Welcome to the Frandsen Group!

About the Group

We are an experimental condensed matter physics group focused on investigating the structure and magnetism of fascinating--and often technologically promising--materials, such as superconductors, strongly correlated electron systems, multiferroics, magnetocalorics, molten salts for nuclear reactors, and more. We use beams of neutrons, x-rays, and muons produced at large-scale accelerator facilities to probe the atomic and magnetic correlations in these materials, together with advanced computational modeling to gain quantitative insight into the spatial arrangement of atoms and spins in a given material. Specific techniques include atomic and magnetic pair distribution function (PDF) analysis of neutron/x-ray total scattering data and muon spin relaxation/rotation (μSR). Interested and motivated undergraduate and prospective graduate students are encouraged to reach out to learn more about our research and find opportunities to participate.

Research Projects

Thermoelectrics, Magnetocalorics, and Multiferroics--Oh My!

This project focuses on the connection between the local atomic and magnetic structure and the energy-relevant properties of magnetocaloric, thermoelectric, and multiferroic materials. Magnetocaloric materials exhibit large temperature changes with the application and removal of a magnetic field, offering promising applications in solid-state refrigeration and waste heat harvesting. Thermoelectric materials experience an electrical voltage when subjected to a temperature gradient or vice versa, also providing novel routes for energy-efficient cooling and waste heat harvesting. Multiferroic materials show cross-order coupling between electric polarization and magnetic order, potentially enabling unique functionalities for energy transformation, information science, and signal processing. We are using combined atomic and magnetic pair distribution function analysis, together with muon spin spectroscopy, to establish the local atomic and magnetic structure of representative compounds for these material classes and better understand the origin of their outstanding properties. In the process, we are developing new experimental and computational methods for magnetic pair distribution function analysis, which will be widely applicable to many other materials, as well. Funding: US Department of Energy, Early Career program.

Molten Salts For Improved Nuclear Reactors

Molten salt reactors (MSRs) are a promising nuclear reactor design concept in which molten ionic salts function as the coolant and/or fuel source in the reactor. MSRs have many potential advantages over standard designs in commercial use today, including greatly enhanced safety/security and the ability to produce critical medical radioisotopes in addition to vast amounts of carbon-free electricity. To make MSRs a reality, it is necessary to understand and predict the behavior of the salts in operating conditions. Gaining a detailed knowledge of the local structure of the molten salts on the atomic scale is an essential step in this direction, since the local interactions between constituent atoms determine the macroscopic properties. In this project, we use cutting-edge neutron and x-ray total scattering and computational modeling techniques to establish the structure of relevant molten salts. We work closely with collaborators in BYU Chemical Engineering. Funding: US Department of Energy, Nuclear Energy University Program (pending).

Superconductors, Geometrically Frustrated Magnets, Magnetic Nanoparticles, and More

We maintain broad interest and involvement in structural studies of numerous material systems where knowledge of the local atomic and magnetic structure can add value. We have ongoing projects on iron-based superconductors, geometrically frustrated triangular lattice antiferromagnets, magnetic nanoparticles, Mott insulator systems, high-entropy alloys and oxides, and more. We are always open to collaborations on interesting material systems.

Selected Publications

Thumbnail of figure from publication
BYU Authors: Benjamin A. Frandsen, published in Phys. Rev. B

We report the existence of a high temperature magnetic anomaly in the 3D Kitaev candidate material, . Signatures of the anomaly appear in magnetization, heat capacity and muon spin relaxation measurements. The onset coincides with a re-ordering of the principal axes of magnetization which is thought to be connected to the onset of Kitaev-like correlations in the system. The anomaly also shows magnetic hysteresis with a spatially anisotropic magnitude that follows the spin-anisotropic exchange anisotropy of the underlying Kitaev Hamiltonian. We discuss possible scenarios for a bulk and impurity origin.

Thumbnail of figure from publication
BYU Authors: Benjamin A. Frandsen, published in Phys. Rev. Materials

We report the synthesis and characterization of a rare-earth dichalcogenide EuTe2. An antiferromagnetic transition was found at TN=11K. The antiferromagnetic order can be tuned by an applied magnetic field to access a first-order spin-flop transition and a spin-flip transition. These transitions are associated with a large negative magnetoresistance with a change of magnitude of resistivity over five orders. Magnetic susceptibility, heat capacity, and Hall coefficient measurements reveal that the moments of Eu2+ align along the c axis and holes are the majority carriers. Furthermore, density functional theory calculations demonstrate that the carriers near the Fermi surface mainly originate from the Te 5p orbitals and the magnetism is dominated by localized electrons from the Eu 4f orbitals. Our results suggest that EuTe2 is an A-type antiferromagnetic material with large negative magnetoresistance.

