and computational methods for magnetic pair distribution function analysis, which will be widely applicable to many other materials, as well. Funding: US Department of Energy, Early Career program.

Promoting Many-Body Quantum Entanglement in Geometrically Frustrated Magnets with Disorder

Quantum information technologies rely on quantum entanglement, or the intrinsic linking of one quantum object to another. An important research objective is to gain a fundamental understanding of many-body quantum entanglement involving large numbers of quantum objects. Certain magnetic materials known as geometrically frustrated magnets provide a valuable platform for this topic of study because they may exhibit many-body-entanglement at low temperature. This project advances the search for promising quantum-entangled frustrated magnets through a systematic investigation of the role of atomic-scale disorder in promoting or hindering many-body entanglement. The results illuminate strategies for utilizing disorder to promote quantum-entangled ground states and contribute to a deeper understanding of many-body quantum entanglement in general. Funding: US National Science Foundation LEAPS Program.

Novel magnets, Magnetic Nanoparticles, Metal-Insulator Transitions, High-Entropy Materials, and More

We maintain broad interest and involvement in structural studies of numerous material systems where knowledge of the local atomic and magnetic structure can add value. We have ongoing projects on novel magnets such as altermagnets and low-dimensional magnets, magnetic nanoparticles, Mott insulator systems and materials with metal-insulator transitions, high-entropy alloys and oxides, and more. We are always open to collaborations on interesting material systems.


Selected Publications

Thumbnail of figure from publication
We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.
Thumbnail of figure from publication
We present magnetometry and muon spin rotation 
(
μ
SR
)
 measurements of the superconducting dichalcogenide 
Ir
0.95
Pt
0.05
Te
2
. From both sets of measurements, we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional 
s
-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. We therefore see no evidence for exotic superconductivity in 
Ir
0.95
Pt
0.05
Te
2
.
Thumbnail of figure from publication
We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system 
(
Ba
,
K
)
(
Zn
,
Mn
)
2
As
2
 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of 

5
Å
, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic 
c
 axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.
Thumbnail of figure from publication
RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.
Thumbnail of figure from publication
B A Frandsen (et al.)
We report the successful synthesis and characterization of a new type I–II–V bulk form diluted magnetic semiconductor (DMS) Li(Zn,Mn,Cu)As, in which charge and spin doping are decoupled via (Cu,Zn) and (Mn,Zn) substitution at the same Zn sites. Ferromagnetic transition temperature up to  ∼33 K has been observed with a coercive field  ∼40 Oe for the 12.5% doping level. μ SR measurements confirmed that the magnetic volume fraction reaches nearly 100% at 2 K, and the mechanism responsible for the ferromagnetic interaction in this system is the same as other bulk form DMSs.