Thumbnail of figure from publication
BYU Authors: Benjamin A. Frandsen, published in Phys. Rev. B

The local atomic and magnetic structures of the compounds AMnO2 (A = Na, Cu), which realize a geometrically frustrated, spatially anisotropic triangular lattice of Mn spins, have been investigated by atomic and magnetic pair distribution function analysis of neutron total scattering data. Relief of frustration in CuMnO2 is accompanied by a conventional cooperative symmetry-lowering lattice distortion driven by N'eel order. In NaMnO2, however, the distortion has a short-range nature. A cooperative interaction between the locally broken symmetry and short-range magnetic correlations lifts the magnetic degeneracy on a nanometer length scale, enabling long-range magnetic order in the Na-derivative. The degree of frustration, mediated by residual disorder, contributes to the rather differing pathways to a single, stable magnetic ground state in these two related compounds. This study demonstrates how nanoscale structural distortions that cause local-scale perturbations can lift the ground state degeneracy and trigger macroscopic magnetic order.

Thumbnail of figure from publication
BYU Authors: Benjamin A. Frandsen, published in J. Supercond. Nov. Magn

The relevance of magnetic, structural, orbital, and charge degrees of freedom in the iron-based superconductors (FeSCs) and related materials occupies a central focus in condensed matter physics. While the majority of iron-based materials exhibit the same two-dimensional iron square lattice structural motif, a family of AFe2X3 (X = Se,S) compounds introduces a quasi-one-dimensional (1D) ladder motif, which resembles the two-legged spin ladder copper oxide materials. Furthermore, unlike most parent compounds of FeSCs, the members of this spin ladder family are insulators. Recently, a superconducting transition has been observed under pressure with Tc up to 24 K, similar to the pressure-induced superconductivity in the copper oxide ladder Sr14−xCaxCu24O41 material, stimulating much interest. Here, we review the magnetic, structural, and electronic properties in this family, particularly in the BaFe2X3 series tuned by pressure and by chemical substitution. The established pressure-temperature (P-T) and carrier concentration-temperature (x-T) phase diagrams in related materials provide useful information to extend the variety of high-temperature superconductors and compare with other FeSCs. We also review some essential information about analogous square lattice FeSCs.

Thumbnail of figure from publication
BYU Authors: Benjamin A. Frandsen, published in Phys. Rev. B

We present a coordinated study of the paramagnetic-to-antiferromagnetic, rhombohedral-to-monoclinic, and metal-to-insulator transitions in thin-film specimens of the classic Mott insulator using low-energy muon spin relaxation, x-ray diffraction, and nanoscale-resolved near-field infrared spectroscopic techniques. The measurements provide a detailed characterization of the thermal evolution of the magnetic, structural, and electronic phase transitions occurring in a wide temperature range, including quantitative measurements of the high- and low-temperature phase fractions for each transition. The results reveal a stable coexistence of the high- and low-temperature phases over a broad temperature range throughout the transition. Careful comparison of temperature dependence of the different measurements, calibrated by the resistance of the sample, demonstrates that the electronic, magnetic, and structural degrees of freedom remain tightly coupled to each other during the transition process. We also find evidence for antiferromagnetic fluctuations in the vicinity of the phase transition, highlighting the important role of the magnetic degree of freedom in the metal-insulator transition.

Thumbnail of figure from publication
BYU Authors: Benjamin A. Frandsen, published in Phys. Rev. B
The majority of the iron-based superconductors (FeSCs) exhibit a two-dimensional square lattice structure. Recent reports of pressure-induced superconductivity in the spin-ladder system, BaFe2X3 (X=S, Se), introduce a quasi-one-dimensional prototype and an insulating parent compound to the FeSCs. Here we report x-ray, neutron diffraction, and muon spin relaxation experiments on BaFe2Se3 under hydrostatic pressure to investigate its magnetic and structural properties across the pressure-temperature phase diagram. A structural phase transition was found at a pressure of 3.7(3) GPa. Neutron diffraction measurements at 6.8(3) GPa and 120 K show that the block magnetism persists even at these high pressures. A steady increase and then fast drop of the magnetic transition temperature TN and greatly reduced moment above the pressure Ps indicate potentially rich and competing phases close to the superconducting phase in this ladder system.